General Mathematics Vol. 12, No. 4 (2004), 39-48

Certain preserving properties of the generalized Alexander operator

Mugur Acu

Abstract

In this paper we give certain preserving properties of the generalized Alexander operator on some subclasses of *n*-uniformly functions.

2000 Mathematical Subject Classification: 30C45

1 Introduction

Let $\mathcal{H}(U)$ be the set of functions which are regular in the unit disc U,

$$A = \{ f \in \mathcal{H}(U) : f(0) = f'(0) - 1 = 0 \}$$

and $S = \{ f \in A : f \text{ is univalent in } U \}.$

In [8] the subfamily T of S consisting of functions f of the form

(1)
$$f(z) = z - \sum_{j=2}^{\infty} a_j z^j, \ a_j \ge 0, j = 2, 3, ..., \ z \in U$$

was introduced.

We

Let define the Alexander operator $I^p: A \to \mathcal{H}(U)$

$$I^0 f(z) = f(z)$$

$$I^1 f(z) = If(z) = \int_0^z \frac{f(t)}{t} dt$$

$$I^p f(z) = I(I^{p-1}f(z)), \quad p = 1, 2, 3, ..$$
have for $f(z) = z + \sum_{j=2}^\infty a_j z^j$,

$$I^{p}f(z) = z + \sum_{j=2}^{\infty} \frac{1}{j^{p}} a_{j} z^{j}, p = 1, 2, 3, \dots$$

Now we can define the generalized Alexander operator

(2)
$$I^{\lambda}: A \to \mathcal{H}(U), \quad I^{\lambda}f(z) = z + \sum_{j=2}^{\infty} \frac{1}{j^{\lambda}} a_j z^j,$$

with $\lambda \in \mathbb{R}$, $\lambda \ge 0$, where $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$.

The purpose of this paper is to show that the class of *n*-uniform starlike functions of type α and order γ with negative coefficients, the class of *n*-uniform close to convex functions of type α and order γ with negative coefficients and some subclasses of functions with negative coefficients, which derive from the above mentioned classes, are preserved by the generalized Alexander operator.

2 Preliminary results

Let D^n be the Sălăgean differential operator (see [6]) $D^n : A \to A, n \in \mathbb{N}$, defined as:

$$D^0 f(z) = f(z)$$

Certain preserving properties of the generalized Alexander operator

$$D^{1}f(z) = Df(z) = zf'(z)$$
$$D^{n}f(z) = D(D^{n-1}f(z))$$

Remark 2.1 If $f \in T$, $f(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j = 2, 3, ..., z \in U$ then $D^n f(z) = z - \sum_{j=2}^{\infty} j^n a_j z^j$.

Theorem 2.1 [6] If $f(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j = 2, 3, ..., z \in U$ then the next assertions are equivalent:

(i) $\sum_{j=2}^{\infty} ja_j \le 1$ (ii) $f \in T$

(iii) $f \in T^*$, where $T^* = T \bigcap S^*$ and S^* is the well-known class of starlike functions.

Definition 2.1 [6] Let $\gamma \in [0,1)$ and $n \in \mathbb{N}$, then

$$S_n(\gamma) = \left\{ f \in A : Re \frac{D^{n+1}f(z)}{D^n f(z)} > \gamma \,, \, z \in U \right\}$$

is the set of n-starlike functions of order γ .

We denote by $T_n(\gamma)$ the subclass $T \bigcap S_n(\gamma)$.

Definition 2.2 [3] Let $f \in A$. We say that f is n-close to convex of order γ with respect to a half-plane, and denote by $CC_n(\gamma)$ the set of these functions, if there exists $g \in S_n(0)$ so that

$$Re\frac{D^{n+1}f(z)}{D^ng(z)} > \gamma, \ z \in U,$$

where $n \in \mathbb{N}, \gamma \in [0, 1)$.

Definition 2.3 [1] Let $f \in T$, $f(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j = 2, 3, ..., z \in U$. We say that f is in the class $CCT_n(\gamma), \gamma \in [0, 1)$, $n \in \mathbb{N}$, with respect to the function $g \in T_n(0)$, if:

$$Re\frac{D^{n+1}f}{D^ng} > \gamma, \ z \in U.$$

Theorem 2.2 [1] Let $\gamma \in [0,1)$ and $n \in \mathbb{N}$. The function $f \in T$ of the form (1) is in $CCT_n(\gamma)$, with respect to the function $g \in T_n(0)$, $g(z) = z - \sum_{j=2}^{\infty} b_j z^j$, $b_j \ge 0, j = 2, 3, ...,$ if and only if

(3)
$$\sum_{j=2}^{\infty} j^n [ja_j + (2-\alpha)b_j] < 1-\gamma$$

Definition 2.4 [4] Let $f \in A$, we say that f is n-uniform starlike function of type α if

$$Re\left(\frac{D^{n+1}f(z)}{D^n f(z)}\right) \ge \alpha \cdot \left|\frac{D^{n+1}f(z)}{D^n f(z)} - 1\right|, z \in U$$

where $\alpha \geq 0, n \in \mathbb{N}$. We denote this class with $US_n(\alpha)$.

