A note on the Gini means

József Sándor

Abstract

We correct a proof given in [1] for the one-parameter family of Gini means, and point out general remarks on the general Gini means.

2000 Mathematical Subject Classification: 26D15, 26D99
Keywords: Gini means, power means, Stolarsky means

1

In paper [1], the following two means are compared to each others: Let $0<a<b$. The power mean of two arguments is defined by

$$
M_{p}=\left\{\begin{array}{ll}
\left(\frac{a^{p}+b^{p}}{2}\right)^{1 / p}, & p \neq 0 \tag{1}\\
\sqrt{a b}, & p=0
\end{array},\right.
$$

while the Gini mean is defined as

$$
S_{p}=\left\{\begin{array}{ll}
\left(\frac{a^{p-1}+b^{p-1}}{a+b}\right)^{1 /(p-2)}, & p \neq 2 \tag{2}\\
S(a, b), & p=2
\end{array},\right.
$$

where $S(a, b)=\left(a^{a} \cdot b^{b}\right)^{1 /(a+b)}$. The properties of the special mean S have been extensively studied by us e.g. in [7], [8], [9], [10]. In paper [6] it is conjectured that

$$
\frac{S_{p}}{M_{p}}= \begin{cases}<1, & \text { if } p \in(0,1) \tag{3}\\ =1, & \text { if } p \in\{0,1\} \\ >1, & \text { if } p \in(-\infty, 0) \cup(1, \infty)\end{cases}
$$

while in [1], (3) is corrected to the following:

$$
\frac{S_{p}}{M_{p}}= \begin{cases}<1, & \text { if } p \in(0,1) \cup(1,2) \tag{4}\\ =1, & \text { if } p \in\{0,1\} \\ >1, & \text { if } p \in(-\infty, 0) \cup[2, \infty)\end{cases}
$$

For the proof of (4), for $p \notin\{0,1,2\}$, the author denotes $t=b / a>1$, when $\log \frac{S_{p}}{M_{p}}=\frac{1}{p} f(t)$, where

$$
f(t)=\frac{p}{p-2} \cdot \log \frac{1+t^{p-1}}{1+t}-\log \frac{1+t^{p}}{2}, t>1
$$

Then $f^{\prime}(t)=\frac{p}{p-2} \cdot \frac{g(t)}{(1+t)\left(1+t^{p-1}\right)\left(1+t^{p}\right)}$, where

$$
g(t)=t^{2 p-2}-(p-1) t^{p}+(p-1) t^{p-2}-1, t>0 .
$$

It is immediate that $g^{\prime}(t)=(p-1) t^{p-3} h(t)$, where $h(t)=2 t^{p}-p t^{2}+p-2$. Then the author wrongly writes $h^{\prime}(t)=2 p\left(t^{p-1}-1\right)$. In fact one has $h^{\prime}(t)=2 p t\left(t^{p-2}-1\right)$, and by analyzing the monotonicity properties, it follows easily that relations (3) are true (and not the corrected version (4)!).

2

However, we want to show, that relations (3) are consequences of more general results, which are known in the literature.

In fact, Gini [2] introduced the two-parameter family of means

$$
S_{u, v}(a, b)= \begin{cases}\left(\frac{a^{u}+b^{u}}{a^{v}+b^{v}}\right)^{1 /(u-v)}, & u \neq v \tag{5}\\ \exp \left(\frac{a^{u} \log a+b^{u} \log b}{a^{u}+b^{u}}\right), & u=v \neq 0 \\ \sqrt{a b}, & u=v=0\end{cases}
$$

for any real numbers $u, v \in \mathbb{R}$. Clearly, $S_{0,-1}=H$ (harmonic mean), $S_{0,0}=$ G (geometric mean), $S_{1,0}=A$ (arithmetic mean), $S_{1,1}=S$ (denoted also by J. in [4], [10]), $S_{p-1,1}=S_{p}$, where S_{p} is introduced by (2). In 1988 Zs. Páles [5] proved the following result on the comparison of the Gini means (5).

