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Abstract

In the present paper we obtain the rate of convergence for the
Bézier variant of the Bleimann-Butzer and Hahn operators L, , for

functions of bounded variation. We consider the case when

0<a<l.
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1 Introduction

In the year 1980, Bleimann, Butzer and Hahn [5] introduced an interesting

sequence of positive linear operators defined on the space of real functions

on the infinite interval [0, c0) by

1) Llf) =3 pasa)f (%) seD,0) neN
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where

The approximation properties of the Bleimann-Butzer and Hahn ope-
rators (BBH operators) were studied by many researchers see e.g. [1], [2],
3], [5] and [6] etc. Very recently Srivastava and Gupta [8], introduced the

Bézier variant of the BBH operators, which is defined as

(2) na f7 ZQ (ﬁ),ﬂTG[0,00),TLEN

where Q,Ela,z(x) = Jyp(@) = I (x) and Jp(7) = Z Pn,j(x). Some basic

properties of J, ;(z) can be found in [8]. It is easily Verlﬁed that L, o(f, )
are positive linear operators. The authors [8] have obtained the rate of
convergence for functions of bounded variation for the case whenever o > 1.
As a special case a = 1, L, o(f, x) reduce to the operators L,:(f,z) =
L,(f,z) defined by (1). The other case 0 < a < 1 of the operators defined
by (2) is also equally important. In the present paper we extend the study
in this direction and obtain teh rate of convergence for functions of bounded
variation, for the operators L, ,, 0 < a < 1.

Our main theorem is stated as:

Theorem 1. Let f be a function of bounded variation on every finite subin-
terval of [0,00). Let f(t) = O(t") for some r € N as t — oco. Then for
€ (0,00), 0 < a <1 and n sufficiently large, we have

Lnalfi2) = gefto) = (1= 30 ) £la-)| <

7(1+LL’>2 x+x/\f |1—$| _ _
< oo VR U 4 et ) Sl
1+ Cla, f,z,r)

e (@) (@) — [+ m
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where

Y

(@) 1, ifln+1)p, €N
en(x) =
0, otherwise

f@) = fle=), 0<t<u
ft) = flaz+), z<t<oo

and V(f,) is the total variation of f, on [a,b].

We recall the Lebesque-Stieltjes integral representation

Lno(f, @) 7]” (Knal2,1)),
0

where

> Qx), 0<t<oo
Kpal,1) = { k<t |
0 t=0

Also we define

1—-K,.(x,t), 0<t<
Hyol(a,t) = alz,) >
0, t=0

2 Auxiliary Results

In this section we give certain results, which are necessary to prove the main

results.

Lemma 1. [3] Forallx € [0,00) and n > 1 we have the following inequa-
lity:
3z(1+2)?

Lo((t —z)%2) < o
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Lemma 2. For z € (0,00), we have

1 |1 — x|
Y. parlr) — 5| < -

k/(n—k+1)>x 27T(n + 1)$

Proof. Apart from at most one term p, x(z) when k/(n—k+1) = x, using

the transform

mito = (N - (1) () (75) -

with y = z/(1 + x), we have
k/(n—k+1)>z E>(n+1)y
this is approximately equal to

B,(n+1)y,n—(n+1)y+1)
B((n+1)y,n—(n+1)y+1)

with the incomplete Beta function

Y
By(a,b) = /t‘“(l — )" dt, a >0, b> 0.

0

We have

1-2 Z pn,k( =|1-2 Z bnk =

kE/(n—k+1)>x k(n+1)>y

Y

=11=2 1 /thrly 1 )nf(n+1)ydt
B((n+1)y,n—(n+1)y+1)

0
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Now we estimate the right hand side as follows:

Let y € (0,1), we have

Bl(n+ Dy, (ot D1—y) _ n+ 1)
B((n+ 1)y, (n+1)(1 —y)) B((n+ 1)y, (n+1)(1 —y))
where
1 1
IL(n+1)= /t(n+1)y—1(1 — t)(”+1) (=y)=1p — /g(t)e(”“)hy(ﬂdt
v v
with
g(t) = (t(1—1))"
hy(t) = ylogt+ (1 — y)log(l —1).
Since ( )
/ —(t+y /
= 1 ==
h,, M= 1) <0 (y<t<1)and hy(y) =0
hy is strictly decreasing on (y, 1).
" _ ==y +y(l-y)
Furthermore Ry (t) = RITEnE < 0 and

hyy) = —(y(1 —y))~" #0.
Thus it is well known (e.g. I,(n) meets the assumptions of [7, Th. 1,
Kap. 3]) that there holds the complete asymptotic expansion

n+1)h )
I,in+1) ~ Z n+1 k+1)/2

ap\/T ay o

o= [T T

for n — oo, with the coefficients

1 d\" t—y
W =73 (%) 9(t) f

+ O(nQ)] :

k+1

t=1/y
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By direct calculation we obtain the explicit expressions

V2 —2(2 —2y) B 1—y+?

