On a subclass of n-uniformly close to convex functions

Mugur Acu

Abstract

In this paper we define a subclass on n-uniformly close to convex functions and we obtain some properties regarding this class.

2000 Mathematical Subject Classification: 30C45.
Key words and phrases: Uniformly close to convex functions,
Libera-Pascu integral operator, Briot-Bouquet differential subordination

1 Introduction

Let $\mathcal{H}(U)$ be the set of functions which are regular in the unit disc $U=\{z \in \mathbb{C}:|z|<1\}, A=\left\{f \in \mathcal{H}(U): \quad f(0)=f^{\prime}(0)-1=0\right\}$ and $S=\{f \in A: f$ is univalent in $U\}$.

We recall here the definition of the well - known class of starlike functions:

$$
S^{*}=\left\{f \in A: \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0, z \in U\right\}
$$

Let D^{n} be the Sălăgean differential operator (see [5]) $D^{n}: A \rightarrow A$, $n \in \mathbb{N}$, defined as:

$$
D^{0} f(z)=f(z)
$$

[^0]\[

$$
\begin{gathered}
D^{1} f(z)=D f(z)=z f^{\prime}(z) \\
D^{n} f(z)=D\left(D^{n-1} f(z)\right)
\end{gathered}
$$
\]

Remark 1.1. If $f \in S, f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}, z \in U$ then

$$
D^{n} f(z)=z+\sum_{j=2}^{\infty} j^{n} a_{j} z^{j}
$$

Let consider the Libera-Pascu integral operator $L_{a}: A \rightarrow A$ defined as:

$$
\begin{equation*}
f(z)=L_{a} F(z)=\frac{1+a}{z^{a}} \int_{0}^{z} F(t) \cdot t^{a-1} d t, \quad a \in \mathbb{C}, \quad \text { Re } a \geq 0 \tag{1}
\end{equation*}
$$

For $a=1$ we obtain the Libera integral operator, for $a=0$ we obtain the Alexander integral operator and in the case $a=1,2,3, \ldots$ we obtain the Bernardi integral operator.

The purpose of this note is to define, using the Sălăgean differential operator, a subclass on n-uniformly close to convex functions and to obtain some properties regarding this class.

2 Preliminary results

Let $k \in[0, \infty), n \in \mathbb{N}^{*}$. We define the class $(k, n)-S^{*}$ (see the definition of the class $(k, n)-S T$ in [1]) by $f \in S^{*}$ and

$$
\operatorname{Re}\left(\frac{D^{n} f(z)}{f(z)}\right)>k\left|\frac{D^{n} f(z)}{f(z)}-1\right|, z \in U
$$

Remark 2.1. (for more details see [1]) We denote by $p_{k}, k \in[0, \infty)$ the function which maps the unit disk conformally onto the region Ω_{k}, such that $1 \in \Omega_{k}$ and

$$
\partial \Omega_{k}=\left\{u+i v: u^{2}=k^{2}(u-1)^{2}+k^{2} v^{2}\right\}
$$

The domain Ω_{k} is elliptic for $k>1$, hyperbolic when $0<k<1$, parabolic for $k=1$, and a right half-plane when $k=0$. In this conditions, a function
f is in the class $(k, n)-S^{*}$ if and only if $\frac{D^{n} f(z)}{f(z)} \prec p_{k}$ or $\frac{D^{n} f(z)}{f(z)}$ take all values in the domain Ω_{k}. Because the domain Ω_{k} is convex, as an immediate consequence of the well known Rogosinski result for subordinate functions, we obtain for $p \prec p_{k}, p(z)=1+p_{1} z+p_{2} z^{2}+\ldots, z \in U$,

$$
\left|p_{n}\right| \leq\left|P_{1}\right|:=P_{1}(k)=\left\{\begin{array}{r}
\frac{8(\arccos k)^{2}}{\pi^{2}\left(1-k^{2}\right)}, 0 \leq k<1, \\
\frac{8}{\pi^{2}}, k=1, \\
\frac{\pi^{2}}{4 \sqrt{\kappa}\left(k^{2}-1\right) K^{2}(\kappa)(1+\kappa)}, k>1
\end{array}\right.
$$

for $n=1,2, \ldots$, where $K(\kappa)$ is Legendre's complete elliptic integral of the first kind, κ is chosen such that $k=\cosh \left[\pi K^{\prime}(\kappa)\right] /[4 K(\kappa)]$ and $K^{\prime}(\kappa)$ is complementary integral of $K(\kappa)$.

