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Section of Euler summability method

Ioan Tincu

Abstract

In this paper, we determine sections of Euler summability method,
using random variables which follow Bernoulli’s law and the central

limit theorem.
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1 Introduction

The paper aims to obtain some regular transformation of the sequences of
real numbers, see (12), (13), (19), (22), (24), (28), (30), (32), which are
sections of Euler's summability method.

Let A = ||an k||nken be a real elements matrix.

A sequence (8,,)nen is said to be A - summable to the value s € R if
each of the series ¢, = i an g - Sk, n = 0,1,... is convergent and if 0,, — s

k=0
for n — oo.
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The method A is called regular if each convergent sequence is A -

summable to its limit.

Theorem 1. (Toeplitz) (see [2]) The summation method A is reqular if

and only if
(1) lim a,, =0, for every k natural,
(2) lim Za"’k =1,
o
(3) Z lan k| < M, for every n natural,

k=0
M being a constant independent of n.

Remark 1.1. If the elements of matriz A are positive and Z Qn = 1, for

k=0
every n natural, then conditions (2), (3) are verified.

Euler summability method is obtained for the matrix A = ||ankll ), ¢ N>

k=0,n
where

Anf = " F(1—a)" %, ac(0,1).
k

In the followings we will use the next notations:

M (f) represents the expectation of a random variable f

D?(f) represents the variance (dispersion) of a random variable f.

[z] represents the whole part of
We remind that the whole part verifies:

i) [ m+z]=m+[z], formeZ, zeR

ii) [—x] = =1 — [z], for z > 0.

Now, we recall the well-known Lyapunov central limit theorem and a

result on the distribution functions of a random variables.
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Theorem 2. (Lyapunov) (see [1], [3]) Let (fn)nen a sequence of inde-
pendent random variables. Let us suppose that My, = M(fi), Di = D*(fx),
Hy, = YM(|fs — My]?) exists for every k natural. Note with

Sp=1\/Di+ ..+ D2 K,=/H}+ ..+ H}

Bon=fi+ .t fobr=—777"
1 D(5,)

and with F, g-(x) the distribution function of variable 3. Thus, if

K,
4 lim =2 =0
4) s,
we have
(5) lim F), g () = L / e 2dt | for every x real.

n—oo n’ﬁn '\/% 7

— 00

1
Function ®(x) = e / e~""/2dt represent the standard normal distri-
T

bution function.
Theorem 2 is also true in the case when the independent random vari-

ables have the same distribution.

Theorem 3. If the random wvariables 1, and ne verify the condition
ny = amy + b with a,b real, then f,,(t) = fy, (at)e® where f,,(t) and f,,(t)

denote the characteristic functions of the variables ny and n;.

If the random variables 7; and 79 verify the condition 75 = a-n; + b with
a,b real, a > 0, then the distribution functions of these random variables

verify

(6) F(r) = F, (””T_b> |
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2 Principal results

10
If the independent random variables f1, ..., f,, have the distribution ,

P q
qg=1—p, p € (0,1), then the random variable 3, = fi + ... + f, has the

distribution n and the distribution function

k=0,n
" [n 0, z<0
Fop, (t) = Z P ¢ ROt — k), where 0(x) = represents
o \ K 1, >0

Heaviside’s function.

From Theorem 2 and (6), we get
(7) lim £, s:(t) = lim Z "¢ - O0(np +t\/npqg — k) =

=®(t), foralt>0

or
p+typl [
(8) lim Z pF " F=d(t), forallt>0.
n—o0 k
k=0

Next, (8) is generalized.

Let the independent random variables fi,..., f, with the distributions

10 — -
s ak=1—pi, pe €(0,1), k=Tn, and lim » " p; = oo.
Pk Gk =

k
The random variable 3, = fi1+...4 f, has the distribution P,(0

~—

where P, (z) = (p1x + q1)-.- (DT + @n)-



Section of Euler summability method 23

From Theorem 2 and (6) we get

(9) lim F, 5 (1) =

n—oo

:JE&Z%Q t Zpiqi+2pi—k =®(t), forallt>0
k=0 i=1 i=1

or )
[M / /'231 Di Qi+'_§::1 Di

(10) lim Z - lP(k)(()) = ®(t) for all ¢ real positive

n—oo kT B P .

k=0
Remark 2.1. As the function ®(t) is bounded for x > 0, we can consider
E, 5 (1

(11) nlgg) @’6&5 ) =1, for allt real positive.

Using Theorem 1, (8) and (10) we can build the following regular sum-

mation methods of the sequence of real numbers (s,)nen:

[np+ty/mpq)
(12) TO@ = Y ) s
k=0
1
where cnljc(t) = (1)

fori=1,nand t €
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Next, we will study the case ¢ = 0; transformations from (12) and (13)

become:
[np] n
(14) TM0) =2 P (1= p)"Fs, . pe(0,1),
=0 \ k
& g d
L) =2 ko P(z) =[[(me+a) .
(15) p ! i
pi €(0,1) ,¢;=1—p; fori=1,nand lim Zpk:oo.
k=1

From (7), for t = 0, we have

(

[ . 1
lim gt 0(np — k) = 5
k=0 k

(16)
ST A P 1
hmz p" g -0(np—n+k):§,
\ n—oo =0 k
or
( [np] 1
n
li k n—k _ —
Jm ) ()P =g
k=0
: - ok kL
(17) Jim > )P =5, ng¢Z, qe(0,1) .

