# Smooth dependence on parameters for some functional-differential equations 

Olaru Ion Marian


#### Abstract

I this paper we study the smooth dependence on parameters for the following equation:


$$
x^{\prime}(t, \lambda)=f(t, x(t, \lambda), x(g(t), \lambda), \lambda), t \in[a, b]
$$

by using theorem of fibre contraction.

2000 Mathematical Subject Classification: 34K10, 47H10
Keywords: Picard operators, weakly Picard operators, fixed points, data dependence

## 1 Introduction

The purpose of this paper is to study the following problem:

$$
\begin{equation*}
x^{\prime}(t, \lambda)=f(t, x(t, \lambda), x(g(t), \lambda), \lambda), t \in[a, b] \tag{1}
\end{equation*}
$$

$$
x(t, \lambda)=\varphi(t, \lambda), t \in\left[a_{1}, a\right], \lambda \in J
$$

where
$\left(H_{0}\right) a_{1} \leq a<b, J \subset \mathbb{R}$, a compact interval.
$\left(H_{1}\right) g \in\left(C[a, b],\left[a_{1}, b\right]\right), \varphi \in C^{1}\left(\left[a_{1}, a\right] \times J\right), f \in C^{1}\left([a, b] \times \mathbb{R}^{2 n} \times J\right)$.
$\left(H_{2}\right)$ Exists $L_{f}>0$ such that $\left\|\frac{\partial f}{\partial u_{i}}\left(t, u_{1}, u_{2}, \lambda\right)\right\|_{\mathbb{R}^{n}} \leq L_{f}$, for all $t \in[a, b]$, $u_{i} \in \mathbb{R}^{n}, i=\overline{1,2}, \lambda \in J$.

$$
\left(H_{3}\right) 2 L_{f}(b-a)<1
$$

We note $X=C\left(\left[a_{1}, b\right] \times J\right)$.
The problem (1) $+(2)$ is equivalent with

$$
x(t, \lambda)=\left\{\begin{array}{lr}
\varphi(a, \lambda)+\int_{a}^{t} f(s, x(s, \lambda), x(g(s), \lambda)) d s, & t \in[a, b]  \tag{3}\\
\varphi(t, \lambda), & t \in\left[a_{1}, a\right]
\end{array}\right.
$$

We consider the following operator: $B: X \longrightarrow X$,

$$
B(x)(t, \lambda)= \begin{cases}\varphi(a, \lambda)+\int_{a}^{t} f(s, x(s, \lambda), x(g(s), \lambda)) d s, & t \in[a, b] \\ \varphi(t, \lambda) & , t \in\left[a_{1}, a\right]\end{cases}
$$

We need the theorem of fiber contractions(see [3]).
Theorem 1. Let $(X, d)$ and $(Y, \rho)$ be two metric space and

$$
A: X \times Y \rightarrow X \times Y, A(x, y)=(B(x), C(x, y))
$$

We suppose that
(i) $(Y, \rho)$ is a complete metric space.
(ii) The operator $B: X \rightarrow X$ is weakly Picard operator.
(iii)There exists $a \in[0,1)$ such that $C(x, \cdot)$ is an a-contraction,for all $x \in X$.
(iv) If $\left(x^{*}, y^{*}\right) \in F_{A}$ then $C\left(\cdot, y^{*}\right)$ is continuous in $x^{*}$.

Then $A$ is weakly Picard operator.If $B$ is Picard operator then $A$ is a Picard operator.

## 2 Main results

Differentiability with respect the parameters was studied in [2], [4].
For $x \in C\left[a_{1}, b\right] \times J$ we have:

$$
|x|_{C}=\max _{(t, \lambda) \in\left[a_{1}, b\right] \times J}| | f(t, \lambda) \|_{\mathbb{R}^{n}}
$$

$\left(X,|\cdot|_{C}\right)$ has a structure of Banach space.

Proposition 1. We suppose that the conditions $\left(H_{0}\right),\left(H_{1}\right),\left(H_{2}\right),\left(H_{3}\right)$, are satisfied. Then:
i) the problem (1) + (2) has an unique solutions $x^{*} \in X$
ii) $x^{*}(t, \cdot) \in C^{1}(J)$, for all $t \in\left[a_{1}, b_{1}\right]$.