With the notations from Remark 2.1 we have:
Theorem 2.1. [1] Let $k \in[0, \infty)$ and $f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$ belongs to the class $(k, n)-S^{*}$. Then $\left|a_{2}\right| \leq \frac{P_{1}}{2^{n}-1}$ and

$$
\left|a_{j}\right| \leq \frac{P_{1}}{j^{n}-1} \prod_{s=2}^{j-1}\left(1+\frac{P_{1}}{s^{n}-1}\right), j=3,4, \ldots, n \in \mathbb{N}^{*}
$$

The next theorem is result of the so called "admissible functions method" introduced by P.T. Mocanu and S.S. Miller (see [2], [3], [4]).
Theorem 2.2. Let q be convex in U and $j: U \rightarrow \mathbb{C}$ with $\operatorname{Re}[j(z)]>0$, $z \in U$. If $p \in \mathcal{H}(U)$ and satisfied $p(z)+j(z) \cdot z p^{\prime}(z) \prec q(z)$, then $p(z) \prec q(z)$.

3 Main results

Definition 3.1. Let $f \in A, k \in[0, \infty)$ and $n \in \mathbb{N}^{*}$. We say that the function f is in the class $(k, n)-C C$ with respect to the function $g \in(k, n)-S^{*}$ if

$$
\operatorname{Re}\left(\frac{D^{n} f(z)}{g(z)}\right)>k \cdot\left|\frac{D^{n} f(z)}{g(z)}-1\right|, z \in U
$$

Remark 3.1. Geometric interpretation: $f \in(k, n)-C C$ with respect to the function $g \in(k, n)-S^{*}$ if and only if $\frac{D^{n} f(z)}{g(z)} \prec p_{k}$ (see Remark 2.1) or $\frac{D^{n} f(z)}{g(z)}$ take all values in the domain Ω_{k} (see Remark 2.1).

Remark 3.2. From the geometric properties of the domains Ω_{k} we have that $\left(k_{1}, n\right)-C C \subset\left(k_{2}, n\right)-C C$, where $k_{1} \geq k_{2}$.

Theorem 3.1. If $F(z) \in(k, n)-S^{*}$, with $k \in[0, \infty)$ and $n \in \mathbb{N}^{*}$, then $f(z)=L_{a} F(z) \in(k, n)-S^{*}$, where L_{a} is the integral operator defined by (1).

Proof. By differentiating (1) we obtain

$$
\begin{equation*}
(1+a) F(z)=a f(z)+z f^{\prime}(z) \tag{2}
\end{equation*}
$$

By means of the application of the linear operator D^{n} we have

$$
\begin{equation*}
(1+a) D^{n} F(z)=a D^{n} f(z)+D^{n+1} f(z) . \tag{3}
\end{equation*}
$$

From (2) and (3) we obtain

$$
\frac{(1+a) D^{n} F(z)}{(1+a) F(z)}=\frac{a D^{n} f(z)+D^{n+1} f(z)}{a f(z)+z f^{\prime}(z)}=\frac{f(z)\left[a \frac{D^{n} f(z)}{f(z)}+\frac{D^{n+1} f(z)}{f(z)}\right]}{f(z)\left[a+\frac{z f^{\prime}(z)}{f(z)}\right]}
$$

or

$$
\begin{equation*}
\frac{D^{n} F(z)}{F(z)}=\frac{a \frac{D^{n} f(z)}{f(z)}+\frac{D^{n+1} f(z)}{f(z)}}{a+\frac{z f^{\prime}(z)}{f(z)}} \tag{4}
\end{equation*}
$$

With notation $p(z)=\frac{D^{n} f(z)}{f(z)}$, where $p(0)=1$, we obtain

$$
z p^{\prime}(z)=z \frac{\left(D^{n} f(z)\right)^{\prime} f(z)-\left(D^{n} f(z)\right) f^{\prime}(z)}{f^{2}(z)}=
$$

$$
=\frac{z\left(D^{n} f(z)\right)^{\prime}}{f(z)}-\frac{D^{n} f(z)}{f(z)} \cdot \frac{z f^{\prime}(z)}{f(z)}=\frac{D^{n+1} f(z)}{f(z)}-p(z) \cdot \frac{z f^{\prime}(z)}{f(z)}
$$

or

$$
\begin{equation*}
\frac{D^{n+1} f(z)}{f(z)}=z p^{\prime}(z)+p(z) \cdot \frac{z f^{\prime}(z)}{f(z)} \tag{5}
\end{equation*}
$$

From (4) and (5) we have

$$
\frac{D^{n} F(z)}{F(z)}=\frac{p(z)\left[a+\frac{z f^{\prime}(z)}{f(z)}\right]+z p^{\prime}(z)}{a+\frac{z f^{\prime}(z)}{f(z)}}
$$

or

$$
\begin{equation*}
\frac{D^{n} F(z)}{F(z)}=p(z)+\frac{1}{a+\frac{z f^{\prime}(z)}{f(z)}} \cdot z p^{\prime}(z) \tag{6}
\end{equation*}
$$

From hypothesis we have $\frac{D^{n} F(z)}{F(z)} \prec p_{k}(z)$, where p_{k} maps the unit disk conformally onto the convex domain Ω_{k} (see Remark 2.1).

