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On a subclass of n-uniformly close to convex
functions 1
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Abstract

In this paper we define a subclass on n-uniformly close to convex
functions and we obtain some properties regarding this class.
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1 Introduction

Let H(U) be the set of functions which are regular in the unit disc

U = {z ∈ C : |z| < 1}, A = {f ∈ H(U) : f(0) = f ′(0) − 1 = 0}
and S = {f ∈ A : f is univalent in U}.

We recall here the definition of the well - known class of starlike func-

tions:

S∗ =

{
f ∈ A : Re

zf ′(z)

f(z)
> 0 , z ∈ U

}
,

Let Dn be the Sălăgean differential operator (see [5]) Dn : A → A,

n ∈ N, defined as:

D0f(z) = f(z)
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D1f(z) = Df(z) = zf ′(z)

Dnf(z) = D(Dn−1f(z))

Remark 1.1. If f ∈ S , f(z) = z +
∞∑
j=2

ajz
j, z ∈ U then

Dnf(z) = z +
∞∑
j=2

jnajz
j.

Let consider the Libera-Pascu integral operator La : A→ A defined as:

f(z) = LaF (z) =
1 + a

za

z∫

0

F (t) · ta−1dt , a ∈ C , Re a ≥ 0.(1)

For a = 1 we obtain the Libera integral operator, for a = 0 we obtain

the Alexander integral operator and in the case a = 1, 2, 3, ... we obtain the

Bernardi integral operator.

The purpose of this note is to define, using the Sălăgean differential

operator, a subclass on n-uniformly close to convex functions and to obtain

some properties regarding this class.

2 Preliminary results

Let k ∈ [0,∞), n ∈ N∗. We define the class (k, n) − S∗ (see the definition

of the class (k, n)− ST in [1]) by f ∈ S∗ and

Re

(
Dnf(z)

f(z)

)
> k

∣∣∣∣
Dnf(z)

f(z)
− 1

∣∣∣∣ , z ∈ U .

Remark 2.1. (for more details see [1]) We denote by pk , k ∈ [0,∞) the

function which maps the unit disk conformally onto the region Ωk, such that

1 ∈ Ωk and

∂Ωk =
{
u+ iv : u2 = k2(u− 1)2 + k2v2

}
.

The domain Ωk is elliptic for k > 1, hyperbolic when 0 < k < 1, parabolic

for k = 1, and a right half-plane when k = 0. In this conditions, a function
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f is in the class (k, n)− S∗ if and only if
Dnf(z)

f(z)
≺ pk or

Dnf(z)

f(z)
take all

values in the domain Ωk . Because the domain Ωk is convex, as an immediate

consequence of the well known Rogosinski result for subordinate functions,

we obtain for p ≺ pk , p(z) = 1 + p1z + p2z
2 + ... , z ∈ U ,

|pn| ≤ |P1| := P1(k) =





8(arccos k)2

π2(1− k2)
, 0 ≤ k < 1 ,

8

π2
, k = 1 ,

π2

4
√
κ(k2 − 1)K2(κ)(1 + κ)

, k > 1 .

for n = 1, 2, ... , where K(κ) is Legendre,s complete elliptic integral of the

first kind, κ is chosen such that k = cosh[πK ′(κ)]/[4K(κ)] and K ′(κ) is

complementary integral of K(κ) .

With the notations from Remark 2.1 we have:

Theorem 2.1. [1] Let k ∈ [0,∞) and f(z) = z +
∞∑
j=2

ajz
j belongs to the

class (k, n)− S∗. Then |a2| ≤ P1

2n − 1
and

|aj| ≤ P1

jn − 1

j−1∏
s=2

(
1 +

P1

sn − 1

)
, j = 3, 4, ... , n ∈ N∗ .

The next theorem is result of the so called ”admissible functions method”

introduced by P.T. Mocanu and S.S. Miller (see [2], [3], [4]).