N Sy MV () I VO TR T

Thus we have

I(n+1) = (1 —y)" )™

[ VT 1—2y VT 1=y 4P Lo

onr(1—y) 3ny(l—vy) - 12v2  (y(1 —y))*?

Also by Stirling’s formula, we have

1 _ Pln+1) 1 g
Bt Dyt DA —y) Nt Da) ~ var =9
l—y+y° 1-y+y°)

Vit 1)yl —y) -

+ O(n_5/2)] .

12¢/ny(1—y) ~ 2990*2(y(1 - y))*?
Combining the both asymptotic expansions, we have

fy(n+1) . 1% +0(n?).
B((n+ 1y, (n+1)(1—y) 2 32r(n+1)y(l—y)

Thus

1 1—2z _
DRI P Ll mpe )
k/(n—k+1)>x 6v/2m(n + 1)z

Lemma 3. For all z € (0,00), a« <1 and k € N, there holds

(a) (1+x)
Qn,k(x) < ap,i(r) < \/m.

Proof. For the Bernstein functions the optimum bound was obtained by
Zeng [8], and Bastien and Rogalski [4] in a problem posed by the author,

which is as follows:

ny K n—k 1
1-— < , O0<y<1.
()0t s s 05

Substituting y = —%—, we get the required result.
BY =T+ Vo8
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Lemma 4. For0<a <1l and 0 <z <t < oo, we have

C

Hna 7t §—7
o) €

where C'is a positive constant that depends on x but independent of n.

k
k 1_96‘
Proof. Since 0 < z <t < o0, so n _|t j_a:| > 1, for k > nt. Thus

for m € N, we have

Hyolzt) =1—Kualw,t)=1— > QW@ < > QW) <

k<(n—k+1)t k>(n—k+1)¢
k 2m/a o
n—k+1
_ \2m/a )
k>(n—k+1)t (t — )
k

2m/« @

For all conjugate p,q > 1,i.e. 1/p+1/q =1, we have

2m/« @
Bl

k=0

1 o0
Sm(z

k=0

n—k—i—l_

k J—
n—k+1

k 2m/a p » @
= (I; P T T pmk(x)pn,k(x)) <
00 L 2mp/a a/p
= (Z P pnvk@f))

o a/q
since (Z pnk(:c)) =1
k=0
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Choosing p = % [% + 1} we have that 2mp/a is an even positive
2r

integer. By the well known result B, (¢,
(r=1,2,3,...) we obtain

B

k=0

z) = O(n™"), asn —

2mp/a

k

a/p
—_— = = 2mp/a a/p _ -m
n—k+1 ! pnk(@) (Lo (v 7)) O(n™™)

as n — OoQ.

This completes the proof of Lemma 4.

3 Proof of main Theorem

Our main theorem is stated as:
Proof. We have

F(8) =27 f o)+ (1=27%) fa=) + 9o (6) + 27 (F(f+) = fa—))sign' () +
+(f (@) =27 (a4) = (1 = 27) f(2—))ox (1),

where
20 1, ift>ux e
sign®(t —x) =< 0, if t =2 and 0,(¢) B
) 0, ifx#t
—1, ift<ux
Therefore
1 1
(3) Ln,a(fa .1') - 2—af(.1'—|—) — | 1= 2_a f($—) S ‘Ln,OI(fI?‘T)’_‘_

L o(sign'®(t — x), )+

fla+) - fla-)
v

# |70 = garen) = (1= 52) 50| Lualonno)
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We first estimate
Loa(sign®(t —z),2) =2 > QW(x) — 1+ e, (2)QL% (x) =
k>(n—k+1)x

«

o[ )| e @ee

k>(n—k+1)z

and
Lna(0s,7) = £0(2) Q) ().