Using (6) we obtain $p(z)+\frac{1}{a+\frac{z f^{\prime}(z)}{f(z)}} \cdot z p^{\prime}(z) \prec p_{k}(z)$.
Using the hypothesis, from Theorem 2.2, we have $p(z) \prec p_{k}(z)$ or $\frac{D^{n} f(z)}{f(z)}$ take all values in the domain Ω_{k}. This means that $f(z) \in(k, n)-S^{*}$.

Theorem 3.2. If $F(z) \in(k, n)-C C, k \in[0, \infty), n \in \mathbb{N}^{*}$, with respect to the function $G(z) \in(k, n)-S^{*}$, and $f(z)=L_{a} F(z), g(z)=L_{a} G(z)$, where L_{a} is the integral operator defined by (1), then $f(z) \in(k, n)-C C$, $k \in[0, \infty), n \in \mathbb{N}^{*}$, with respect to the function $g(z) \in(k, n)-S^{*}$.

Proof. Using (1) and the linear operator D^{n} we obtain

$$
(1+a) D^{n} F(z)=a D^{n} f(z)+D^{n+1} f(z)
$$

and

$$
(1+a) G(z)=a g(z)+z g^{\prime}(z) .
$$

From the above we have

$$
\frac{(1+a) D^{n} F(z)}{(1+a) G(z)}=\frac{a D^{n} f(z)+D^{n+1} f(z)}{a g(z)+z g^{\prime}(z)}
$$

or

$$
\frac{D^{n} F(z)}{G(z)}=\frac{a \frac{D^{n} f(z)}{g(z)}+\frac{D^{n+1} f(z)}{g(z)}}{a+\frac{z g^{\prime}(z)}{g(z)}}
$$

If we denote $p(z)=\frac{D^{n} f(z)}{g(z)}$, with $p(0)=1$, we have

$$
\begin{equation*}
\frac{D^{n} F(z)}{G(z)}=\frac{a p(z)+\frac{D^{n+1} f(z)}{g(z)}}{a+\frac{z g^{\prime}(z)}{g(z)}} \tag{7}
\end{equation*}
$$

With simple calculations we obtain

$$
z p^{\prime}(z)=\frac{z\left(D^{n} f(z)\right)^{\prime}}{g(z)}-\frac{D^{n} f(z)}{g(z)} \cdot \frac{z g^{\prime}(z)}{g(z)}=\frac{D^{n+1} f(z)}{g(z)}-p(z) \cdot \frac{z g^{\prime}(z)}{g(z)}
$$

and thus

$$
\begin{equation*}
\frac{D^{n+1} f(z)}{g(z)}=z p^{\prime}(z)+p(z) \cdot \frac{z g^{\prime}(z)}{g(z)} \tag{8}
\end{equation*}
$$

From (7) and (8) we obtain

$$
\begin{equation*}
\frac{D^{n} F(z)}{G(z)}=p(z)+\frac{1}{a+\frac{z g^{\prime}(z)}{g(z)}} \cdot z p^{\prime}(z)=p(z)+j(z) \cdot z p^{\prime}(z) \tag{9}
\end{equation*}
$$

where from the hypothesis and the Theorem 3.1 we have $\operatorname{Re} j(z)>0$ $z \in U$.

From $F(z) \in(k, n)-C C$ with respect to the function $G(z) \in(k, n)-S^{*}$, using Remark 3.1, we obtain $p(z)+j(z) \cdot z p^{\prime}(z) \prec p_{k}(z)$, where p_{k} maps the unit disk conformally onto the convex domain Ω_{k} (see Remark 2.1).

From Theorem 2.2, we have $p(z) \prec p_{k}(z)$ or $\frac{D^{n} f(z)}{g(z)}$ take all values in the domain Ω_{k}. This means that $f(z) \in(k, n)-C C$ with respect to the function $g(z) \in(k, n)-S^{*}$.

