On a class of convergent sequences defined by integrals ${ }^{1}$

Dorin Andrica and Mihai Piticari

Abstract

The main result shows that if $g:[0,1] \rightarrow \mathbb{R}$ is a continuous function such that $\lim _{\substack{x \rightarrow 0 \\ x>0}} \frac{g(x)}{x}$ exists and it is finite, then for any continuous function $f:[0,1] \rightarrow \mathbb{R}$ $$
\lim _{n \rightarrow \infty} n \int_{0}^{1} f(x) g\left(x^{n}\right) d x=f(1) \int_{0}^{1} \frac{g(x)}{x} d x
$$

The order of convergence in the above relation, consequences and some applications are given.

2000 Mathematics Subject Classification: 26D15, 65D30
Key words and phrases: quadrature rule, numerical integration, error bounds, optimal quadrature

[^0]
1 Introduction

There are many important classes of sequences defined by using Riemann integrals. We mention here only two. The first one is called the RiemannLebesgue Lemma and it asserts that if $g:[0,+\infty) \rightarrow \mathbb{R}$ is a continuous and T-periodic function, then for any continuous function $f:[a, b] \rightarrow \mathbb{R}$, $0 \leq a<b$, the following relation holds:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{a}^{b} f(x) g(n x) d x=\frac{1}{T} \int_{0}^{T} g(x) d x \int_{a}^{b} f(x) d x \tag{1}
\end{equation*}
$$

For the proof we refer to [3] (in special case $a=0, b=T$) and [8]. In the paper [1] we have proved that a similar relation as (1) holds for all continuous and bounded functions $g:[0,+\infty) \rightarrow \mathbb{R}$ having finite Cesaro mean. The second one was given in our paper [2] and shows that if $f:[1,+\infty) \rightarrow \mathbb{R}$ is a continuous function such that $\lim _{x \rightarrow \infty} x f(x)$ exists and it is finite, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n \int_{1}^{a} f\left(x^{n}\right) d x=\int_{1}^{\infty} \frac{f(x)}{x} d x \tag{2}
\end{equation*}
$$

for any real number $a>1$.
In this paper we investigate the class of sequences defined by $n \int_{0}^{1} f(x) g\left(x^{n}\right) d x$, where $f, g:[0,1] \rightarrow \mathbb{R}$ are continuous functions. The main results in [6] are obtained as consequences and some applications are given.

2 The main results

We begin with two preliminary results.

Lemma 1. Let $g:[0,1] \rightarrow \mathbb{R}$ be a continuous function such that $\lim _{\substack{x \rightarrow 0 \\ x>0}} \frac{g(x)}{x}$ exists and it is finite. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{1} g\left(x^{n}\right) d x=\int_{0}^{1} \frac{g(u)}{u} d u \tag{3}
\end{equation*}
$$

Proof. Define the function $h:[0,1] \rightarrow \mathbb{R}$,

$$
h(x)=\left\{\begin{array}{lll}
\frac{g(x)}{x} & \text { if } & x \in(0,1] \tag{4}\\
\lim _{\substack{x \rightarrow 0 \\
x>0}} & \text { if } & x=0
\end{array}\right.
$$

It is clear that h is continuous and denote

$$
H(x)=\int_{0}^{x} h(t) d t
$$

We have

$$
\begin{aligned}
& n \int_{0}^{1} g\left(x^{n}\right) d x=n \int_{0}^{1} x^{n} h\left(x^{n}\right) d x=\left.x H\left(x^{n}\right)\right|_{0} ^{1}-\int_{0}^{1} H\left(x^{n}\right) d x \\
& \quad=H(1)-\int_{0}^{1} H\left(x^{n}\right) d x=\int_{0}^{1} \frac{g(x)}{x} d x-\int_{0}^{1} H\left(x^{n}\right) d x
\end{aligned}
$$

If $0<a<1$, then we can write

$$
\begin{gather*}
\left|\int_{0}^{1} H\left(x^{n}\right) d x\right| \leq \int_{0}^{1}\left|H\left(x^{n}\right)\right| d x=\int_{0}^{a}\left|H\left(x^{n}\right)\right| d x+\int_{a}^{1}\left|H\left(x^{n}\right)\right| d x \\
\leq a\left|H\left(\alpha_{n}^{n}\right)\right|+(1-a) M \tag{5}
\end{gather*}
$$

where $\alpha_{n} \in[0, a]$ and $M \max _{t \in[0,1]}|H(t)|$.