k=[ng]+1

n n 1
JL“SOZ " P””“'qk=§, nge€Z, qe(0,1)
. k=ngq

We consider the following cases:
Case 1. [np| < [ng| where nq € Z, q € (0,1), p = 1 — q. From the
properties i) and ii) we get

—1
(18) p<’

on
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Using Theorem 1, (17) and (18), we get the following regular transfor-

mation of the sequence of real numbers (s,,)nen:

[nan) n

(19)  T9(ay) = Z chL(a) - Sp + Z cgi(a) - S, where
k=0

k=[n(l1—an)]+1

ozfl(l — ozn)”_k , k=0, [na,)

(3)( ) = 0 , k= [na,] + 1, [n(1 — a,)]

" Fl-a,)f k=1 —-a,)]+1,n ,

o

[
(n

e o

Case 2. [np]

1
)andn 1—an)¢Z
n

nq _7 anZ,qE(O,l),pzl—q. From
properties i) and ii), we get

n—1

(20) [np] = —

Equality from (20) is valid if n is odd number, i.e. n =2m + 1, m € N.
m+1

2 1p| = < (2 Dp < 1 <p< :
(@m+Lpl=m, m<@m+Lp<m+l, o0 <p<g——
1
Remark 2.2. For m — o resultsp—§
Case 3. [np|=ng—1,nq€Z,q€ (0,1),p=1—g¢.

From the fact that nq € 7Z, it follows that np € Z.

We have: np=nq—1,np=n—np — 1, 2np = n — 1. Equality is valid
if n is an odd number, that isn =2m + 1, m € N.

Consequently

m m+ 1
(21) p=

’ q:2m+1'
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Using Theorem 1, (17) and (21), we get the following regular transfor-

mation of the sequence of real numbers (s, )nen:

m

@ 1 2m+1 k 2m+1—k
22
( ) 2m—+1 2m + 1
+ Z m2m+1—k . (m + 1)k - 8,
k=m+1 k

Case 4. [np| <ng—1,nqg€Z,q € (0,1), p=1—gq. From the fact that
nq € 7 it follows that np € Z.
We obtain: np <n —np — 1,

n—1
on

(23) p<

By using Theorem 1, (16) and (22), we get the following regular trans-

formation of the sequence of real numbers (s, )nen:

(24) 79 (ay,) Z (@) - sp + Z - s, where
k=n(l1—an)
)
oaf(1—a)"™ | k=0,na,
5 = — —
cn}C(a) _ 0 , k=na,+1,n(l—a,)—1
Pl — o)t k=n(—ay),n,
k
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From (9), for ¢ = 0, we have
( n P(
53 (z ) -
n—oo P —
(30

Z—n—l—k:)

(25)
(0
nﬂoo = k)‘

where P,(z) = H(pzx +q), pi € (0,1), ¢ =1—p; fori=1,n or

( n
LDV

. . PPy 1 "
(26) fm o> Tkg);):y ln—zpi

k= {n— zn: pl} +1

=1

k=n—73" pi
\ =1

We consider the following cases:

Case 5. Zpll < [n — Zpll where n — Zpi Z7,p; €(0,1),i=
i=1 i=1 i=1

From properties i) and ii), we get

(27) sz <

n (n—k) n
lim Z Pn—(o)zl, n—ZpiEZ

27

1,n.

By using Theorem 1, and (25) and (26), we get the following regular

transformation of the sequence of real numbers (s,,),en:

£

n

(28) TOW) = > caxl@si+ > curlp)sk

k=0 n
k= {nf 3 pl} +1
i=1
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L2 () B [iﬂ

=1

where ¢, (p) = 0 , k= Zpi

Li=1
LA At k= — :
(n—k;)! ’ " Zp

\ i=1

n—Zplgz pi € (0,1),i=1,n.

1, [n—ipi] ,
i=1

+ 17n7

0<sz
Case 6. [Z: ] = [n—ZpZ], n—zp,gzz We have
AR

n=2m+1, meN

(29) n 2m+1
n—1 n—+1
5 §i§1p1< , m< 5 pi <m+1.

Consequently, we consider the following regular transformation of the

sequence (Sp)nen:

2m—+1
. { igl pz} 2m—+1
B0) T = Y cwm®st Y. cmea®)s
k=0 e |:2m+1 } +1
=l X P
where
1 2m+1
k|P2(TrL)+l )7 k: [07 sz]umeN
Com+1,k(P) = = D

+1,2m+1

1 -
e UV D opY

=1
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. n—1
We obt i =2 1, meN
eo am;p 5 n m—+1,m l.e
(
n=2m+1
,méeN
(31) 2m+1 '
> p=m
i=1

We consider the following regular transformation of the sequence (s, )nen:

2m—+1
2m+1 Z Com+1,k(D) Sk + Z Com+1,k(P
k=m+1
where
(k)
P2m+1<0) k — m _—
k' ) ) m
Com+1.k(D) = , Z p; € Z,m € N.

P00
2m+1—k)!

=1

,k=m+1,2m+1

Case 8. [zn:pzl <n-— (ipi—i—l) ZpZEZ Weobtaanpl n—l.

We consider the following; regular transformatlon of the sequence (sn)neN

(32) TO(p) = > can@se+ > cnr(®)sk,

where i~ and
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T ) k= Oa lel

Cn.k (p) =

P (0) o o '
S k=Ygl =Y -1
I IR SRS

Example 1. In (13) we consider p_: 1/2; it follows that

5 /.
TM(0) =271 ) Sk

k=0 k
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