Theorem 3.3. If $f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$ belong to the class $(k, n)-C C$, with respect to the function $g(z) \in(k, n)-S^{*}, g(z)=z+\sum_{j=2}^{\infty} b_{j} z^{j}$, where $k \in[0, \infty), n \in \mathbb{N}^{*}$, then

$$
\begin{gathered}
\left|a_{2}\right| \leq \frac{P_{1}}{2^{n}-1} ;\left|a_{3}\right| \leq \frac{P_{1}\left(P_{1}-1+2^{n}\right)}{\left(2^{n}-1\right)\left(3^{n}-1\right)} \\
\left|a_{j}\right| \leq \frac{P_{1}}{j^{n}-1} \cdot \prod_{t=2}^{j-1} \frac{P_{1}-1+t^{n}}{t^{n}-1}, j \geq 4,
\end{gathered}
$$

where P_{1} is given in Remark 2.1.
Proof. We have $f(z) \in(k, n)-C C$ if and only if $h(z)=\frac{D^{n} f(z)}{g(z)} \prec p_{k}(z)$, where $p_{k}(U)=\Omega_{k}$ (see Remark 3.1). Let $h(z)=1+c_{1} z+c_{2} z^{2}+\cdots$, $z \in U$. Taking account the Rogosinski subordination theorem, we have $\left|c_{j}\right| \leq P_{1}, j \geq 1$.

Using the hypothesis and the Remark 1.1 we have

$$
\frac{z+\sum_{j=2}^{\infty} j^{n} a_{j} z^{j}}{z+\sum_{j=2}^{\infty} b_{j} z^{j}}=1+c_{1} z+c_{2} z^{2}+\cdots
$$

From the equality of the powers coefficients we obtain

$$
2^{n} a_{2}=c_{1}+b_{2} ; 3^{n} a_{3}=c_{2}+b_{3}+c_{1} b_{2}
$$

and
(10) $j^{n} a_{j}=c_{j-1}+c_{1} b_{j-1}+c_{2} b_{j-2}+c_{3} b_{j-3}+\cdots c_{j-2} b_{2}+b_{j}, j \geq 4$.

Using $\left|c_{j}\right| \leq P_{1}, j \geq 1,2^{n} a_{2}=c_{1}+b_{2}$ and Theorem 2.1 we have

$$
2^{n}\left|a_{2}\right| \leq P_{1}+\frac{P_{1}}{2^{n}-1}=\frac{2^{n}}{2^{n}-1} \cdot P_{1}
$$

and thus $\left|a_{2}\right| \leq \frac{P_{1}}{2^{n}-1}$.
In a similarly way we obtain $\left|a_{3}\right| \leq \frac{P_{1}\left(P_{1}-1+2^{n}\right)}{\left(2^{n}-1\right)\left(3^{n}-1\right)}$.
Using $\left|c_{j}\right| \leq P_{1}, j \geq 1$ and Theorem 2.1 we obtain from (10) the estimations

$$
\begin{aligned}
j^{n}\left|a_{j}\right| \leq P_{1}\left\{1+\frac{P_{1}}{2^{n}-1}+\right. & \left.\sum_{l=3}^{j-1}\left[\frac{P_{1}}{l^{n}-1} \cdot \prod_{s=2}^{l-1}\left(1+\frac{P_{1}}{s^{n}-1}\right)\right]\right\}+\frac{P_{1}}{j^{n}-1} \\
& \cdot \prod_{t=2}^{j-1}\left(1+\frac{P_{1}}{t^{n}-1}\right)
\end{aligned}
$$

By mathematical induction for $j \geq 4$ we have

$$
1+\frac{P_{1}}{2^{n}-1}+\sum_{l=3}^{j-1}\left[\frac{P_{1}}{l^{n}-1} \cdot \prod_{s=2}^{l-1}\left(1+\frac{P_{1}}{s^{n}-1}\right)\right]=\prod_{t=2}^{j-1} \frac{P_{1}-1+t^{n}}{t^{n}-1}
$$

and thus we obtain

$$
j^{n}\left|a_{j}\right| \leq P_{1} \cdot \prod_{t=2}^{j-1} \frac{P_{1}-1+t^{n}}{t^{n}-1}+\frac{P_{1}}{j^{n}-1} \cdot \prod_{t=2}^{j-1}\left(1+\frac{P_{1}}{t^{n}-1}\right)
$$

or

$$
j^{n}\left|a_{j}\right| \leq j^{n} \frac{P_{1}}{j^{n}-1} \cdot \prod_{t=2}^{j-1} \frac{P_{1}-1+t^{n}}{t^{n}-1}, j \geq 4
$$

