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Abstract

The main aim of this paper is to establish Ostrowski like inequa-

lities for product of two continuous functions whose derivatives are

in L1(a, b) spaces and provide new estimates on these inequalities.
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1 Introduction

In 1938, A. M. Ostrowski [6] proved the following inequality(see also[4, P.

468]):
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Theorem 1.Let f : I ⊆ R → R be a differentiable mapping on
◦
I (inte-

rior of I), and let a, b ∈
0

Iwith a < b. If f ′ : (a, b) → R is bounded on

(a, b) ,i.e.,‖f ′‖∞ := sup
t∈(a,b)

|f ′ (t)| <∞, then we have:

(1.1)

∣∣∣∣∣∣
f (x)− 1

b− a

b∫

a

f (t) dt

∣∣∣∣∣∣
≤
[

1

4
+

(
x− a+b

2

)2

(b− a)2

]
(b− a) ‖f ′‖∞ ,

for all x ∈ [a, b] .The constant 1
4

is sharp in the sense that it cannot be

replaced by a smaller one.

In 2005, B. G. Pachpatte [8] established new inequality of the type(1.1)

involving two functions and their derivatives as given in the following the-

orem:

Theorem 2.Let f, g : [a, b] → R be continuous functions on [a, b] and dif-

ferentiable on (a, b), whose derivatives f ′, g′ : (a, b) → R are bounded on

(a, b), i.e.,‖f ′‖∞ := sup
t∈(a,b)

|f ′ (t)| <∞, ‖g ′‖∞ := sup
t∈(a,b)

|g ′ (t)| <∞, then

(1.2)

∣∣∣∣∣∣
f (x) g(x)− 1

2(b− a)


g(x)

b∫

a

f (y) dy + f(x)

b∫

a

g (y) dy



∣∣∣∣∣∣
≤

≤ 1

2
(|g(x)| ‖f ′‖∞ + |f(x)| ‖g ′‖∞)

[
1

4
+

(
x− a+b

2

)2

(b− a)2

]
(b− a) ,

for all x ∈ [a, b] .

In [3], S. S. Dragomir and S. Wang established another Ostrowski like

inequality for ‖.‖1−norm as given in the following theorem:
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Theorem 3.Let f : [a, b] −→ R be a differentiable mapping on (a, b), whose

derivative f ′ : [a, b] −→ R belongs to L1(a, b).Then, we have the inequality:

(1.3)

∣∣∣∣∣∣
f(x)− 1

b− a

b∫

a

f(t)dt

∣∣∣∣∣∣
≤
[

1

2
+

∣∣x− a+b
2

∣∣
b− a

]
‖f ′‖1 ,

for all x ∈ [a, b] .

In the last few years, the study of such inequalities has been the focus

of many mathematicians and a number of research papers have appeared

which deal with various generalizations, extensions and variants, see[3] and

references given therein. Inspired and motivated by the research work going

on related to inequalities (1.1-1.3), we establish here new Ostrowski like

inequalities for the product of two continuous functions whose derivatives

are in L1(a, b). The results are presented in an elementary way and provide

new estimates on these types of inequalities.

2 Main Results

Our main result is given in the following theorem:

Theorem 4.Let f, g : [a, b] → R be continuous mappings on [a, b] and

differentiable on (a, b), whose derivatives f ′, g′ : (a, b)→ R belong to L1(a, b)

i.e., ‖f ′‖1 =

(
b∫
a

|f(t)| dt
)
, ‖g′‖1 =

(
b∫
a

|g(t)| dt
)
, then

(2.1)

∣∣∣∣∣∣
f (x) g(x)− 1

2(b− a)


g(x)

b∫

a

f (y) dy + f(x)

b∫

a

g (y) dy



∣∣∣∣∣∣
≤

≤ 1

2
[|g(x)| ‖f ′‖1 + |f(x)| ‖g ′‖1]

[
1

2
+

∣∣x− a+b
2

∣∣
b− a

]



26 N. A. Mir and A. Rafiq

for all x ∈ [a, b] .

Proof. For any x, y ∈ [a, b], we have the following identities

(2.2) f(x)− f(y) =

x∫

y

f ′(t)dt

and

(2.3) g(x)− g(y) =

x∫

y

g′(t)dt.

Multiplying both sides of (2.2) and (2.3) by g(x) and f(x) respectively and

adding we get

(2.4) 2f(x)g(x)− [g(x)f(y) + f(x)g(y)] = g(x)

x∫

y

f ′(t)dt+ f(x)

x∫

y

g′(t)dt.