Theorem 2.2. Let q be convex in U and j : U → C with Re[j(z)] > 0,

z ∈ U . If p ∈ H(U) and satisfied p(z)+j(z)·zp′(z) ≺ q(z), then p(z) ≺ q(z).

3 Main results

Definition 3.1. Let f ∈ A, k ∈ [0,∞) and n ∈ N∗. We say that the func-

tion f is in the class (k, n) − CC with respect to the function

g ∈ (k, n)− S∗ if

Re

(
Dnf(z)

g(z)

)
> k ·

∣∣∣∣
Dnf(z)

g(z)
− 1

∣∣∣∣ , z ∈ U .
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Remark 3.1. Geometric interpretation: f ∈ (k, n) − CC with respect to

the function g ∈ (k, n) − S∗ if and only if
Dnf(z)

g(z)
≺ pk (see Remark 2.1)

or
Dnf(z)

g(z)
take all values in the domain Ωk (see Remark 2.1).

Remark 3.2. From the geometric properties of the domains Ωk we have

that

(k1, n)− CC ⊂ (k2, n)− CC, where k1 ≥ k2.

Theorem 3.1. If F (z) ∈ (k, n) − S∗, with k ∈ [0,∞) and n ∈ N∗, then

f(z) = LaF (z) ∈ (k, n) − S∗, where La is the integral operator defined by

(1).

Proof. By differentiating (1) we obtain

(1 + a)F (z) = af(z) + zf ′(z) .(2)

By means of the application of the linear operator Dn we have

(1 + a)DnF (z) = aDnf(z) +Dn+1f(z) .(3)

From (2) and (3) we obtain

(1 + a)DnF (z)

(1 + a)F (z)
=
aDnf(z) +Dn+1f(z)

af(z) + zf ′(z)
=

f(z)

[
a
Dnf(z)

f(z)
+
Dn+1f(z)

f(z)

]

f(z)

[
a+

zf ′(z)

f(z)

]

or

DnF (z)

F (z)
=

a
Dnf(z)

f(z)
+
Dn+1f(z)

f(z)

a+
zf ′(z)

f(z)

.(4)

With notation p(z) =
Dnf(z)

f(z)
, where p(0) = 1, we obtain

zp′(z) = z
(Dnf(z))′ f(z)− (Dnf(z)) f ′(z)

f 2(z)
=
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=
z (Dnf(z))′

f(z)
− Dnf(z)

f(z)
· zf

′(z)

f(z)
=
Dn+1f(z)

f(z)
− p(z) · zf

′(z)

f(z)

or
Dn+1f(z)

f(z)
= zp′(z) + p(z) · zf

′(z)

f(z)
.(5)

From (4) and (5) we have

DnF (z)

F (z)
=

p(z)

[
a+

zf ′(z)

f(z)

]
+ zp′(z)

a+
zf ′(z)

f(z)

or
DnF (z)

F (z)
= p(z) +

1

a+
zf ′(z)

f(z)

· zp′(z)(6)

From hypothesis we have
DnF (z)

F (z)
≺ pk(z), where pk maps the unit disk

conformally onto the convex domain Ωk (see Remark 2.1).

Using (6) we obtain p(z) +
1

a+
zf ′(z)

f(z)

· zp′(z) ≺ pk(z).

Using the hypothesis, from Theorem 2.2, we have p(z) ≺ pk(z) or
Dnf(z)

f(z)
take all values in the domain Ωk. This means that f(z) ∈ (k, n)−S∗.

Theorem 3.2. If F (z) ∈ (k, n) − CC, k ∈ [0,∞), n ∈ N∗, with respect

to the function G(z) ∈ (k, n) − S∗, and f(z) = LaF (z), g(z) = LaG(z),

where La is the integral operator defined by (1), then f(z) ∈ (k, n) − CC,

k ∈ [0,∞), n ∈ N∗, with respect to the function g(z) ∈ (k, n)− S∗.

