General Mathematics Vol. 14, No. 1 (2006), 31-40

C_g asymptotic equivalence for some functional equation of type Voltera¹

Marian Olaru and Vasilica Olaru

Abstract

In this paper , by using the notion of φ - contraction, we study the C_g asymptotic equivalence for the solutions of the equations x'(t) = A(t)x(t) and $y'(t) = A(t)y(t) + f(t, y_t)$, where $f(t, \cdot)$ is a Voltera operator.

2000 Mathematical Subject Classification: 34K10, 47H10 Keywords: C_g asymptotic equivalence ,Voltera operator, $\varphi-$ contraction.

1 Introduction

Let C_g be the Banach space of continuous functions defined on $\mathbb{R}_{t_0} = [t_0, \infty), t_0 \ge 0$ which satisfied the condition :

(1)
$$|u(t)| = O(g(t)), \quad t \longrightarrow \infty,$$

¹Received January 17, 2006

Accepted for publication (in revised form) February 25, 2006

where g is a continuous and positive function defined on R_{t_0} , $|\cdot|$ is the Euclidean norm in \mathbb{R}^n .

We define the norm on C_g by relation:

(2)
$$|u|_{C_g} = \sup_{t \in \mathbb{R}_{t_0}} \frac{|u(t)|}{g(t)}.$$

We note by u_t the restriction of function u at $[t_0, t]$. For $u_t \in C([t_0, t], \mathbb{R}^n)$ we define

(3)
$$||u_t|| = \sup_{s \in [t_0, t]} |u(s)|$$

On [1] it is presented the following lemma:

Lemma 1.1. Let g be a nondecreasing, positive function defined on \mathbb{R}_+ and $x \in C_g$. Then:

$$|x|_{C_g} = \sup_{t \in \mathbb{R}_+} \frac{\|x_t\|}{g(t)}$$

Next we consider the equations :

$$(4) x' = A(t)x$$

(5)
$$y' = A(t)y + f(t, y_t),$$

where for $t \geq t_0$ the application $\psi \longrightarrow f(t, \psi)$ is an application from $C([t_0, t], \mathbb{R}^n)$ to \mathbb{R}^n that satisfies some conditions that assure the existence of the equation (5), conditions that are to be explained below.

Definition 1.1.[1] We say that the equations (4) and (5) are C_g -asymptotic equivalence if for all solution $x \in C_g$ of equation (4) corresponding a unique solution y of equation (5) such that :

(6)
$$\lim_{t \to \infty} \frac{|x(t) - y(t)|}{g(t)} = 0$$

Through the following definitions we shall further present the notion of comparison function and φ - contraction:

Definition 1.2. [2], [3] $\varphi : \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ is a strict comparison function if φ satisfies the following:

i) φ is continuous. ii) φ is monotone increasing. iii) $\varphi^n(t) \longrightarrow 0$, for all t > 0. iv) $t \cdot \varphi(t) \longrightarrow \infty$, for $t \longrightarrow \infty$.

Let (X, d) be an metric space and $f : X \longrightarrow X$ be an operator.

Definition 1.3. [2], [3] The operator f is called a strict φ -contraction if:

(i) φ is a strict comparison function. (ii) $d(f(x), f(y)) \leq \varphi(d(x, y))$, for all $x, y \in X$.

We shall make the following hypothesis :

(H) We suppose that there exists a comparison function φ which satisfies condition

(7)
$$\varphi(\lambda \cdot r) \le \lambda \cdot \varphi(r),$$

for all $r \ge 0$ and $\lambda \ge 1$

An example of such a function is shown in the next figure:

$$\varphi : \mathbb{R}_+ \longrightarrow \mathbb{R}_+, \varphi(t) = \frac{r}{r+1}$$

On [2] I.A Rus obtains the following result:

Theorem 1.1.Let (X, d) be a complete metric space and $f : X \longrightarrow X$ a φ -contraction. Then f, is a Picard operator.