Integrating both sides of (2.4) with respect to y over [a, b] and rewriting, we

have:

(2.5) f(x)g(x)− 1

2(b− a)


g(x)

b∫

a

f(y)dy + f(x)

b∫

a

g(y)dy


 =

=
1

2(b− a)

b∫

a


g(x)

x∫

y

f ′(t)dt+ f(y)

x∫

y

g′(t)dt


 dy.

Using (2.5), we have by Hölder’s integral inequality and mean value theorem,
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that
∣∣∣∣∣∣
f(x)g(x)− 1

2(b− a)


g(x)

b∫

a

f(y)dy + f(x)

b∫

a

g(y)dy



∣∣∣∣∣∣

=

=
1

2(b− a)

∣∣∣∣∣∣


g(x)

b∫

a

f ′(y)(x− y)dy + f(x)

b∫

a

g′(y)(x− y)dy



∣∣∣∣∣∣

=

=
1

2(b− a)

∣∣∣∣∣∣
g(x)(x− a)

b∫

a

f ′(y)dy + f(x)(b− x)

b∫

a

g′(y)dy

∣∣∣∣∣∣
=

≤ 1

2(b− a)
[|g(x)| ‖f ′‖1 (x− a) + |f(x)| ‖g′‖1 (b− x)] ≤

≤ 1

2(b− a)
max(x− a, b− x) [|g(x)| ‖f ′‖1 + |f(x)| ‖g′‖1] ≤

≤ 1

2
[|g(x)| ‖f ′‖1 + |f(x)| ‖g′‖1]

[
1

2
+

∣∣x− a+b
2

∣∣
b− a

]
,

for all x ∈ [a, b].

This completes the proof.

Remark 1. We note that, by taking g(x) = 1 and hence g′(x) = 0 in

theorem 4, we recapture the inequality in (1.3).

2. Integrating both sides of (2.5) with respect to x over [a, b], rewriting

the resulting identity and using the Hölder’s integral inequality, we obtain

the following Grüss type inequality:

(2.6)

∣∣∣∣∣∣
1

b− a

b∫

a

f(x)g(x)dx−

 1

b− a

b∫

a

f(x)dx




 1

b− a

b∫

a

g(x)dx



∣∣∣∣∣∣
≤

≤ 1

2
[|g(x)| ‖f ′‖1 + |f(x)| ‖g′‖1]

3. For other inequalities of the type (2.6), see the book [4], where many

other references are given.
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A slight variant of theorem 4 is embodied in the following theorem.

Theorem 5. Let f, g, f ′, g′ be as in theorem 4, then

(2.7) f (x) g(x)− 1

b− a


g(x)

b∫

a

f (y) dy + f(x)

b∫

a

g (y) dy


+

+
1

b− a

b∫

a

f(y)g(y)dy ≤ ‖f ′‖1,[y,x] ‖g ′‖1,[y,x] .

for all x, y ∈ [a, b] .

Proof. From the hypothesis, the identities (2.2) and (2.3) hold. Multiply-

ing the left and right sides of (2.2) and (2.3) we get

(2.8) f(x)g(x)− [g(x)f(y) + f(x)g(y)] + f(y)g(y) =

x∫

y

f ′(t)dt

x∫

y

g′(t)dt.

Integrating both sides of (2.8) with respect to y over [a, b]and rewriting we

have

(2.9) f (x) g(x)− 1

b− a


g(x)

b∫

a

f (y) dy + f(x)

b∫

a

g (y) dy


+

+
1

b− a

b∫

a

f(y)g(y)dy =
1

b− a

b∫

a




x∫

y

f ′(t)dt

x∫

y

g′(t)dt


 dy.

From (2.9) using the properties of modulus, we obtain:

∣∣∣∣∣∣
f (x) g(x)− 1

b− a


g(x)

b∫

a

f (y) dy +f(x)

b∫

a

g (y) dy


+

1

b− a

b∫

a

f(y)g(y)dy

∣∣∣∣∣∣
≤

≤ ‖f ′‖1,[y,x] ‖g ′‖1,[y,x] .
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Remark 2. Integrating both sides of (2.9) with respect to x over [a, b],

rewriting the resulting identity, and using the Hölder’s integral inequality

we get

(2.10)

∣∣∣∣∣∣
1

b− a

b∫

a

f(x)g(x)dx−

 1

b− a

b∫

a

f(x)dx




 1

b− a

b∫

a

g(x)dx



∣∣∣∣∣∣
≤

≤ 1

2 (b− a)

b∫

a

[
|g(x)| ‖f ′‖1,[y,x] + |f(x)| ‖g′‖1,[y,x]

] [1

2
+

∣∣x− a+b
2

∣∣
b− a

]

for all x ∈ [a, b] .

2. We note that the norms ‖f ′‖1,[y,x] and ‖g′‖1,[y,x] are valid for all

x, y ∈ [a, b],therefore we can recapture the norms over [a, b].
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