Theorem 2.1 Let $u, v, t, w \in \mathbb{R}$. Then the comparison inequality

$$
\begin{equation*}
S_{u, v}(a, b) \leq S_{t, w}(a, b) \tag{6}
\end{equation*}
$$

is valid if and only if $u+v \leq t+w$, and
i) $\min \{u, v\} \leq \min \{t, w\}$, if $0 \leq \min \{u, v, t, w\}$,
ii) $k(u, v) \leq k(t, w)$, if $\min \{u, v, t, w\}<0<\max \{u, v, t, w\}$,
iii) $\max \{u, v\} \leq \max \{t, w\}$, if $\max \{u, v, t, w\} \leq 0$

Here $k(x, y)= \begin{cases}\frac{|x|-|y|}{x-y}, & x \neq y \\ \operatorname{sign}(x), & x=y\end{cases}$
The cases of equality are trivial.
Now, remarking that $S_{p}=S_{p-1,1}$ and $M_{p}=S_{p, 0}$, results (3) will be a consequence of this Theorem. In our case $u=p-1, v=1, t=p, w=0$; so $u+v \leq t+w=p$, i.e. (6) is satisfied.

Now, it is easy to see that denoting $\min \{p-1,0,1, p\}=a_{p}$, $\max \{p-1,0,1, p\}=A_{p}$, the following cases are evident:

1) $p \leq 0 \Rightarrow p-1<p \leq 0<1$, so $a_{p}=p-1, A_{p}=1$
2) $p \in(0,1] \Rightarrow p-1<0<p \leq 1$, so $a_{p}=p-1, A_{p}=1$
3) $p \in(1,2] \Rightarrow 0<p-1 \leq 1<p$, so $a_{p}=0, A_{p}=p$
4) $p>2 \Rightarrow 0<1<p-1<p$, so $a_{p}=0, A_{p}=p$.

In case 2) one has $\frac{|p-1|-1}{p-2} \leq \frac{|p|}{p}$ if $p-1<0<p$ only if $\frac{1-p-1}{p-2} \leq$ 1, i.e. $\frac{2(1-p)}{p-2} \leq 0$, which is satisfied. The other cases are not possible.

Now, in case $p \notin(0,1)$ write $S_{p, 0}<S_{p-1,1}$, and apply the same procedure.

For another two-parameter family of mean values, i.e. the Stolarsky means $D_{u, v}(a, b)$, and its comparison theorems, as well as inequalities involving these means see e.g. [11], [3], [4], [10], and the references.

References

[1] D. Acu, Some inequalities for certain means in two arguments, General Mathematics, Vol. 9 (2001), no. 1-2, 11-14.
[2] C, Gini, Di una formula compresive delle medie, Metron, 13 (1938), 3-22.
[3] E. B. Leach, M. C. Sholander, Extended mean values, Amer. Math. Monthly, 85 (1978), 84-90.
[4] E. Neuman, J. Sándor, Inequalities involving Stolarsky and Gini means, Math. Pannonica, 14 (2003), 29-44.
[5] Zs. Páles, Inequalities for sums of powers, J. Math. Anal. Appl., 131 (1988), 265-270.
[6] I. Raşa, M. Ivan, Some inequalities for means II, Proc. Itinerant Sem. Func. Eq. Approx. Convexity, Cluj, May 22 (2001), 75-79.
[7] J. Sándor, On the identric and logarithmic means, Aequationes Math., 40 (1990), 261-270.
[8] J. Sándor, On certain identities for means, Studia Univ. Babeş-Bolyai, Math., 38 (1993), 7-14.
[9] J. Sándor and I. Raşa, Inequalities for certain means in two arguments, Nieuw Arch. Wiskunde, 15 (1997), no. 1-2, 51-55.
[10] J. Sándor, E. Neuman, On certain means of two arguments and their extensions, Intern. J. Math. Math. Sci., Vol. 2003, no. 16, 981-993.
[11] K. B. Stolarsky, Generalizations of the logarithmic mean, Math. Mag, 48 (1975), 87-92.

[^0]
[^0]: "Babeş - Bolyai" University of Cluj-Napoca
 Str. Mihail Kogalniceanu nr. 1
 400084 - Cluj-Napoca, Romania.
 E-mail address: jjsandor@hotmail.com

