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Abstract

Let A be the class of analytic functions f in the open complex unit
disc U ={z € C:|z| < 1}, with f(0) =0, f/(0) =1 and f(z)/z #0
in U. Let define the integral operator I : A — A, I(f) = F, where:

:| 1/(a+B+1)

F(z) = [<a+ﬂ+1> / o (w)g () L zev

With suitable conditions on the constants o and ¢ and on the func-
tion g € A, the author shows that F' is analytic and univalent (or
schlicht) in U. Additional results are also obtained, such as a new
generalization of Becker’s condition of univalence and improvements

of some known results.
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1 Introduction

Let U = {z € C: |z| < 1} be the complex unit disc and let A be the class

of analytic functions in U of the form:
f(Z) =z+ anzn + an+lzn+1 + o

and with f(z)/z # 0 for all z € U.

Univalence of complex functions is an important property, but, unfortu-
nately, it is difficult and in many cases impossible to show directly that a
certain complex function is univalent. For this reason, many authors found
different types of sufficient conditions of univalence. One of these conditions
of univalence is the well-known criterion of Ahlfors and Becker ([1] and [7]),

which states that the function f € A is univalent if:

2f'(2)
f(2)

<1

(1) (112

There are many generalizations of this criterion, such those obtained in [4],
[5], [6] and [9]. In this paper, as an additional result, we will also obtain a
new generalization of the above—mentioned univalence criterion. But, the
principal result deals with finding sufficient conditions on the constants «

and (# and on the function g € A so that the function:

1/(a+p+1)
1 , z€eU

@  F)= {m o) [ P w)gP ()

is univalent.The result improves also former results obtained in [3], [4], [5],

6] and [7].



A General Schlicht Integral Operator 49

2 Preliminaries

For proving our principal result we will need the following definitions and

lemma:

Definition 1.  If f and g are analytic functions in U and g is univalent,

then we say that f is subordinate to g, written f < g or f(z) < g(z2) if
f(0) = g(0) and f(U) C g(U).

Definition 2. A function L(z,t), z € U, t > 0 is called a Léwner chain
or a subordination chain if:
(i) L(-,t) is analytic and univalent in U for all t > 0.
(i1) L(z,-) is continuously differentiable in [0, 00) for allt > 0.
(i) L(z,s) < L(z,t) for all real s and t with 0 < s < t.

Let 0 < r < 1. We denote by U, the set: U, = {z € C: |z] <r}.

Lemma 1. (see [8], [9]) Let0<ry<1,t>0 andas(t) € C\{0}. Let:
L(z,t) = a1(t)z + ag(t)z* + - - -

be analytic in U,, for allt > 0, locally absolutely continuous in [0, 00) locally
uniform with respect to U,,. For almost all t > 0 suppose that:

OL(z,t)
0z

OL(z,t)

Q) . 20

= p(z,t) z €Uy,

where p(z,t) is analytic in the unit disc U and Rep(z) > 0 in U for all
t> 0.1f

tlirn lai(t)] = o0
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and {L(z,t)/ay(t)} forms a normal family in U,,, then, for each t > 0,
L(z,t) has an analytic and univalent extension to the whole unit disc U and

1s a Lowner chain.

Lemma 1 is a variant of the well-known theorem of Pommerenke ([8])

and it's proof can be found in [9].

3 Principal result

Let B be the class of analytic functions p in U with p(0) = 1 and p(2) # 0
for all z € U.

Theorem 1. Let f,g € A, p € B and «,3,y and 6 complex numbers

satisfying:

(4) Re%ﬁ+1 > %

(5) Re(a+3+1) >0

(6) Rev >0

(7) iptzl)—1‘<1, 2eU

and, for all z € U:

11—y 1—1—5—10(,2)227 1—2z% azf’(z) 2g'(2)  z2p'(?)
?) BT A { TERT® +p(2)}

Then, the function F defined by (2) is analytic and univalent in U.

<1
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Proof. Let :
wo- (2 2]

u u

where the powers are considered with their principal branches. The function

h does not vanish in U because f and g are in A.Let define now the function:

a+pB+1

hi(z,t) = (e-tz)otpl

/etz h(u)u®Pdu =1+ bz + -
0
where t > 0 and z € U. We consider now the power development of h:
h(u) = 1—|—§:cnu” ,uel.
n=1
We denote:

a+B+1 (v - a+B+1
_ ST () u By = 1 — ",
o(w) woth+l /o (uu™ +;C ntatpBt+1

From (5) we have that Re(a + 5+ 1) > 0 and, consequently:

Re(aw + 3+ 1> —n/2 for all n € N. It follows immediately that:

Re n
n+2a+p+1)

>0, neN

and hence:

a+/+1
n+ta+pB+1

Taking into account that A is analytic in U, we deduce that:
- a+f[+1
1+ cp————w"
;; n+a+p+1
converges locally uniformly in U, and, thus, ¢ is analytic in U. Because for
every t > 0 and for every z € U we have that e’z € U we deduce that
d(e~t2) = hy(z,t) is analytic in U for all ¢ > 0. Let now:

a+pB+1
d+1
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ho(z,t) = ple "2)h(e™2), 2€ U, t >0
hs(z,t) = hi(z,t) +m(e* — Dhy(z,t), z€ U, t > 0.