Proof. From

$$
\begin{aligned}
& \|B(x)(t, \lambda)-B(y)(t, \lambda)\|_{\mathbb{R}^{n}} \leq \\
& \leq \int_{a}^{t}\|f(s, x(s, \lambda), x(g(s), \lambda), \lambda)-f(s, y(s, \lambda), y(g(s), \lambda), \lambda)\|_{\mathbb{R}^{n}} d s \leq \\
& \leq L_{f} \int_{a}^{t}\|x(s, \lambda)-y(s, \lambda)\|_{\mathbb{R}^{n}}+\|x(g(s), \lambda)-y(g(s), \lambda)\|_{\mathbb{R}^{n}} d s \leq \\
& \quad \leq 2 L_{f}(b-a)\|x-y\|_{C}
\end{aligned}
$$

we have that the B is Picard operator.It follow that there exists a unique solution $x^{*}(t, \lambda) \in X$.

We have
(4) $x^{*}(t, \lambda)= \begin{cases}\varphi(a, \lambda)+\int_{a}^{t} f\left(s, x^{*}(s, \lambda), x^{*}(g(s), \lambda), \lambda\right) d s, & t \in[a, b] \\ \varphi(t, \lambda) & , t \in\left[a_{1}, a\right]\end{cases}$

We consider the operator $C: X \times X \rightarrow X$.

$$
C(x, y)(t, \lambda)=\left\{\begin{array}{l}
\frac{\partial \varphi}{\partial \lambda}(a, \lambda)+\int_{a}^{t} \frac{\partial f}{\partial u_{1}}((s, x(s), \lambda), x(g(s), \lambda), \lambda) \cdot y(s, \lambda) d s+ \\
+\int_{a}^{t} \frac{\partial f}{\partial u_{2}}(s, x(s, \lambda), x(g(s), \lambda), \lambda) y(g(s), \lambda) d s+ \\
+\int_{a}^{t} \frac{\partial f}{\partial \lambda}(s, x(s, \lambda), x(g(s), \lambda), \lambda) d s, t \in[a, b] \\
\frac{\partial \varphi}{\partial \lambda}(t, \lambda), t \in\left[a_{1}, a\right]
\end{array}\right.
$$

We show that $C(x, \cdot): X \rightarrow X$ is a contraction.

$$
\begin{gathered}
\|C(x, y)(t, \lambda)-C(x, z)(t, \lambda)\|_{\mathbb{R}^{n}} \leq \\
\leq L_{f} \int_{a}^{t}\left(\|y(s, \lambda)-z(s, \lambda)\|_{\mathbb{R}^{n}}+\|y(g(s), \lambda)-z(g(s), \lambda)\|_{\mathbb{R}^{n}}\right) d s \leq \\
\leq 2 L_{f}(b-a)\|y-z\|_{C}
\end{gathered}
$$

From fiber contractions theorem we have that the operator $A: X \times X \rightarrow$ $X \times X$,

$$
A(x, y)=(B(x), C(x, y))
$$

is a Picard operator.
So, the sequences

$$
\begin{gathered}
x_{n+1}=B\left(x_{n}\right), n \in \mathbb{N} \\
y_{n+1}=C\left(x_{n}, y_{n}\right), n \in \mathbb{N}
\end{gathered}
$$

converges uniformly (with respect to $t \in\left[a_{1}, b\right], \lambda \in J$ ) to $\left(x^{*}, y^{*}\right) \in F_{A}$, for all $x_{0}, y_{0} \in X$.

If we take $x_{0}=0, y_{0}=\frac{\partial x_{0}}{\partial \lambda}=0$, then

$$
x_{1}(t, \lambda)=B\left(x_{0}\right)(t, \lambda)= \begin{cases}\varphi(a, \lambda)+\int_{a}^{t} f(s, 0,0, \lambda) d s, & t \in[a, b] \\ \varphi(t, \lambda) & , t \in\left[a_{1}, a\right]\end{cases}
$$

$$
\begin{gathered}
y_{1}(t, \lambda)=C\left(x_{0}, y_{0}\right)(t, \lambda)= \\
=\left\{\begin{array}{l}
\frac{\partial \varphi}{\partial \lambda}(a, \lambda)+\int_{a}^{t} \frac{\partial f}{\partial \lambda}(s, 0,0, \lambda) d s, t \in[a, b] \\
\frac{\partial \varphi}{\partial \lambda}(t, \lambda), t \in\left[a_{1}, a\right]
\end{array}=\frac{\partial x_{1}}{\partial \lambda}(t, \lambda)\right.
\end{gathered}
$$