Consider $\varepsilon>0$ such that $a>1-\frac{\varepsilon}{2 M}$. Because $\lim _{n \rightarrow \infty}\left|H\left(\alpha_{n}^{n}\right)\right|=0$, it follows that $a\left|H\left(\alpha_{n}^{n}\right)\right|<\frac{\varepsilon}{2}$ for all positive integers $n \geq N(\varepsilon)$. From (5) we get

$$
\left|\int_{0}^{1} H\left(x^{n}\right) d x\right| \leq \frac{\varepsilon}{2}+(1-a) M<\frac{\varepsilon}{2}+\left(1-1+\frac{\varepsilon}{2 M}\right) M=\varepsilon
$$

i.e. $\lim _{n \rightarrow \infty} \int_{0}^{1} H\left(x^{n}\right) d x=0$ and the conclusion follows.

Lemma 2. Let $g:[0,1] \rightarrow \mathbb{R}$ be a continuous function such that $\lim _{\substack{x \rightarrow 0 \\ x>0}} \frac{g(x)}{x}$ exists and it is finite. Then for any function $f:[0,1] \rightarrow \mathbb{R}$ of class C^{1},

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n \int_{0}^{1} f(x) g\left(x^{n}\right) d x=f(1) \int_{0}^{1} \frac{g(x)}{x} d x \tag{6}
\end{equation*}
$$

Proof. Denote $G(x)=\int_{0}^{x} \frac{g(t)}{t} d t, x \in[0,1]$, and note that

$$
\begin{align*}
& n \int_{0}^{1} f(x) g\left(x^{n}\right) d x=n \int_{0}^{1} x^{n} f(x) \frac{g\left(x^{n}\right)}{x^{n}} d x \\
= & \left.G\left(x^{n}\right) x f(x)\right|_{0} ^{1}-\int_{0}^{1}\left(x f^{\prime}(x)+f(x)\right) G\left(x^{n}\right) d x \\
= & G(1) f(1)-\int_{0}^{1}\left(x f^{\prime}(x)+f(x)\right) G\left(x^{n}\right) d x \\
= & f(1) \int_{0}^{1} \frac{g(x)}{x} d x-\int_{0}^{1}\left(x f^{\prime}(x)+f(x)\right) G\left(x^{n}\right) d x \tag{7}
\end{align*}
$$

We will prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left(x f^{\prime}(x)+f(x)\right) G\left(x^{n}\right) d x=0
$$

Indeed, by considering $M=\max _{x \in[0,1]}\left|x f^{\prime}(x)+f(x)\right|$ we have

$$
\begin{gathered}
\left|\int_{0}^{1}\left(x f^{\prime}(x)+f(x)\right) G\left(x^{n}\right) d x\right| \leq \int_{0}^{1}\left|x f^{\prime}(x)+f(x)\right|\left|G\left(x^{n}\right)\right| d x \\
\leq M \int_{0}^{1}\left|G\left(x^{n}\right)\right| d x .
\end{gathered}
$$

Using that $\lim _{n \rightarrow \infty} \int_{0}^{1}\left|G\left(x^{n}\right)\right| d x=0$ (see the proof of Lemma 1) the desired relation (6) follows from (7).

Our main results are the following.
Theorem 1. Let $g:[0,1] \rightarrow \mathbb{R}$ be a continuous function such that $\lim _{\substack{x \rightarrow 0 \\ x>0}} \frac{g(x)}{x}$ exists and it is finite. Then for any continuous function $f:[0,1] \rightarrow \mathbb{R}$ the relation (6) holds.

Proof. According to the well-known Weierstrass approximation theorem, consider $\left(f_{m}\right)_{m \geq 1}$ a sequence of polynomials uniformly convergent to f on the interval $[0,1]$. Let $\varepsilon>0$ be a fixed real number. We will show that we can find a positive integer $N(\varepsilon)$ such that for any $n \geq N(\varepsilon)$ and for any $x \in[0,1]$, we have

$$
\begin{equation*}
\left|n \int_{0}^{1} f(x) g\left(x^{n}\right) d x-f(1) \int_{0}^{1} \frac{g(x)}{x} d x\right|<\varepsilon \tag{8}
\end{equation*}
$$