We denote by $UT_n(\alpha)$ the subclass $T \bigcap US_n(\alpha)$.

Definition 2.5 [3] Let $f \in A$, we say that f is n-uniform close to convex function of type α in respect to the function n-uniform starlike of type α g(z), where $\alpha \geq 0$, $n \in \mathbb{N}$, if

$$Re\left(\frac{D^{n+1}f(z)}{D^ng(z)}\right) \ge \alpha \cdot \left|\frac{D^{n+1}f(z)}{D^ng(z)} - 1\right|, z \in U$$

where $\alpha \geq 0, n \in \mathbb{N}$. We denote this class with $UCC_n(\alpha)$.

Definition 2.6 [5] Let $f \in A$, we say that f is n-uniform starlike function of order γ and type α if

$$Re\left(\frac{D^{n+1}f(z)}{D^n f(z)}\right) \ge \alpha \cdot \left|\frac{D^{n+1}f(z)}{D^n f(z)} - 1\right| + \gamma, z \in U$$

where $\alpha \geq 0, \gamma \in [-1, 1), \alpha + \gamma \geq 0, n \in \mathbb{N}$. We denote this class with $US_n(\alpha, \gamma)$.

We denote by $UT_n(\alpha, \gamma)$ the subclass $T \bigcap US_n(\alpha, \gamma)$.

Theorem 2.3 [5] Let $\alpha \ge 0, \gamma \in [-1, 1), \alpha + \gamma \ge 0$ and $n \in \mathbb{N}$. The function f of the form (1) is in $UT_n(\alpha, \gamma)$ if and only if

$$\sum_{j=2}^{\infty} j^n [(\alpha+1)j - (\alpha+\gamma)]a_j \le 1 - \gamma.$$

Definition 2.7 [3] Let $f \in A$, we say that f is n-uniform close to convex function of order γ and type α in respect to the function n-uniform starlike of order γ and type α , $g(\alpha)$, where $\alpha \ge 0$, $\gamma \in [-1, 1)$, $\alpha + \gamma \ge 0$, $n \in \mathbb{N}$, if

$$Re\left(\frac{D^{n+1}f(z)}{D^ng(z)}\right) \ge \alpha \cdot \left|\frac{D^{n+1}f(z)}{D^ng(z)} - 1\right| + \gamma, z \in U$$

where $\alpha \geq 0, \ \gamma \in [-1,1), \ \alpha + \gamma \geq 0, \ n \in \mathbb{N}$. We denote this class with $UCC_n(\alpha, \gamma)$.

Definition 2.8 [2] Let $f \in T$, $f(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j = 2, 3, ..., z \in U$. We say that f is in the class $UCCT_n(\alpha), \alpha \ge 0$, $n \in \mathbb{N}$, with respect to the function $g(z) \in UT_n(\alpha)$ $g(z) = z - \sum_{j=2}^{\infty} b_j z^j$, $b_j \ge 0$, $j = 2, 3, ..., z \in U$, if: $Re\left(\frac{D^{n+1}f(z)}{D^ng(z)}\right) > \alpha \cdot \left|\frac{D^{n+1}f(z)}{D^ng(z)} - 1\right| z \in U.$ **Definition 2.9** [2] Let $f \in T$, $f(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j = 2, 3, ..., z \in U$. We say that f is in the class $UCCT_n(\alpha, \gamma)$, $\alpha \ge 0$, $\gamma \in [-1, 1)$, $\alpha + \gamma \ge 0$, $n \in \mathbb{N}$, with respect to the function $g(z) \in UT_n(\alpha, \gamma)$, $g(z) = z - \sum_{j=2}^{\infty} b_j z^j$, $b_j \ge 0$, $j = 2, 3, ..., z \in U$, if

$$Re\left(\frac{D^{n+1}f(z)}{D^ng(z)}\right) \ge \alpha \cdot \left|\frac{D^{n+1}f(z)}{D^ng(z)} - 1\right| + \gamma, \ z \in U.$$

