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Abstract

It is well-known that, if f € R[X], deg(f) =n > 2 and Df divides
f, then f is a scalar multiple of the n-th power of a monic polynomial
of first degree, X 4 a, with a certain a € R (it can be proved solving a
simple differential equation which contains the associated polynomial
function of f and its derivative). The converse assertion is obvious.
In this paper, in the main result, we will show that, adding a simple
supplimentar normating condition, the two classes defined by the
mentioned properties also coincide with the class of the polynomials
f which are reciprocal simultaneously with D f; but it results that
a = 1. This result also will be considered in the general situation of
the polynomials of K[X], where K is an infinite commutative field
an we will use only the formal derivative D. Finally we will pass in
the umbral calculus and we will transpose the result in the case of a

certain delta operator @, in relation to its basic sequence (py ).
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1. Let K be any infinite commutative field and K* = K\{0}; we will
consider the divisibility in K[X] in the usual sense. We will use the formal
derivative, defined for any polynomial f = a, X" +a, 1 X" ' +...4ag (with
a, # 0) by the formula Df = na, X" + (n — 1)a,_1 X" ' + ...+ ay, for this
formal derivative the usual properties also being valid.

A polynomial f with deg(f) > 1 is called to be a reciprocal polynomial
if the equalities a;, = a,_; are verified for any £k = 0,1,...,n. For any
reciprocal polynomial, we have ay # 0 (being equal to a,) then (because
ap = f(0)), we have f(0) # 0.

We present now the main result.

Theorem 1. Let f € K[X] be, with deg(f) =n > 2, and a € K*. Then

the following affirmation are equivalent:
(a) The polynomial Df divides f and f(0) =
(b) f=a(X+1)".
(¢) The polynomial f reciprocal, DF' also is reciprocal and f(0) = a.
Proof. (a) = (b) Because D f divides f, it exists ¢ € K[X] such that:

= a.

(Df)(0)

(1) f=(Df)q.

It results deg(q) = 1, then it is a,, f € K, a # 0 such that ¢ = o X + £.
Considering the coefficient of X™ of the both parts of the equality (1), we ob-

1
tain a,, = na,a, then @« = —. Considering the free terms of the both parts of
n
the same equality, it results aq = a13, or equivalent
f(0) = (Df)(0) - B. So, because one of hypothesis, we obtain a = naf,

and so we also find = —. So the equality (1) can be writen:
n
(1) nf = (Df)- (X +1).

We fill now identify the coefficients of X* from the two parts of (1'). We

obtain:

nay = (k + 1)agy + kag,
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an equality which is true for any k£ > 1, but also for £k = 0. It results:
(k+ Dags1 = (n — k)ag,
or, passing k in j,

(2) (U + Dajr = (n —j)a;.
So, we obtain:
7=0 =1-a1=n"-ag
j=2 =2-a=Mn-1)a

j=k—1=k-ay=(n—k+ 1)ay.
Multiplying all these equalities, we obtain:

1-2-...-k-ag=nn—1)-...-(n—k+ 1)ag

and so, because ag = a, we have:

Therefore:

n

f= iakx’“ =a) (Z)X’“ =a(X +1)"
k=0

k=0
and we have obtained (b).
(b) implies (a) Obvious.
(b) implies (c¢) Obvious.
(c) implies (b) Because the polynomial f is reciprocal we have the equa-

lities:
(3) A = Qp— (k=0,1,2,...,n).

Taking into account the expression of Df, the fact that Df also is re-
ciprocal conducts us to equalize the coefficients of X* and X"~*~1 (of Df).
We obtain:

(4) (k+ Dagyr = (n — k)ay (k=0,1,2,...,n—1).
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Introducing a,,—j from (3) in (4), we obtain:
(5) (k+ Dagyy = (n = kag,

i.e. we have again find the relation (3). And so, as in the proof of the

implication (a)= (b), we obtain:
n
ap = (k) a

f=aX+1)",

and so

i.e. the point (b). The theorem 1 is proved.
So the three classes of polynomials considerated in the theorem coincide.
Also, we remark that if a polynomial f is reciprocal together with its

derivative D f, then it is reciprocal together its successive derivatives Df,
D%f,..., D" Lf,

2. We remember here some elements of umbral calculus.
It is known that a sequence of polynomials (p,), is said to be of binomial

type if p, is of degree n and the following equalities

(1.1) polu+v) = Z < Z ) Pe(t)pn—i(v)

are satisfied identically in u and v, for any non-negative integer n. We have:
po =1 and p,(0) =0 for n > 1.

A simple example of polynomials of binomial type is represented by the
monomials e, (z) = 2™, n € N.

Let us denote by E® the shift operator, defined by (E*f)(z) = f(z +a).
An operator T" which commutes with all shift operators is called a shift-
tmvariant operator, that is TE® = E*T.

A delta operator () is a shift-invariant operator for which (Qe; is a non
zero constant. Such operators possesse many of the properties of the deriva-

tive operator D, for which we have De,, = ne,_1.
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Here are some examples of delta operators: the forward difference Ay,
the prederivative operator D, = A/h, the backward difference V; and the
central difference 9y,.

It is easy to see that: (i) for every delta operator () we have Qc = 0,
where ¢ is a constant; (ii) if p, is a polynomial of degree n, then, @Qp, is a
polynomial of degree n — 1.

A sequence of polynomials (p,) is called by I.M.Sheffer [3] and Gian-
Carlo Rota and his collaborators [1], [2], a sequence of basic polynomials
for a delta operator @ if we have po(x) = 1, p,(0) = 0, (n > 1), while
@Pn = Npn-1.

J.F. Steffensen [4] observed that the property of e,(z) = z™ to be of
binomial type can be extended to an arbitrary sequence of basic polynomials
associated to a delta operator.

The following two results can be easily proved (see [1], pag. 182 — 183):

1) If (pn) is a basic sequence of polynomials for a delta operator,
then it is of binomial type;

2) If (p,) is of binomial type, then it is a basic sequence for some
delta operator.

By induction can be easily proved that every delta operator has a unique
sequence of basic polynomials associated with it.

Ezamples (i) if @ = D then p,(x) = 2",

(ii) if @ = Dy, = Ay /h then:
pu(z) = 2PM = 2(z — h) ... (z — (n — 1)h).

3. The theorem 1 can be transposed in a more general context as
following.

Theorem 2. Let be f € R[X], deg(f) =n > 2, a € R* and @ a delta
operator. Then the following affirmations are equivalent.:

(a) The polynomial @ f divides the polynomial f and
(Qf)(0)

n

f(0) =

= a.
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(b) f=a- (X + 1)~

(¢) The polynomial f is reciprocal, @ f also is reciprocal, and f(0) = a.
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