2 Main result

Theorem 2.1.Let X(t) be a fundamental matrix of equation (4). We suppose that :

(i) There exists the projectors P_1, P_2 and a constant K > 0 such that

(8)
$$\left(\int_{t_0}^t |X(t)P_1X^{-1}(s)|^q ds + \int_t^\infty |X(t)P_2X^{-1}(s)|^q ds\right)^{\frac{1}{q}} \le K,$$

for $t \ge t_0, \ q > 1;$

- (ii) The application $t \longrightarrow f(t, y_t)$ is continuous for all $y \in C_g$.
- (iii) There exists φ : ℝ₊ → ℝ₊, a comparison function which satisfies the hypothesis (H), and λ a continuous, nonnegative function defined on ℝ_{t₀} such that

(9)
$$|f(t, y_t) - f(t, \overline{y_t})| \le \lambda(t)\varphi(||y_t - \overline{y_t}||),$$

for all $t \ge t_0, y \in C_g$

(iv)

(10)
$$\left\{\int_{t}^{\infty} (\lambda(s)g(s))^{p} ds\right\}^{\frac{1}{p}} \in C_{g}, \ p > 1$$

(11)
$$\left\{\int_{t_0}^{\infty} |f(s,0)|^p ds\right\}^{\frac{1}{p}} < \infty, \left\{\int_{t_0}^{\infty} (\lambda(s))^p\right\}^{\frac{1}{p}} < \infty, \quad p > 1.$$

Then for all solution $x \in C_g$ of equation (4) there exists a unique solution y(t) of equation (5).

If we replace the condition (10) with

(12)
$$\left\{\int_{t}^{\infty} (\lambda(s)g(s))^{p}ds\right\}^{\frac{1}{p}} = o(t), \quad t \longrightarrow \infty ,$$

then the equations (4) and (5) are C_g -asymptotic equivalence.

Proof. The function g being nondecreasing and positive we cant suppose that $g \ge 1$, because $C_g = C_{kg}$ for all k > 0.(for more details see [1])

On C_g we define the operator T by relation:

$$T(y)(t) = x(t) + \int_{t_0}^t X(t)P_1 X^{-1}(s)f(s, y_s)ds - \int_t^\infty X(t)P_2 X^{-1}(s)f(s, y_s)ds$$

Let $x \in C_g$ be a solution for the equation(4). Then $|x(t)| \leq A \cdot g(t)$, for all $t \geq t_0$. We prove that $T(C_g) \subseteq C_g$. Let be $y \in C_g$. Then

$$\begin{aligned} |T(y)(t)| &\leq |x(t)| + \int_{t_0}^t |X(t)P_1X^{-1}(s)| \cdot |f(s, y_s)| ds + \\ &+ \int_t^\infty |X(t)P_2X^{-1}(s)| \cdot |f(s, y_s)| ds \leq \\ &\leq Ag(t) + \int_{t_0}^t |X(t)P_1X^{-1}(s)| \cdot |f(s, y_s) - f(s, 0)| ds + \\ &+ \int_{t_0}^t |X(t)P_1X^{-1}(s)| \cdot |f(s, 0)| ds + \end{aligned}$$

$$\begin{split} &+ \int_{t}^{\infty} |X(t)P_{2}X^{-1}(s)| \cdot |f(s,y_{s}) - f(s,0)| ds + \\ &+ \int_{t}^{\infty} |X(t)P_{2}X^{-1}(s)| \cdot |f(s,0)| ds \leq \\ &\leq Ag(t) + \left\{ \int_{t}^{\infty} |X(t)P_{2}X^{-1}(s)|^{q} ds \right\}^{\frac{1}{q}} \cdot \left\{ \int_{t}^{\infty} |f(s,0)|^{p} ds \right\}^{\frac{1}{p}} + \\ &+ \left\{ \int_{t_{0}}^{t} |X(t)P_{1}X^{-1}(s)|^{q} ds \right\}^{\frac{1}{q}} \cdot \left\{ \int_{t_{0}}^{t} |f(s,0)|^{p} ds \right\}^{\frac{1}{p}} + \\ &+ \left\{ \int_{t_{0}}^{t} |X(t)P_{2}X^{-1}(s)|^{q} ds \right\}^{\frac{1}{q}} \cdot \left\{ \int_{t_{0}}^{t} (\lambda(s)\varphi(||y_{s}||))^{p} ds \right\}^{\frac{1}{p}} + \\ &+ \left\{ \int_{t_{0}}^{t} |X(t)P_{1}X^{-1}(s)|^{q} ds \right\}^{\frac{1}{q}} \cdot \left\{ \int_{t_{0}}^{t} (\lambda(s))\varphi(||y_{s}||)^{p} ds \right\}^{\frac{1}{p}} + \\ &+ \left\{ \int_{t_{0}}^{t} |X(t)P_{1}X^{-1}(s)|^{q} ds \right\}^{\frac{1}{q}} \cdot \left\{ \int_{t_{0}}^{t} (\lambda(s))\varphi(||y_{s}||)^{p} ds \right\}^{\frac{1}{p}} \leq \\ &\leq Ag(t) + K \cdot \left\{ \int_{t_{0}}^{t} |f(s,0)|^{p} ds \right\}^{\frac{1}{p}} + \\ &+ K \cdot \left\{ \int_{t_{0}}^{\infty} |f(s,0)|^{p} ds \right\}^{\frac{1}{p}} + \\ &+ K \cdot \varphi(|y|_{C_{g}}) \cdot \left\{ \int_{t_{0}}^{t} (\lambda(s)g(s))^{p} ds \right\}^{\frac{1}{p}} + \\ &+ K \cdot \varphi(|y|_{C_{g}}) \cdot \left\{ \int_{t_{0}}^{t} (\lambda(s)g(s))^{p} ds \right\}^{\frac{1}{p}} + \\ \end{split}$$