Theorem 2.4 [2] Let $n \in \mathbb{N}, \alpha \geq 0, \gamma \in [-1,1)$, with $\alpha + \gamma \geq 0$. The function $f \in T$ of the form (1) is in $UCCT_n(\alpha, \gamma)$, with respect to the function $g \in UT_n(\alpha, \gamma), g(z) = z - \sum_{j=2}^{\infty} b_j z^j, b_j \geq 0, j = 2, 3, ..., z \in U$, if and only if

(4)
$$\sum_{j=2}^{\infty} j^{n} [(\alpha + 1)|ja_{j} - b_{j}| + (1 - \gamma)b_{j}] \leq 1 - \gamma.$$

3 Main results

Theorem 3.1 If $F \in UT_n(\alpha, \gamma)$, $\alpha \ge 0$, $\gamma \in [-1, 1)$, $\alpha + \gamma \ge 0$, $n \in \mathbb{N}$ and $f = I^{\lambda}(F)$, where I^{λ} is defined by (2), then $f \in UT_n(\alpha, \gamma)$, $\alpha \ge 0$, $\gamma \in [-1, 1)$, $\alpha + \gamma \ge 0$, $n \in \mathbb{N}$.

Proof. From $F(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, j = 2, 3, ... and $f(z) = I^{\lambda}(F)(z)$ we have:

$$f(z) = z - \sum_{j=2}^{\infty} \alpha_j z^j$$
, where $\alpha_j = \frac{1}{j^{\lambda}} a_j \ge 0$, $j = 2, 3, ...$

From Theorem 2.3 we need only to show that:

(5)
$$\sum_{j=2}^{\infty} j^n [(\alpha+1)j - (\alpha+\gamma)]\alpha_j \le 1 - \gamma.$$

For $\lambda \in \mathbb{R}$, $\lambda \ge 0$, $a_j \ge 0$ and j = 2, 3, ..., we have:

$$\alpha_j = \frac{1}{j^\lambda} a_j \le a_j$$

and thus

(6)
$$\sum_{j=2}^{\infty} j^n [(\alpha+1)j - (\alpha+\gamma)]\alpha_j \le \sum_{j=2}^{\infty} j^n [(\alpha+1)j - (\alpha+\gamma)]a_j$$

where $\alpha \ge 0, \ \gamma \in [-1, 1), \ \alpha + \gamma \ge 0$ and $n \in \mathbb{N}$.

From $F \in UT_n(\alpha, \gamma)$, using Theorem 2.3, we have

$$\sum_{j=2}^{\infty} j^n [(\alpha+1)j - (\alpha+\gamma)]a_j \le 1 - \gamma$$

and thus from (6) we obtain the condition (5).

Theorem 3.2 If $F \in UCCT_n(\alpha, \gamma)$, $\alpha \ge 0$, $\gamma \in [-1, 1)$, $\alpha + \gamma \ge 0$, $n \in \mathbb{N}$, with respect to the function $G \in UT_n(\alpha, \gamma)$ and $f = I^{\lambda}(F)$, $g = I^{\lambda}(G)$, where I^{λ} is defined by (2), then $f \in UCCT_n(\alpha, \gamma)$, $\alpha \ge 0$, $\gamma \in [-1, 1)$, $\alpha + \gamma \ge 0$, $n \in \mathbb{N}$, with respect to the function $g \in UT_n(\alpha, \gamma)$.

Proof. From the above Theorem we have
$$g \in UT_n(\alpha, \gamma)$$
.
For $F(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j = 2, 3, ...$ and $G(z) = z - \sum_{j=2}^{\infty} b_j z^j$, $b_j \ge 0$, $j = 2, 3, ...$ we have $f(z) = I^{\lambda}(F)(z) = z - \sum_{j=2}^{\infty} \alpha_j z^j$, where $\alpha_j = \frac{1}{j^{\lambda}} a_j \ge 0$, $j = 2, 3, ...$ and $g(z) = I^{\lambda}(G)(z) = z - \sum_{j=2}^{\infty} \beta_j z^j$, where $\beta_j = \frac{1}{j^{\lambda}} b_j \ge 0$, $j = 2, 3, ...$

From Theorem 2.4 we need only to show that:

(7)
$$\sum_{j=2}^{\infty} j^n [(\alpha+1) |j\alpha_j - \beta_j| + (1-\gamma)\beta_j] \le 1-\gamma.$$

It is easy to see that

(8)
$$(\alpha + 1) |j\alpha_j - \beta_j| + (1 - \gamma)\beta_j = \frac{1}{j^{\lambda}} [(\alpha + 1) |ja_j - b_j| + (1 - \gamma)b_j] \le \le (\alpha + 1) |ja_j - b_j| + (1 - \gamma)b_j$$

for $\lambda \in \mathbb{R}$, $\lambda \ge 0$, $a_j \ge 0$, $b_j \ge 0$, $j = 2, 3, ..., \alpha \ge 0$, $\gamma \in [-1, 1)$ and $\alpha + \gamma \ge 0$.