From technical reasons, take $\varepsilon^{\prime}=\varepsilon /\left(2 \int_{0}^{1} \frac{g(x)}{x} d x+1\right)$ and consider the positive integer $N(\varepsilon)$ with the property that $\left|f_{m}(x)-f(x)\right|<\varepsilon^{\prime}$ for any $x \in[0,1]$. Because f and g are bounded it follows that we can assume that $f \geq 0$ and $g \geq 0$. For $m \geq N(\varepsilon)$ we have

$$
f_{m}(x) g\left(x^{n}\right)-\varepsilon^{\prime} g\left(x^{n}\right) \leq f(x) g\left(x^{n}\right) \leq f_{m}(x) g\left(x^{n}\right)+\varepsilon^{\prime} g\left(x^{n}\right)
$$

hence

$$
\begin{gather*}
n \int_{0}^{1} f_{m}(x) g\left(x^{n}\right) d x-\varepsilon^{\prime} n \int_{0}^{1} g\left(x^{n}\right) d x \leq n \int_{0}^{1} f(x) g\left(x^{n}\right) d x \\
\leq n \int_{0}^{1} f_{m}(x) g\left(x^{n}\right) d x+\varepsilon^{\prime} n \int_{0}^{1} g\left(x^{n}\right) d x \tag{9}
\end{gather*}
$$

From Lemma 2 we have

$$
\lim _{n \rightarrow \infty} n \int_{0}^{1} f_{m}(x) g\left(x^{n}\right) d x=f_{m}(1) \int_{0}^{1} \frac{g(x)}{x} d x
$$

and

$$
\lim _{n \rightarrow \infty} n \varepsilon^{\prime} \int_{0}^{1} g\left(x^{n}\right) d x=\varepsilon^{\prime} \int_{0}^{1} \frac{g(x)}{x} d x
$$

and it follows that for any positive integer $n \geq N^{\prime}(\varepsilon)$

$$
\begin{aligned}
n \int_{0}^{1} f_{m}(x) g\left(x^{n}\right) d x & -\varepsilon^{\prime} n \int_{0}^{1} g\left(x^{n}\right) d x \geq f_{m}(1) \int_{0}^{1} \frac{g(x)}{x} d x \\
& -\varepsilon^{\prime} \int_{0}^{1} \frac{g(x)}{x} d x-\varepsilon^{\prime}
\end{aligned}
$$

and

$$
\begin{aligned}
& n \int_{0}^{1} f_{m}(x) g\left(x^{n}\right) d x+\varepsilon^{\prime} n \int_{0}^{1} g\left(x^{n}\right) d x \leq f_{m}(1) \int_{0}^{1} \frac{g(x)}{x} d x \\
&+\varepsilon^{\prime} \int_{0}^{1} \frac{g(x)}{x} d x+\varepsilon^{\prime}
\end{aligned}
$$

But $f(1)-\varepsilon^{\prime}<f_{m}(1)<f(1)+\varepsilon^{\prime}$ imply for all $n \geq N^{\prime}(\varepsilon)$

$$
\begin{gathered}
\left(f(1)-\varepsilon^{\prime}\right) \int_{0}^{1} \frac{g(x)}{x} d x-\varepsilon^{\prime}\left(\int_{0}^{1} \frac{g(x)}{x} d x+1\right) \leq n \int_{0}^{1} f(x) g\left(x^{n}\right) d x \\
\quad \leq\left(f(1)+\varepsilon^{\prime}\right) \int_{0}^{1} \frac{g(x)}{x} d x+\varepsilon^{\prime}\left(\int_{0}^{1} \frac{g(x)}{x} d x+1\right)
\end{gathered}
$$

The last relation is equivalent to

$$
\begin{gathered}
\left|n \int_{0}^{1} f(x) g\left(x^{n}\right) d x-f(1) \int_{0}^{1} \frac{g(x)}{x} d x\right|<\varepsilon^{\prime}\left(2 \int_{0}^{1} \frac{g(x)}{x} d x+1\right) \\
=\varepsilon, \text { for all } n \geq N^{\prime}(\varepsilon),
\end{gathered}
$$

and the conclusion follows.
Remarks. 1) Consider the function $h:[0,1] \rightarrow \mathbb{R}$,

$$
h(x)=\left\{\begin{array}{lll}
\frac{g(x)}{x} & \text { if } & x \neq 0 \\
\lim _{\substack{x \rightarrow 0 \\
x>0}} \frac{g(x)}{x} & \text { if } & x=0
\end{array}\right.
$$

Because $\lim _{\substack{x \rightarrow 0 \\ x>0}} \frac{g(x)}{x}$ exists and it is finite, it follows that function h is continuous on $[0,1]$. Applying the result in Theorem 1 we obtain that for any continuous functions $f, h:[0,1] \rightarrow \mathbb{R}$ the following relation holds:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n \int_{0}^{1} x^{n} f(x) h\left(x^{n}\right) d x=f(1) \int_{0}^{1} h(x) d x \tag{10}
\end{equation*}
$$

Relation (10) was proved in [6] in the case when f is differentiable and f^{\prime} is continuous on $[0,1]$.
2) If $u:[0,1] \rightarrow \mathbb{R}$ is a continuous function such that its right derivative at 0 exists and it is finite, then the function $g(x)=u(x)-u(0)$ satisfies the hypotheses in Theorem 1. From (6) it follows

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) g\left(x^{n}\right) d x=0
$$

i.e.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) u\left(x^{n}\right) d x=u(0) \int_{0}^{1} f(x) d x \tag{11}
\end{equation*}
$$

In the paper [6] (see also [3]) is proved that the above relation holds even f, u are only continuous on $[0,1]$.
$3)$ If $f=1$, the constant function on $[0,1]$, from (10) we get the result in paper [7].