Proof. Using (1) and the linear operator Dn we obtain

(1 + a)DnF (z) = aDnf(z) +Dn+1f(z)

and

(1 + a)G(z) = ag(z) + zg′(z) .
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From the above we have

(1 + a)DnF (z)

(1 + a)G(z)
=
aDnf(z) +Dn+1f(z)

ag(z) + zg′(z)

or

DnF (z)

G(z)
=

a
Dnf(z)

g(z)
+
Dn+1f(z)

g(z)

a+
zg′(z)

g(z)

If we denote p(z) =
Dnf(z)

g(z)
, with p(0) = 1, we have

DnF (z)

G(z)
=

ap(z) +
Dn+1f(z)

g(z)

a+
zg′(z)

g(z)

(7)

With simple calculations we obtain

zp′(z) =
z (Dnf(z))′

g(z)
− Dnf(z)

g(z)
· zg

′(z)

g(z)
=
Dn+1f(z)

g(z)
− p(z) · zg

′(z)

g(z)

and thus
Dn+1f(z)

g(z)
= zp′(z) + p(z) · zg

′(z)

g(z)
(8)

From (7) and (8) we obtain

DnF (z)

G(z)
= p(z) +

1

a+
zg′(z)

g(z)

· zp′(z) = p(z) + j(z) · zp′(z) ,(9)

where from the hypothesis and the Theorem 3.1 we have Re j(z) > 0

z ∈ U .
From F (z) ∈ (k, n)−CC with respect to the function G(z) ∈ (k, n)−S∗,

using Remark 3.1, we obtain p(z) + j(z) · zp′(z) ≺ pk(z), where pk maps the

unit disk conformally onto the convex domain Ωk (see Remark 2.1).

From Theorem 2.2, we have p(z) ≺ pk(z) or
Dnf(z)

g(z)
take all values in

the domain Ωk. This means that f(z) ∈ (k, n) − CC with respect to the

function g(z) ∈ (k, n)− S∗.
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Theorem 3.3. If f(z) = z +
∞∑
j=2

ajz
j belong to the class (k, n)−CC, with

respect to the function g(z) ∈ (k, n) − S∗, g(z) = z +
∞∑
j=2

bjz
j, where

k ∈ [0,∞), n ∈ N∗, then

|a2| ≤ P1

2n − 1
; |a3| ≤ P1 (P1 − 1 + 2n)

(2n − 1) (3n − 1)
;

|aj| ≤ P1

jn − 1
·
j−1∏
t=2

P1 − 1 + tn

tn − 1
, j ≥ 4 ,

where P1 is given in Remark 2.1.

Proof. We have f(z) ∈ (k, n)−CC if and only if h(z) =
Dnf(z)

g(z)
≺ pk(z),

where pk (U) = Ωk (see Remark 3.1). Let h(z) = 1 + c1z + c2z
2 + · · · ,

z ∈ U . Taking account the Rogosinski subordination theorem, we have

|cj| ≤ P1 , j ≥ 1 .

Using the hypothesis and the Remark 1.1 we have

z +
∞∑
j=2

jnajz
j

z +
∞∑
j=2

bjz
j

= 1 + c1z + c2z
2 + · · · .

From the equality of the powers coefficients we obtain

2na2 = c1 + b2 ; 3na3 = c2 + b3 + c1b2

and

jnaj = cj−1 + c1bj−1 + c2bj−2 + c3bj−3 + · · · cj−2b2 + bj , j ≥ 4 .(10)

Using |cj| ≤ P1 , j ≥ 1 , 2na2 = c1 + b2 and Theorem 2.1 we have

2n |a2| ≤ P1 +
P1

2n − 1
=

2n

2n − 1
· P1
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and thus |a2| ≤ P1

2n − 1
.

In a similarly way we obtain |a3| ≤ P1 (P1 − 1 + 2n)

(2n − 1) (3n − 1)
.