 C_g asymptotic equivalence for some functional equation of type Voltera 37

$$+K \cdot \varphi(|y|_{C_g}) \cdot \left\{ \int_{t}^{\infty} (\lambda(s)g(s))^p ds \right\}^{\frac{1}{p}} \leq \\ \leq M \cdot g(t),$$

where

$$M = A + K \cdot \varphi(|y|_{C_g}) \cdot \left\{ \int_{t_0}^{\infty} (\lambda(s))^p ds \right\}^{\frac{1}{p}} + K \cdot \varphi(|y|_{C_g}) \cdot B_1 + 2K \cdot \left\{ \int_{t_0}^{\infty} |f(s,0)|^p ds \right\}^{\frac{1}{p}}.$$

Next we consider $y, \overline{y} \in C_g$. We prove that, the operator T is a φ -contraction.

$$\begin{split} \|T(y)(t) - T(\overline{y})(t)\| &\leq \int_{t_0}^t |X(t)P_1X^{-1}(s)| \cdot |f(s, y_s) - f(s, \overline{y}_s)| ds + \\ &+ \int_{t}^{\infty} |X(t)P_2X^{-1}(s)| \cdot |f(s, y_s) - f(s, \overline{y}_s)| ds \leq \\ &\leq K \cdot \left\{ \left\{ \int_{t_0}^t |f(s, y_s) - f(s, \overline{y}_s)|^p ds \right\}^{\frac{1}{p}} + \left\{ \int_{t}^{\infty} |f(s, y_s) - f(s, \overline{y}_s)|^p ds \right\}^{\frac{1}{p}} \right\} \leq \\ &\leq K \cdot \varphi(|y - \overline{y}|_{C_g}) \left\{ \left\{ \int_{t_0}^t (\lambda(s)g(s))^p ds \right\}^{\frac{1}{p}} + \left\{ \int_{t}^{\infty} (\lambda(s)g(s))^p ds \right\}^{\frac{1}{p}} \right\} \leq \\ &\leq K \cdot \left\{ \left\{ \int_{t_0}^{\infty} (\lambda(s))^p ds \right\}^{\frac{1}{p}} + B_1 \right\} \varphi(|y - \overline{y}|_{C_g}) \cdot g(t). \end{split}$$

We choose
$$t_0 \ge 0$$
 such that $K \cdot \left\{ \left\{ \int_{t_0}^{\infty} (\lambda(s))^p ds \right\}^{\frac{1}{p}} + B_1 \right\} < 1$