From $F \in UCCT_n(\alpha, \gamma)$, with respect to the function $G \in UT_n(\alpha, \gamma)$, we have (see Theorem 2.4):

$$\sum_{j=2}^{\infty} j^{n} [(\alpha + 1) |ja_{j} - b_{j}| + (1 - \gamma)b_{j}] \le 1 - \gamma$$

and thus from (8) we obtain the condition (7).

If we take $\gamma = 0$ in Theorem 3.1 and Theorem 3.2 we obtain:

Theorem 3.3 If $F \in UT_n(\alpha)$, $\alpha \ge 0$, $n \in \mathbb{N}$ and $f = I^{\lambda}(F)$, where I^{λ} is defined by (2), then $f \in UT_n(\alpha)$, $\alpha \ge 0$, $n \in \mathbb{N}$.

Theorem 3.4 If $F \in UCCT_n(\alpha)$, $\alpha \ge 0$, $n \in \mathbb{N}$, with respect to the function $G \in UT_n(\alpha)$ and $f = I^{\lambda}(F)$, $g = I^{\lambda}(G)$, where I^{λ} is defined by (2), then $f \in UCCT_n(\alpha)$, $\alpha \ge 0$, $n \in \mathbb{N}$, with respect to the function $g \in UT_n(\alpha)$.

If we take $\gamma \in [0, 1)$ and $\alpha = 0$ in Definition 2.6 we have $UT_n(0, \gamma) = T_n(\gamma)$ and thus from Theorem 3.1, with $\gamma \in [0, 1)$ and $\alpha = 0$, we obtain:

Theorem 3.5 If $F \in T_n(\gamma)$, $\gamma \in [0,1)$, $n \in \mathbb{N}$ and $f = I^{\lambda}(F)$, where I^{λ} is defined by (2), then $f \in T_n(\gamma)$, $\gamma \in [0,1)$, $n \in \mathbb{N}$.

Remark 3.1 From Theorem 3.2 with $\gamma \in [0, 1)$ and $\alpha = 0$, we obtain the preserving property of the generalized Alexander operator on the subclass $UCCT_n(0, \gamma), \gamma \in [0, 1)$, which is not the same with the class $CCT_n(\gamma)$.

In a similarly way with the proof of the Theorem 3.2, using the condition (3) instead of the condition (4), we obtain:

Theorem 3.6 If $F \in CCT_n(\gamma)$, $\gamma \in [0,1)$, $n \in \mathbb{N}$, with respect to the function $G \in T_n(0)$ and $f = I^{\lambda}(F)$, $g = I^{\lambda}(G)$, where I^{λ} is defined by (2), then $f \in CCT_n(\gamma)$, $\gamma \in [0,1)$, $n \in \mathbb{N}$, with respect to the function $g \in T_n(0)$.

References

- M. Acu, On a subclass of functions with negative coefficients, General Mathematics, Vol. 11(2003), Nr. 1 - 2, 57-66.
- [2] M. Acu, A subclass of uniformly close to convex functions with negative coefficients, Analele Univ. Oradea, Fascicola Matematica, Tom X(2003), 57-68.
- [3] D. Blezu, On the n-uniform close to convex functions with respect to a convex domain, General Mathematics, Vol. 9, Nr. 3 - 4, 3 - 14.
- [4] I. Magdaş, On α-type uniformly convex functions, Studia Mathematica,
 Vol. XLIV, Nr. 1 (1999), 11 17.
- [5] I. Magdaş, A new subclass of uniformly convex functions with negative coefficients, Studia Mathematica (to appear)

- [6] G. S. Sălăgean, Geometria Planului Complex, Ed. Promedia Plus, Cluj-Napoca, 1997.
- [7] G. S. Sălăgean, On some classes of univalent functions, Seminar of geometric function theory, Cluj-Napoca, 1983.
- [8] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 5 (1975), 109 - 116.

University "Lucian Blaga" of Sibiu
Department of Mathematics
Str. Dr. I. Raţiu, Nr. 5–7,
550012 - Sibiu, Romania.
E-mail address: acu_mugur@yahoo.com