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Abstract

It is well-known that, if f ∈ R[X], deg(f) = n ≥ 2 and Df divides
f , then f is a scalar multiple of the n-th power of a monic polynomial
of first degree, X+a, with a certain a ∈ R (it can be proved solving a
simple differential equation which contains the associated polynomial
function of f and its derivative). The converse assertion is obvious.
In this paper, in the main result, we will show that, adding a simple
supplimentar normating condition, the two classes defined by the
mentioned properties also coincide with the class of the polynomials
f which are reciprocal simultaneously with Df ; but it results that
a = 1. This result also will be considered in the general situation of
the polynomials of K[X], where K is an infinite commutative field
an we will use only the formal derivative D. Finally we will pass in
the umbral calculus and we will transpose the result in the case of a
certain delta operator Q, in relation to its basic sequence (pn)n.
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1. Let K be any infinite commutative field and K∗ = K\{0}; we will

consider the divisibility in K[X] in the usual sense. We will use the formal

derivative, defined for any polynomial f = anX
n+an−1X

n−1 + . . .+a0 (with

an 6= 0) by the formula Df = nanX
n + (n− 1)an−1X

n−1 + . . .+ a1, for this

formal derivative the usual properties also being valid.

A polynomial f with deg(f) ≥ 1 is called to be a reciprocal polynomial

if the equalities ak = an−k are verified for any k = 0, 1, . . . , n. For any

reciprocal polynomial, we have a0 6= 0 (being equal to an) then (because

a0 = f(0)), we have f(0) 6= 0.

We present now the main result.

Theorem 1. Let f ∈ K[X] be, with deg(f) = n ≥ 2, and a ∈ K∗. Then

the following affirmation are equivalent:

(a) The polynomial Df divides f and f(0) =
(Df)(0)

n
= a.

(b) f = a(X + 1)n.

(c) The polynomial f reciprocal, DF also is reciprocal and f(0) = a.

Proof. (a) =⇒ (b) Because Df divides f , it exists q ∈ K[X] such that:

(1) f = (Df)q.

It results deg(q) = 1, then it is α, β ∈ K, α 6= 0 such that q = αX + β.

Considering the coefficient of Xn of the both parts of the equality (1), we ob-

tain an = nanα, then α =
1

n
. Considering the free terms of the both parts of

the same equality, it results a0 = a1β, or equivalent

f(0) = (Df)(0) · β. So, because one of hypothesis, we obtain a = naβ,

and so we also find β =
1

n
. So the equality (1) can be writen:

(1′) nf = (Df) · (X + 1).

We fill now identify the coefficients of Xk from the two parts of (1′). We

obtain:

nak = (k + 1)ak+1 + kak,
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an equality which is true for any k ≥ 1, but also for k = 0. It results:

(k + 1)ak+1 = (n− k)ak,

or, passing k in j,

(2) (j + 1)aj+1 = (n− j)aj.
So, we obtain:

j = 0 ⇒ 1 · a1 = n · a0

j = 2 ⇒ 2 · a2 = (n− 1) · a1

...

j = k − 1⇒ k · ak = (n− k + 1)ak−1.
Multiplying all these equalities, we obtain:

1 · 2 · . . . · k · ak = n(n− 1) · . . . · (n− k + 1)a0

and so, because a0 = a, we have:

ak =

(
n

k

)
a.

Therefore:

f =
n∑

k=0

akX
k = a

n∑

k=0

(
n

k

)
Xk = a(X + 1)n

and we have obtained (b).

(b) implies (a) Obvious.

(b) implies (c) Obvious.

(c) implies (b) Because the polynomial f is reciprocal we have the equa-

lities:

(3) ak = an−k (k = 0, 1, 2, . . . , n).

Taking into account the expression of Df , the fact that Df also is re-

ciprocal conducts us to equalize the coefficients of Xk and Xn−k−1 (of Df).

We obtain:

(4) (k + 1)ak+1 = (n− k)ak (k = 0, 1, 2, . . . , n− 1).
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Introducing an−k from (3) in (4), we obtain:

(5) (k + 1)ak+1 = (n− k)ak,

i.e. we have again find the relation (3). And so, as in the proof of the

implication (a)=⇒ (b), we obtain:

ak =

(
n

k

)
a

and so

f = a(X + 1)n,

i.e. the point (b). The theorem 1 is proved.

So the three classes of polynomials considerated in the theorem coincide.

Also, we remark that if a polynomial f is reciprocal together with its

derivative Df , then it is reciprocal together its successive derivatives Df ,

D2f ,. . . , Dn−1f .

2. We remember here some elements of umbral calculus.

It is known that a sequence of polynomials (pn)n is said to be of binomial

type if pn is of degree n and the following equalities

(1.1) pn(u+ v) =
n∑

k=0

(
n

k

)
pk(u)pn−k(v)

are satisfied identically in u and v, for any non-negative integer n. We have:

p0 = 1 and pn(0) = 0 for n ≥ 1.

A simple example of polynomials of binomial type is represented by the

monomials en(x) = xn, n ∈ N.

Let us denote by Ea the shift operator, defined by (Eaf)(x) = f(x+ a).

An operator T which commutes with all shift operators is called a shift-

invariant operator, that is TEa = EaT .

A delta operator Q is a shift-invariant operator for which Qe1 is a non

zero constant. Such operators possesse many of the properties of the deriva-

tive operator D, for which we have Den = nen−1.
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Here are some examples of delta operators: the forward difference ∆h,

the prederivative operator Dh = ∆/h, the backward difference ∇h and the

central difference δh.

It is easy to see that: (i) for every delta operator Q we have Qc = 0,

where c is a constant; (ii) if pn is a polynomial of degree n, then, Qpn is a

polynomial of degree n− 1.

A sequence of polynomials (pn) is called by I.M.Sheffer [3] and Gian-

Carlo Rota and his collaborators [1], [2], a sequence of basic polynomials

for a delta operator Q if we have p0(x) = 1, pn(0) = 0, (n ≥ 1), while

Qpn = npn−1.

J.F. Steffensen [4] observed that the property of en(x) = xn to be of

binomial type can be extended to an arbitrary sequence of basic polynomials

associated to a delta operator.

The following two results can be easily proved (see [1], pag. 182 – 183):

1) If (pn) is a basic sequence of polynomials for a delta operator,

then it is of binomial type;

2) If (pn) is of binomial type, then it is a basic sequence for some

delta operator.

By induction can be easily proved that every delta operator has a unique

sequence of basic polynomials associated with it.

Examples (i) if Q = D then pn(x) = xn;

(ii) if Q = Dh = ∆h/h then:

pn(x) = x[n,h] = x(x− h) . . . (x− (n− 1)h).

3. The theorem 1 can be transposed in a more general context as

following.

Theorem 2. Let be f ∈ R[X], deg(f) = n ≥ 2, a ∈ R∗ and Q a delta

operator. Then the following affirmations are equivalent.:

(a) The polynomial Qf divides the polynomial f and

f(0) =
(Qf)(0)

n
= a.
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(b) f = a · (X + 1)n.

(c) The polynomial f is reciprocal, Qf also is reciprocal, and f(0) = a.
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