Suppose now that h3(0,¢;) = 0 for a certain positive rel number ¢;, that is

1+m(e*™ —1) =0, or:

m—1 a+p-9
m  a+pf+1

(10) e =

From (6) we have that [e?| = e?1R¢7 > 1 and from (8) we deduce that

a+6—9
a+p+1

< 1. Tt follows immediately that (10) is false and then, we have:
(11) hs(0,t) #0 forall t >0

Let now suppose that for all » with 0 < r < 1 it exists at least one ¢, > 0
so that hs(z,t,) has at least one zero in U, = {z € C : |z| < r}. We choose
r=1,1/2,1/3,... and form a sequence (,)nen so that hs(z,t,) has at least
one zero in Uy .

If (t,)nen is bounded, we can find a subsequence (¢, Jken Of (£, )nen that
converges to 7p > 0. Because h3 is continuously with respect to ¢t we obtain:

lim hs(z,t,,) = hs(z,7) forall z e U.

k—oo

But in this case hy(-, 7o) has at least one zero in every disc Uy, . If we let
now k — oo we deduce that h3(0,79) = 0, which contradicts (11).
If the sequence (t,)nen is umbounded we can consider, without loss of

generality, that lim,, . t, = oco. We have now:

hs(z,t) = hi(z,t) +m(e®" — Dhy(z,t) = d(e”'2) +m(e®" — 1)hy(2,1)
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Because ¢(0) = 1 we deduce that M = max gz [¢(e™'z)| > 0. Because
p(0)h(0) = 1, there exists r; € (0,1] so that p(w)h(w) # 0 in U,,. Then,
hy(w,t) = p(e~tz)h(e~*2) do not vanish in U,, for every t > 0 and, thus, we

have: K = min |ha(w,t)| > 0. From (5) we deduce that m # 0 and

welr,

thus, |m| > 0. It follows immediately that:

lim |1 — ™| = lim e* "7 /e~#Re7 — 2e-20Re7 cos 2t Imy + 1 = 00
t—o00 t—o00

because Re~y > 0.

Hence, for sufficiently large ¢ we have:
(12)  |m| |1 = | |ha(2,t)] > [m|[1 — | K > M 4+ 1> |¢(e'z) + 1
In the same time we have:

|h3<zvt)| = |h1(zvt) —-m (1 - GQW) hQ(Z,t)’ >

> ||k (z,8)] = Im| [1 = e"| [ha(z, 1)

From (12) it follows immediately that |hs(z,t)| > 1 for all z € U,, and for
sufficiently large ¢. Thus, it exists N € N so that hs(-,¢,) does not vanish
in U,, for all n > N. For n € [0, N] we have that hs(z,t,) does not vanish

in U,, where:
ro = min{ry, : hg(z,t) #0,2 € Uy, ,t > 0,n € [0, N]}.

If we let now ro = min{ry, 72} we have that hs(-,t,) does not vanish in U,,
for every n € N. It follows that the supposition of the nonexistence of a
positive real number rq < 1 with the property that hg(z,t) # 0 for all ¢ > 0

and all z € U,, is false. Hence, we can choose 1y € (0, 1] so that hz(z,t) # 0
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for all t > 0 and all z € U,,.
Let hy(z,t) be the uniform branch of [hs(z, t)]"/(®+%+1) which takes the value
11+ m (2 — 1)]Y T at the origin. Let us define:

(13) L(z,t) = e "zhy(z, 1)

which is analytic for all t > 0.If L(z,t) = a;(t)z + ag(2)2? + - - -, it is clear
that L(0,t) = 0 for every ¢t > 0 and:

a(t) = e [1 +m (62'yt _ 1)}1/(a+ﬁ+1) ‘

From the above written equations we can formally write:

—t

Lz 1) = [Ly (2 )Y@ = [(a 4§+ 1) / e (w)du +

(14) +m(e?" —1)e~'zf (e 2)g% (e 2)p(e ! 2)]/OFFTY,

By simple calculations we obtain:

y—a—pB—1

1
ar(t) = (c+ 1) aFirie et [+ B+1—(a+ 3 —c)e >,

Thus, efa;(t) = hy(0,t) = [h3(0,1)]"/ @B+ with the choosen uniform
branch. Because hs(-,t) does not vanish in U,, for all ¢ > 0, we obtain
that a;(t) # 0 for every t > 0. If we let t — oo, from (4) and (6) we easily
obtain:

tlim lai(t)] = oo.