Using |cj| ≤ P1 , j ≥ 1 and Theorem 2.1 we obtain from (10) the esti-

mations

jn |aj| ≤ P1

{
1 +

P1

2n − 1
+

j−1∑

l=3

[
P1

ln − 1
·
l−1∏
s=2

(
1 +

P1

sn − 1

)]}
+

P1

jn − 1
·

·
j−1∏
t=2

(
1 +

P1

tn − 1

)
.

By mathematical induction for j ≥ 4 we have

1 +
P1

2n − 1
+

j−1∑

l=3

[
P1

ln − 1
·
l−1∏
s=2

(
1 +

P1

sn − 1

)]
=

j−1∏
t=2

P1 − 1 + tn

tn − 1

and thus we obtain

jn |aj| ≤ P1 ·
j−1∏
t=2

P1 − 1 + tn

tn − 1
+

P1

jn − 1
·
j−1∏
t=2

(
1 +

P1

tn − 1

)

or

jn |aj| ≤ jn
P1

jn − 1
·
j−1∏
t=2

P1 − 1 + tn

tn − 1
, j ≥ 4 .

Thus

|aj| ≤ P1

jn − 1
·
j−1∏
t=2

P1 − 1 + tn

tn − 1
, j ≥ 4 ,

Theorem 3.4. Let a ∈ C, Rea ≥ 0, n ∈ N∗ and k ∈ [0,∞). If

F (z) ∈ (k, n) − CC, F (z) = z +
∞∑
j=2

ajz
j, and f(z) = LaF (z),

f(z) = z +
∞∑
j=2

bjz
j,where La is the integral operator defined by (1), then

|b2| ≤
∣∣∣∣
a+ 1

a+ 2

∣∣∣∣
P1

2n − 1
; |b3| ≤

∣∣∣∣
a+ 1

a+ 3

∣∣∣∣
P1 (P1 − 1 + 2n)

(2n − 1) (3n − 1)
;
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|bj| ≤
∣∣∣∣
a+ 1

a+ j

∣∣∣∣
P1

jn − 1
·
j−1∏
t=2

P1 − 1 + tn

tn − 1
, j ≥ 4 ,

where P1 is given in Remark 2.1.

Proof. From f(z) = LaF (z) we have

(1 + a)F (z) = af(z) + zf ′(z) .

Using the above series expansions we obtain

(1 + a)z +
∞∑
j=2

(1 + a)ajz
j = az +

∞∑
j=2

abjz
j + z +

∞∑
j=2

jbjz
j

and thus bj(a+ j) = (1 + a)aj j ≥ 2 .

From the above we have bj ≤
∣∣∣∣
a+ 1

a+ j

∣∣∣∣ · |aj| , j ≥ 2 . Using the estimations

from Theorem 3.3 we obtain the needed results.

For a = 1, when the integral operator La become the Libera integral oper-

ator, we obtain from the above theorem:

Corollary 3.1.Let n ∈ N∗ and k ∈ [0,∞). If F (z) ∈ (k, n) − CC,

F (z) = z +
∞∑
j=2

ajz
j, and f(z) = L(F (z)), f(z) = z +

∞∑
j=2

bjz
j,where L is

the Libera integral operator defined by L(F (z)) =
2

z

∫ z

0

F (t)dt, then

|b2| ≤ 2

3

P1

2n − 1
; |b3| ≤ 1

2

P1 (P1 − 1 + 2n)

(2n − 1) (3n − 1)
;

|bj| ≤ 2

j + 1

P1

jn − 1
·
j−1∏
t=2

P1 − 1 + tn

tn − 1
, j ≥ 4 ,

where P1 is given in Remark 2.1.

Remark 3.3. Similarly results with the results from the Corollary 3.1 are

easy to obtain from Theorem 3.4 by taking a = 0, respectively a = 1, 2, 3, · · · .
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