Let be x an solution of equation (4) and y the unique solution of the equation(5) that corresponds to x. Then

$$\begin{split} |y(t) - x(t)| &\leq \int_{t_0}^t |X(t)P_1X^{-1}(s)| \cdot |f(s, y_s)| ds + \\ &+ \int_t^\infty |X(t)P_2X^{-1}(s)| \cdot |f(s, y_s)| ds \leq \\ &\leq \int_{t_0}^t |X(t)P_1X^{-1}(s)| \cdot |f(s, y_s)| ds + \int_t^\infty |X(t)P_2X^{-1}(s)| \cdot |f(s, y_s) - f(s, 0)| ds + \\ &+ \int_t^\infty |X(t)P_2X^{-1}(s)| \cdot |f(s, y_s) - f(s, 0)| ds = I_1 + I_2. \end{split}$$

$$I_2 &= \int_t^\infty |X(t)P_2X^{-1}(s)| \cdot |f(s, y_s) - f(s, 0)| ds + \int_t^\infty |X(t)P_2X^{-1}(s)| \cdot |f(s, 0)| ds \\ &\leq K\varphi(|y|_{C_g}) \left\{ \int_t^\infty (\lambda(s)g(s))^p ds \right\}^{\frac{1}{p}} + K \left\{ \int_{t_1}^\infty |f(s, 0)|^p ds \right\}^{\frac{1}{p}}. \end{split}$$
If $t \geq t_1 \geq t_0$ then
$$\left\{ \int_t^\infty (\lambda(s)g(s))^p ds \right\}^{\frac{1}{p}} < \frac{\epsilon}{6K\varphi(|y|_{C_g})} \end{split}$$

$$\left\{\int_{t_1}^{\infty} |f(s,0)|^p ds\right\}^{\frac{1}{p}} < \frac{\epsilon}{6K}.$$

 C_g asymptotic equivalence for some functional equation of type Voltera 39

$$\begin{split} \text{Then } I_2 &\leq \frac{\varepsilon}{3}g(t) \\ I_1 &= \int_{t_0}^t |X(t)P_1X^{-1}(s)| \cdot |f(s,y_s)| ds \leq \\ &\leq |X(t)P_1| \int_{t_0}^{t_1} |X^{-1}(s)f(s,y_s)| ds + \int_{t_1}^t |X(t)P_1X^{-1}(s)| \cdot |f(s,y_s) - f(s,0)| ds + \\ &\quad + \int_{t_1}^t |f(s,0)| ds \\ &\leq |X(t)P_1| \int_{t_0}^{t_1} |X^{-1}(s)f(s,y_s)| ds + \\ &\quad + K \cdot \left\{ \left\{ \int_{t_1}^t (\lambda(s)\varphi(||y_s||))^p ds \right\}^{\frac{1}{p}} + \left\{ \int_{t_1}^t |f(s,0)|^p \right\}^{\frac{1}{p}} \right\} \leq \\ &\leq |X(t)P_1| \int_{t_0}^{t_1} |X^{-1}(s)f(s,y_s)| ds + \\ &\quad + K \cdot \varphi(|y|_{C_g}) \left\{ \int_{t_1}^t (\lambda(s)g(s))^p ds \right\}^{\frac{1}{p}} + K \cdot \left\{ \int_{t_1}^t |f(s,0)|^p \right\}^{\frac{1}{p}} \leq \\ &\leq |X(t)P_1| \int_{t_0}^{t_1} |X^{-1}(s)f(s,y_s)| ds + K \cdot \varphi(|y|_{C_g})g(t) \left\{ \int_{t_1}^{\infty} (\lambda(s))^p ds \right\}^{\frac{1}{p}} + \\ &\quad + K \cdot \left\{ \int_{t_1}^{\infty} |f(s,0)|^p \right\}^{\frac{1}{p}}. \end{split}$$

Using Lemma 1.1 we obtain that $|X(t)P_1| \int_{t_0}^{t_1} |X^{-1}(s)f(s, y_s)| ds < \frac{\varepsilon}{3}$, for all $t \ge t_2 \ge t_1$. Then $I_1 < \frac{2\varepsilon}{3}g(t)$

References

- C.Corduneanu, Sur certaines equations fonctioneneles de Voltera, Funkcialaj Ekvacioj,9(1966),pp517-573.
- [2] I.A.Rus, *Generalized contractions*, Seminar on fixed point theory, No 3, 1983, 1-130.
- [3] I.A. Rus, S Muresan, Data dependence of the fixed points set of weakly Picard operators, Studia Univ."Babes-Bolyai", Mathematica, Volume XLIII, Number 1, March 1998, pp79-83.

Department of Mathematics Faculty of Sciences "Lucian Blaga" University of Sibiu Str. Dr. I. Raţiu nr. 5-7, 550012 - Sibiu, România, E-mail: olaruim@yahoo.com olaru2@yahoo.com