The order of convergence in (10) is given in the following result.
Theorem 2. Let $f:[0,1] \rightarrow \mathbb{R}$ be a function of class C^{1} and let $h:[0,1] \rightarrow \mathbb{R}$ be a continuous function. Then

$$
\begin{gather*}
\lim _{n \rightarrow \infty} n\left[f(1) \int_{0}^{1} h(x) d x-n \int_{0}^{1} x^{n} f(x) h\left(x^{n}\right) d x\right] \\
=\left(f(1)+f^{\prime}(1)\right) \int_{0}^{1} \frac{H(x)}{x} d x \tag{12}
\end{gather*}
$$

where $H(x)=\int_{0}^{x} h(t) d t$.
Proof. We can write

$$
\begin{aligned}
& n \int_{0}^{1} x^{n} f(x) h\left(x^{n}\right) d x=\int_{0}^{1} x f(x)\left(H\left(x^{n}\right)\right)^{\prime} d x \\
& \quad=\left.x f(x) H\left(x^{n}\right)\right|_{0} ^{1}-\int_{0}^{1}(x f(x))^{\prime} H\left(x^{n}\right) d x
\end{aligned}
$$

Therefore

$$
n\left[f(1) \int_{0}^{1} h(x) d x-n \int_{0}^{1} x^{n} f(x) h\left(x^{n}\right) d x\right]=n \int_{0}^{1}(x f(x))^{\prime} H\left(x^{n}\right) d x
$$

Functions $x \mapsto x f(x), x \mapsto H(x)$ satisfy the hypothesis in Theorem 1, hence we have

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} n(x f(x))^{\prime} H\left(x^{n}\right) d x=\left(f(1)+f^{\prime}(1)\right) \int_{0}^{1} \frac{H(x)}{x} d x
$$

and the desired relation follows.
Remarks. 1) Writing $h(x)=\frac{g(x)}{x}$ if $x \neq 0$ and $h(0)=\lim _{\substack{x \rightarrow 0 \\ x>0}} \frac{g(x)}{x}$, where $g:[0,1] \rightarrow \mathbb{R}$ is a continuous function such that $\lim _{\substack{x \rightarrow 0 \\ x>0}} \frac{g(x)}{x}$ exists and it is finite, from (11) we derive the following relation

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left[f(1) \int_{0}^{1} \frac{g(x)}{x} d x-n \int_{0}^{1} f(x) g\left(x^{n}\right) d x\right] \\
& \quad=\left(f(1)+f^{\prime}(1)\right) \int_{0}^{1}\left(\frac{1}{x} \int_{0}^{x} \frac{g(t)}{t} d t\right) d x
\end{aligned}
$$

This is the order of convergence in (6) when f is of class C^{1}.
2) If $h=1$, the constant function on $[0,1]$, from (10) we derive Problem 2.83.b) in [3].

3 Some applications

Application 1. 1) If $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function, then

$$
\lim _{n \rightarrow \infty} n \int_{0}^{1} \frac{x^{n} f(x)}{1+x^{2 n}} d x=\frac{\pi}{4} f(1)
$$

2) If $f:[0,1] \rightarrow \mathbb{R}$ is a function of class C^{1}, then

$$
\lim _{n \rightarrow \infty} n\left[\frac{\pi}{4} f(1)-n \int_{0}^{1} \frac{x^{n} f(x)}{1+x^{2 n}} d x\right]=\left(f(1)+f^{\prime}(1)\right) \int_{0}^{1} \frac{\operatorname{arctg} x}{x} d x
$$

These results follows from (6) and (13), where

$$
g(x)=\frac{x}{1+x^{2}}, \quad x \in[0,1] .
$$

If $f(x)=1$ for all $x \in[0,1]$, then we get Problem 2 of the 12 th Form in final Round of Romanian National Olympiad 2006.