Thus

$$
\left|a_{j}\right| \leq \frac{P_{1}}{j^{n}-1} \cdot \prod_{t=2}^{j-1} \frac{P_{1}-1+t^{n}}{t^{n}-1}, j \geq 4
$$

Theorem 3.4. Let $a \in \mathbb{C}$, Re $a \geq 0$, $n \in \mathbb{N}^{*}$ and $k \in[0, \infty)$. If $F(z) \in \quad(k, n)-C C, \quad F(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}, \quad$ and $\quad f(z)=L_{a} F(z)$, $f(z)=z+\sum_{j=2}^{\infty} b_{j} z^{j}$, where L_{a} is the integral operator defined by (1), then

$$
\left|b_{2}\right| \leq\left|\frac{a+1}{a+2}\right| \frac{P_{1}}{2^{n}-1} ;\left|b_{3}\right| \leq\left|\frac{a+1}{a+3}\right| \frac{P_{1}\left(P_{1}-1+2^{n}\right)}{\left(2^{n}-1\right)\left(3^{n}-1\right)}
$$

$$
\left|b_{j}\right| \leq\left|\frac{a+1}{a+j}\right| \frac{P_{1}}{j^{n}-1} \cdot \prod_{t=2}^{j-1} \frac{P_{1}-1+t^{n}}{t^{n}-1}, j \geq 4
$$

where P_{1} is given in Remark 2.1.
Proof. From $f(z)=L_{a} F(z)$ we have

$$
(1+a) F(z)=a f(z)+z f^{\prime}(z)
$$

Using the above series expansions we obtain

$$
(1+a) z+\sum_{j=2}^{\infty}(1+a) a_{j} z^{j}=a z+\sum_{j=2}^{\infty} a b_{j} z^{j}+z+\sum_{j=2}^{\infty} j b_{j} z^{j}
$$

and thus $b_{j}(a+j)=(1+a) a_{j} j \geq 2$.
From the above we have $b_{j} \leq\left|\frac{a+1}{a+j}\right| \cdot\left|a_{j}\right|, j \geq 2$. Using the estimations from Theorem 3.3 we obtain the needed results.

For $a=1$, when the integral operator L_{a} become the Libera integral operator, we obtain from the above theorem:

Corollary 3.1.Let $n \in \mathbb{N}^{*}$ and $k \in[0, \infty)$. If $F(z) \in(k, n)-C C$, $F(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$, and $f(z)=L(F(z)), f(z)=z+\sum_{j=2}^{\infty} b_{j} z^{j}$, where L is the Libera integral operator defined by $L(F(z))=\frac{2}{z} \int_{0}^{z} F(t) d t$, then

$$
\begin{aligned}
& \left|b_{2}\right| \leq \frac{2}{3} \frac{P_{1}}{2^{n}-1} ;\left|b_{3}\right| \leq \frac{1}{2} \frac{P_{1}\left(P_{1}-1+2^{n}\right)}{\left(2^{n}-1\right)\left(3^{n}-1\right)} \\
& \left|b_{j}\right| \leq \frac{2}{j+1} \frac{P_{1}}{j^{n}-1} \cdot \prod_{t=2}^{j-1} \frac{P_{1}-1+t^{n}}{t^{n}-1}, j \geq 4
\end{aligned}
$$

where P_{1} is given in Remark 2.1.
Remark 3.3. Similarly results with the results from the Corollary 3.1 are easy to obtain from Theorem 3.4 by taking $a=0$, respectively $a=1,2,3, \cdots$.

References

[1] S. Kanas, T. Yaguchi, Subclasses of k-uniformly convex and strlike functions defined by generalized derivate I, Indian J. Pure and Appl. Math. 32, 9(2001), 1275-1282.
[2] S. S. Miller and P. T. Mocanu, Differential subordonations and univalent functions, Mich. Math. 28 (1981), 157-171.
[3] S. S. Miller and P. T. Mocanu, Univalent solution of Briot-Bouquet differential equations, J. Differential Equations 56 (1985), 297-308.
[4] S. S. Miller and P. T. Mocanu, On some classes of first-order differential subordinations, Mich. Math. 32(1985), 185-195.
[5] Gr. Sălăgean, Subclasses of univalent functions, Complex Analysis. Fifth Roumanian-Finnish Seminar, Lectures Notes in Mathematics, 1013, Springer-Verlag, 1983, 362-372.
"Lucian Blaga" University of Sibiu, Department of Mathematics, Str. Dr. I. Raṭiu, No. 5-7, 550012 - Sibiu, Romania
E-mail: acu_mugur@yahoo.com

[^0]: ${ }^{1}$ Received January 10, 2006
 Accepted for publication (in revised form) February 2, 2006