We suppose that $y_{n}(t, \lambda)=\frac{\partial x_{n}}{\partial \lambda}(t, \lambda)$.
We show that $y_{n+1}(t, \lambda)=\frac{\partial x_{n+1}}{\partial \lambda}(t, \lambda)$.

$$
\begin{aligned}
& x_{n+1}(t, \lambda)=B\left(x_{n}\right)(t, \lambda)= \\
& =\left\{\begin{array}{l}
\varphi(a, \lambda)+\int_{a}^{t} f\left(s, x_{n}(s, \lambda), x_{n}(g(s), \lambda)\right) d s, t \in[a, b] \\
\varphi(t, \lambda) \quad, t \in\left[a_{1}, a\right]
\end{array}\right. \\
& y_{n+1}(t, \lambda)=C\left(x_{n}, y_{n}\right)(t, \lambda)= \\
& \left(\frac{\partial \varphi}{\partial \lambda}(a, \lambda)+\int_{a}^{t} \frac{\partial f}{\partial u_{1}}\left(s, x_{n}(s, \lambda), x_{n}(g(s), \lambda), \lambda\right) y_{n}(s, \lambda) d s+\right. \\
& =\left\{\begin{array}{l}
\int_{a}^{t} \frac{\partial f}{\partial u_{2}}\left(s, x_{n}(s, \lambda), x_{n}(g(s), \lambda), \lambda\right) y_{n}(s, \lambda) d s+
\end{array}\right. \\
& +\int_{a}^{t} \frac{\partial f}{\partial \lambda}\left(s, x_{n}(s, \lambda), x_{n}(g(s), \lambda), \lambda\right) d s, t \in[a, b] \\
& \frac{\partial \stackrel{a}{\varphi}}{\partial \lambda}(t, \lambda) \quad, t \in\left[a_{1}, a\right] \\
& \left(\frac{\partial \varphi}{\partial \lambda}(a, \lambda)+\int_{a}^{t} \frac{\partial f}{\partial u_{1}}\left(s, x_{n}(s, \lambda), x_{n}(g(s), \lambda), \lambda\right) \frac{\partial x_{n}}{\partial \lambda}(s, \lambda) d s+\right. \\
& =\left\{\begin{array}{l}
+\int_{a}^{t} \frac{\partial f}{\partial u_{2}}\left(s, x_{n}(s, \lambda), x_{n}(g(s), \lambda), \lambda\right) \frac{\partial x_{n}}{\partial \lambda}(s, \lambda) d s+
\end{array}\right. \\
& +\int_{a}^{t} \frac{\partial f}{\partial \lambda}\left(s, x_{n}(s, \lambda), x_{n}(g(s), \lambda), \lambda\right) d s, t \in[a, b] \\
& \frac{\partial \stackrel{a}{\varphi}}{\partial \lambda}(t, \lambda), t \in\left[a, a_{1}\right] \\
& =\frac{\partial x_{n+1}}{\partial \lambda}(t, \lambda) .
\end{aligned}
$$

Thus,

$$
x_{n} \longrightarrow x^{*} \text { as } n \rightarrow \infty
$$

$$
\frac{\partial x_{n}}{\partial \lambda} \longrightarrow y^{*} \text { as } n \rightarrow \infty
$$

These imply that there exists $\frac{\partial x^{*}}{\partial \lambda}$ and $\frac{\partial x^{*}}{\partial \lambda}=y^{*}$.

## References

[1] L. Ladeira,J. K. Hale, Differentiability with respect to delays, J. Differential equations, 92, 1991,14-26.
[2] I. A. Rus, Functional-Differential equation of mixed point, via weakly Picard operator Seminar on mixed point theory Cluj-Napoca, vol. 3, 2002,335-345.
[3] I. A. Rus, Weakly Picard operators and applications, Seminar on fixed point theory Cluj-Napoca, vol. 2, 2001,41-57.
[4] J.Sotomayor,Smooth dependence of solutions of differential equations on initial data:a simple proof, Bul. Soc. Bras. Mat., 1973,55-59
"Lucian Blaga" University of Sibiu
Faculty of Sciences
Department of Mathematics
Str. Dr. I. Raţiu, no. 5-7
550012 - Sibiu, Romania
E-mail: olaruim@yahoo.com