Application 2. 1) (Romanian National Olympiad, County round 2001, partial statement) If $a>0$, then

$$
\lim _{n \rightarrow \infty} n \int_{0}^{1} \frac{x^{n}}{a+x^{n}} d x=\ln \frac{a+1}{a}
$$

2) The following relation holds

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left(\ln \frac{a+1}{a}-n \int_{0}^{1} \frac{x^{n}}{a+x^{n}} d x\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{a^{n} n^{2}} \tag{14}
\end{equation*}
$$

Indeed, taking in (6) $f=1$ and $g(x)=\frac{x}{a+x}$ we easily derive the first relation. For the second one we use (13) for the same choosing of functions. The right hand side in (13) becomes

$$
\begin{gathered}
\int_{0}^{1}\left(\frac{1}{x} \int_{0}^{x} \frac{d t}{a+t}\right) d x=\int_{0}^{1} \frac{\ln (x+a)-\ln a}{x} d x \\
=\int_{0}^{1} \frac{1}{x} \ln \left(1+\frac{x}{a}\right) d x=\int_{0}^{1} \frac{1}{x} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}\left(\frac{x}{a}\right)^{n} d x=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{a^{n} n^{2}} .
\end{gathered}
$$

If $a=1$, from (14) we get the interesting relation

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left(\ln 2-n \int_{0}^{1} \frac{x^{n}}{1+x^{n}} d x\right)=\frac{\pi^{2}}{12} \tag{15}
\end{equation*}
$$

Application 3. 1) If $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n \int_{0}^{1} f(x) \ln \left(1+x^{n}\right) d x=\frac{\pi^{2}}{12} f(1) \tag{16}
\end{equation*}
$$

2) If $f:[0,1] \rightarrow \mathbb{R}$ is a function of class C^{1}, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left[\frac{\pi^{2}}{12} f(1)-n \int_{0}^{1} f(x) \ln \left(1+x^{n}\right) d x\right]=\frac{3}{4}\left(f(1)+f^{\prime}(1)\right) \zeta(3) \tag{17}
\end{equation*}
$$

where ζ is the well-known Riemann's function.

To prove (16) we take in (6), $g(x)=\ln (1+x)$. We have

$$
\begin{gathered}
\int_{0}^{1} \frac{g(x)}{x} d x=\int_{0}^{1} \frac{\ln (1+x)}{x} d x=\int_{0}^{1} \frac{1}{x} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n} d x \\
=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\zeta(2)-\frac{2}{2^{2}} \zeta(2)=\frac{1}{2} \zeta(2) \frac{\pi^{2}}{12} .
\end{gathered}
$$

In order to prove (17) we use relation (13) and observe that in the right hand side we obtain

$$
\begin{aligned}
& \int_{0}^{1}\left(\frac{1}{x} \int_{0}^{x} \frac{\ln (1+t)}{t} d t\right) d x=\int_{0}^{1}\left(\frac{1}{x} \int_{0}^{x} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} t^{n-1}}{n} d t\right) d x \\
= & \int_{0}^{1}\left(\frac{1}{x} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n^{2}}\right) d x=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{3}}=\zeta(3)-\frac{2}{2^{3}} \zeta(3)=\frac{3}{4} \zeta(3) .
\end{aligned}
$$

References

[1] Andrica, D., Piticari, M., An extension of the Riemann-Lebesgue lemma and some applications, Proc. International Conf. on Theory and Applications of Mathematics and Informatics (ICTAMI 2004), Thessaloniki, Acta Universitatis Apulensis, No.8(2004), 26-39.
[2] Andrica, D., Piticari, M., On a class of sequences defined by using Riemann integral, Proc. International Conf. on Theory and Applications of Mathematics and Informatics (ICTAMI 2005), Albac, Acta Universitatis Apulensis, No. 10 (2005), 381-385.
[3] Dumitrel, F., Problems in Mathematical Analysis (Romanian), Editura Scribul, 2002.
[4] Lang, S., Analysis I, Addison-Wesley, 1968.
[5] Mocanu, M., Sandovici, A., On the convergence of a sequence generated by an integral, Creative Math., 14(2005), 31-42.
[6] Muşuroia, N., On the limits of some sequences of integrals, Creative Math., 14(2005), 43-48.
[7] Păltănea, E., O reprezentare a unui şir de integrale, G.M. No. 11 (2003), 419-421.
[8] Sireţchi, Gh., Mathematical Analysis II. Advanced Problems in Differential and Integral Calculus, (Romanian), University of Bucharest, 1982.
"Babeş-Bolyai" University
Faculty of Mathematics and Computer Science
Cluj-Napoca, Romania
E-mail address:dandrica@math.ubbcluj.ro
"Dragoş-Vodă" National College
Câmpulung Moldovenesc, Romania

[^0]: ${ }^{1}$ Received March 6, 2006
 Accepted for publication (in revised form) April 10, 2006