Hence, we have

" et Seo),

oo n,a(Signa(t —x), )+

_ - 22l Y panla) | — 1] + @) — Fe)enQ @)

k>(n—k+1)z
By mean value theorem, we have

«

S @) =g =als@) | Y b

i>(n—j+)zx i>(n—j+)z

where &, ;(x) lies between % and Y,  pu,;(z). Inview of Lemma 2, it is

Jj>m—j+1)z
observed that for n sufficiently large, the intermediate point ¢, ; is arbitrary

close to 1/2 i.e.
1

Cng = 2+4¢

with an arbitrary small |¢|. Then we have

a(&; () ' <a24¢e)
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The later expression is positive and strictly increasing for a € (0, 1), since

304(2 +e)l = (2+e) 1 —alog(2+¢)] >0,

Oa
for sufficiently small |¢|. This it takes maximum value at « = 1. This
implies
a(€n (7)) < 1.
Hence

[0}

(5) S )| ezt

>l 2% 7 6y 2n(n+ D)

Also we have

Qif}i/ (z) = f:,k/ (z) — ‘]g,k’—&-l(x) = Oé(fn,kf)a_lpn,k’ (),

where J,, pr41(x) < & (x) < Jpp(x). Thus by Lemma 3, we have

(6) Qn,kl (ZE) <

flat) — fz—)

7) =

Ly o(sign(t — ), x)+

| f0) = o) = (1= 35 ) 7o) Lol <

|1 — z| o 1+a
6 27T(n—|—1)x‘f(x+) fla )’+v2en:c

Next we estimate Ly, (fz, z). We decompose the integral into four parts as

en(@)|f(x) — fla—)].

follows:

8) Lo forz)= / Fo(O) (K, £)) =
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/ / / / fx dt na(x t)) E1 -+ E2 -+ Eg + E4 say,
I3

Iy Iy

where Iy = [0,z — x/\/n|, I, = [t — z/\/n,x + x/\/n], Is = [v + x/\/n, 2x]
and I, = [2x,00]. We first estimate E,. For t € [x — z/v/n,z + x/\/n], we

have
fo®)] = |folt) = Fola)] < V(L)

and therefore

/R
Bl <V [ Koot
R

Since fdt Kpo(z,t)) <1 for (a,b) C [0,00), therefore

TTX n 1 - IE xX
(9) |Bs < VIRIYE(f,) < 5; VI ().

Next, we estimate Ey, writing y = z—x/1/n and using Lebesque-Stieltjes

integration by parts, we have

El - /fx(t)dt(Kn,a(x7t)) = fx(y)Kn,a(x7y> - /Kma(x’t)dt(fx(t))

Since |f.(y)| < V7 (fz), it follows that

Y

B1] £ V() Kna(w0) + [ Kol 0(-VE(£).

0

Applying Lemma 1, we have

3z(1 2
(10) Koa(a,t) < 2EED oy y

_Wa
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Using the inequality (10), we get

. 3(1 + z)* )’ .
Bl < V() gt n+20/ (VA

Integrating by parts the last term, we have

[ t-vet = - Ty [ 2

z 1) (x—y)?

Hence

Se(l+ )2 | VE(f) . [ Ve
|Eq| < (n+2) 0$2 +2/ t—t?’
0

Now replacing the variable y in the last integral by = — x/\/u, we get

6(1+2) <

(11) By < W;Vxx—w/\/@(h)'

Using the similar method to estimate Ej3, we get

(12) 54 < G g 20 VE ),

Finally, by the assumption that f,.(t) = 0(¢"), r € N,t — oo, we have

F(O)] < MtT < M ( ) for t > 2.

Now

By = / LoD Ka(z.1)| < / o)l K a(z. 1) <

o0

< Mz~ / (t— &) d Kooz t) < — Mo~ / (t—2)dy(1 — Koalz,t)) =

2x
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=—Mz™" /(t —2)"di(Hp oz, 1)) / (t—2)'d(1 — Kpolz,t) =
2x 0
=Mz~ lim | —(t —2) H, oz, )| + /Hma(x,t)dt(t —x) | =

R—o0

=Mz~ lim | —(t —2) Hyolz, )| + /Hma(x,t)dt(t —z) 7t | =

R—o0
2x
C C ;
—r 1: r r r—m-—
=Mz }%grgo —(t—x)mbij— (t —x) Yt | =
2x
C C
=M + T m > 7.

n™x™ - on™(m—r)a™"’
By combining the estimates given by (3), (7) - (9) and (11) to (13), we

obtain the desired result. This completes the proof of Theorem.
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