Because hy(-,t) is analytic in U,, for every ¢ > 0, we deduce that L(z,t) =
e 'zhy(z,t) is also analytic in U,, for all ¢t > 0.The family {L(z,t)/a;(t)}+>0

consists of analytic functions in U,,,. Hence, this family is uniformly bounded
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in U,,, where 0 < r; < rg. By applying Montelg theorem we have that
{L(z,t)/a1(t)} forms a normal family in U,,. Let denote:

e2f'er)  e'zg'€2) elp ez

19) = =D e e e

e ™)

From (14) we obtain:

OL(z,t 1 _adp _
S G e e ) )

[2yme*p(ez) — m(e® — )p(e"z) —a— B — 1 — J(z,1)]

It is clear that OL(z,t)/0t is analytic in U,,, where 0 < 75 < r;. Conse-

quently, L(z,t) is locally absolutely continuous and we have also:

OL(z,t 1 _atB _
20 LG e )

Am(e** = D)ple™2) +a+ B+ 1+ J(z,1)]

Let:

20L(z,1)/0z  m(e® —)ple™"2) + a+ B+ 1+ J(z,1)
OL(z,t)/0t (27 — D)yme®p(e~tz) + mp(e~tz)

pi(z,t) =

Consider now the function:

pi(z,t) —1

w(zt) = pi(z,t) +1

Further calculations show that:

m(1 —7)e*p(e”2) —mp(e™'z) +a+ B+ 1+ J(z,1)

t) =
w(z,1) ymeXrtp(e—tz)

It is clear that w(-,t) is analytic in U,, for all ¢ > 0. Hence, w(-, %) has an

analytic extension w(-,t).
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Let now ¢t = 0. Taking into account that m = (a«+ G+ 1)/(d + 1), we

easily obtain from (15):

c+1

7p(2)

and from (7) it follows immediately that |@(z,0)| < 1.

W(z,0) = —1+

Let now ¢t > 0. We observe that @(-, ) is analyticin U = {z € C : |2| < 1}
because if t > 0, for every z € U we have that e’z € U. In this case we

have:

0(z,)] = max _ —|w(z, )] = max (2, 0)] = |w(e”, 1)l
z

ceU |z| =1

with § € R. Let v = e~*e! € U. After simple calculations we obtain:
-y a+B8+1—mp(v)

+
gl ymp(v)
L— P [ of'(v) | vg'(v)  op'(v)
e} +
v f(v) gw) — pv)

B(e, 1) = ol +

But:
a+pf+1—mpv) o6+1—p(v)
ymp(v) 7p(v)
and from (9) we deduce that |w(e? t)] < 1 and hence, |@(z,t)] < 1 in

U for all t > 0. From the definition of w and w we deduce that p(-,t)
has an analytic extension p;(-,t) to the whole disc U for all ¢ > 0 and
Repi(z,t) > 0in U for all ¢ > 0. By applying Lemmal we obtain that
L(z,t) is a subordination chain and thus, L(z,0) = F(z) is analytic and

univalent in U and the proof of the theorem is complete.

Remark 1. We can write a variant of Theorem 1 with v € R. In this

case, condition (8) can be replaced by:

0+1

(16) Tavgel

¢ [1,00)
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However, condition (8) was necessary only for showing that hy(0,t) #
0 for all t > 0. But if v € R then hy(0,¢) = 0 is equivalent to e* =

(m —1)/m € R. Bat this last equality is impossible because 7" > 1 and

(m—1)/m ¢ [1,00).

4 Some particular cases

If we let in Theorem 1 v = 1 and p(z) = 1 for all z € U, then we

obtain, using Remark 1 also, the following result:

Corollary 1. If f,g€ A and o, 3 and § are complex numbers satisfying:

(17) la+ 5] <1

(18) 6] < 1

(19) I1—(@+1)/(a+5+1)¢][1,00)
e [ ]|

@) ke |08 58 <1 e

then the function F defined in (2) is analytic and univalent in U.

If in Corollary 1 we let 6 = a + § we obtain Theorem 1 from [5]

and if we let additionally g(z) = z for all z € U we obtain Theorem 1
from [4]. For = —1 in this last theorem we obtain Theorem 1 from [3].
From Theorem 1 we can obtain many other results by choosing properly
the constants. An interesting example can be obtained if we let o+ § = w,
p(z) = 1 and g(2) = f(2)[f'(2)]"/? for all z € U in Theorem 1. For the

power we choose the principal branch and obtain:
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Corollary 2. If f € A and 7,6 and w are complex numbers satisfying:

2y
21 R
(21) e T
J+1
(22) Rey >0, L—1 <1, Rew> -1
v
0+1
23 — =1 <1
(23) w+1 '

and for all z € U:

l—7v 0, 5 w
24 S R P ey P
(24) ST =)

f(2) | 1— |2 22
TOREENOIE

then f 1s univalent in u.

If we let in Corollary 2 v = 1 and use also Remark 1 we obtain a
generalization of the well-known criterion of univalence of L.V.Ahlfors and

J.Becker ( [1], [2] ), given in (1):

Corollary 3. Iff e A, § and w € C satisfie:

(25) 6] < 1
(26) w| <1
27) S ¢ Lo

2 a2 2f'(2) a2 zf'(2) s
I O e (R ok A B N

then f is univalent in U.
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For § = w = 0 we obtain from Corollary 3 the criterion of univa-

lence of Ahlfors and Becker.

For § = w = (1 — )/, conditions (25) and (26) are equivalent to:

Rea > 1/2 and we obtain the result from [6].

If in Corollary 2 we let w =0 and v = (m +1)/2, m € R we obtain

the result from [7].
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