
General Mathematics Vol. 12, No. 3 (2004), 37–52

An efficient ART1 Algorithm based on

vector computation

Nicolae Popoviciu

Abstract

The work describes the ART1 (Adaptive Resonance Theory) al-

gorithms in a vector form, not element by element as usually is done

and gives all the dimensions for the vectors one used. This simplify

the algorithm description and its using.

We present in a compacted vector form two approaches of ART1:

version 1 based on [3] and version 2 based on [2] and we obtain

two ART1 algorithms. Then we apply both algorithms at the same

numerical example. Version 2 supplies a better result.

2000 Mathematical Subject Classification: 68T05, 82C323.

Keywords: ART1, resonance, vigilance test.

37

38 Nicolae Popoviciu

1 Notations and General Framework

1.1 Notations

We use the general notations of Artificial Neural networks (ANN) with small

special meanings. The set of input vectors (input data, learning data, input

patterns) is

I(x) = {x(1), x(2), ..., x(N)}, x(t) ∈ Rn, t = 1, N ; t(time) natural number.

We note that the sort writing t = 1, N is equivalent with t = 1, 2, ..., N

and the writing 1 ≤ t ≤ N means one or more fixed values of t from 1 to

M . The same rule is applied for any other numbering index.

In Adaptive Resonance Theory 1 (ART1) each input vector has binary

components.

F1 is the input (comparison) layer with n neurons F11, ..., F1i, ..., F1n.

F2 is the output (competitive) layer with M neurons F21, ..., F2j, ..., FM .

The weights from neuron i of F1 layer towards the neuron j of F2 layer

(feed forward or bottom-up) are

wi,j(t), i = 1, N ; j = 1, M ; W (t) = (wi,j(t)) of type n×M.

Each column in the matrix W (t) is a column vector wj(t) ∈ Rn, j = 1,M .

wj(t) = (w1j(t)...wij(t)...wnj(t))
T , T - transpose.

The weights from neuron j of F2 layer towards the neuron i of F1 layer

(feed back or top-down) are

vj,i(t), j = 1,M ; i = 1, n; V (t) = (vji(t)) of type M × n.

An efficient ART1 Algorithm based on vector computation 39

Each line in the matrix V (t) is a column vector vj(t) ∈ Rn, j = 1,M .

vj(t) = (vj1(t)...vji(t)...vjn(t))T .

Hence the vectors wj(t) and vj(t) have the same dimension n.

We denote by o(t) ∈ RM a (fire) vector having one component for each

F2j neuron. If the neuron j is “on” (enabled), then oj(t) = 1 and if the

neuron j is “off” (disabled), then oj(t) = 0. The vector θ ∈ RM is the null

vector of the space.

For any two vectors u and v belonging to the same vector space, let us

say u, v ∈ Rn, we use the usual notations

< u, v >= u · v = uT v ∈ R, scalar product;

u ∗ v = (u1v1...uivi...unvn)T ∈ Rn, piecewise product (component by

component)

u ∧ v ∈ Rn (component - wise minimum)(1)

This means the minimum on each pair of components min{ui; vi}, i = 1, n.

We use 1-norm of vector u defined by ||u||1 = ||u|| =
n∑

i=1

|ui|.
The real values ρ ∈ (0, 1) and α ∈ (0, 1) are vigilance parameter and

learning rate, respectively.

1.2 ART 1 Algorithms

The ART1 is a unsupervised and competitive learning. It performs data

clustering on the input data I(x). We denote the classes by A1, ..., AM .

hence we have a map f : Rn → RM . By ART1 algorithms, learned vectors

40 Nicolae Popoviciu

(input patterns) are retained even while new input vectors are learned. This

means the plasticity-stability dilemma is solved.

There are more approaches of ART1 having small or rather big differ-

ences between them. We present two approaches of ART1, put in order the

steps of two algorithms and apply them at the same numerical example.

Then some conclusions are formulated.

For both algorithms the initialization of parameters is: n,M, N ; ρ, α;

w0
i,j = wi,j(1) =

1

1 + n
, v0

j,i = vj,i(1) = 1 for i = 1, n; j = 1,M.

2 ART1 Lippmann,s Algorithm in the

Krose-Smagt,s Version

The Lippmann,s algorithm (1987) is described by Krose and Smagt (1996)

in [3]. In this section we write the ART1 algorithm in the vector form and

we obtain the following steps.

Step 1. Do the initialization of parameters as it was described above (ex-

cept α). At the beginning of the work, the fire vector o(1) has all component

equal 1 i.e. oj(1) = 1.

Step 2. Execute a DO cycle for t = 1, N

L1 DO t = 1, N

Read an input vector x(t).

L2 Compute the activation values for all the enabled neurons j of F2:

netj(t) =< wj(t), x(t) >, only if oj(t) = 1.

An efficient ART1 Algorithm based on vector computation 41

Select the winning neuron k, 1 ≤ k ≤ M i.e. max{netj(t)|0j(t) = 1} =

netk(t).

Remark 1. If the maximum is not unique and there is a tie for the winning

neuron k in F2 layer, then choose a special rule to break the tie, let us

say the winner k is the second between the equals .

Process the vigilance test for F2k output neuron :

r =
< vk(t), x(t) >

||x(t)||(2)

If r > ρ (there exists resonance) then go to label L3; otherwise (it is not

resonance) go to label L4.

L3 Update the vectors vk(t) and wk(t) as follows

vk(t + 1) = vk(t) ∗ x(t)(3)

wk(t + 1) =
vk(t + 1)

0, 5 + ||vk(t + 1)||(4)

vj(t + 1) = vj(t), wj(t + 1) = wj(t) for all j = 1,M, j 6= k.

Put 0j(t + 1) = 1, j = 1, M and store the input pattern in the class Ak.

Go to label L6 (the end of DO cycle).

L4 Disable the output neuron F2k i.e. ok(t) = 0 and go to label L2.

When o(t) = θ the network rejects the input vector x(t) and it is stored in

a reject set RI(x). Go to label L5.

L5 Put the old weights on the positions of new weights and enable all

the output neurons, namely

vj(t + 1) = vj(t), wj(t + 1) = wj(t), oj(t + 1) = 1 for all j = 1,M,

42 Nicolae Popoviciu

L6 CONTINUE go to label L1.

Step 3. We repeat the Step 2 with the input set RI(x) for a new N

(cardinal of reject set).

Step 4. Print the content of classes and the matrixes W and V.

We call this algorithm ALGOART1Version1.

The work [1] mentions a Georgiopoulos Theorem [4] which assure us

that the ART1 algorithm converges.

3 ART1 Algorithm in the Jain,s Version

Again we use the vector form to describe the ART1 algorithm and we

mention all the vector dimensions. In this version [2] we use the operation

(1) and other formula instead of (3) to update the weights for the winner

F2k. It appears a new vector A(t) ∈ Rn (see (5) below). Also we use the

learning rate α.

Step 1. Is the same as in section II.

Step 2. Execute a DO cycle for t = 1, N .

L1 DO t = 1, N

Read an input vector x(t).

L2 Compute the activation values for all the enabled neurons j of F2:

netj(t) =< wj(t), x(t) >, only if oj(t) = 1.

Select the winning neuron k, 1 ≤ k ≤ M i.e. = max{netj(t)|oj(t) = 1} =

netk(t).

It remains the same remark as in section II.

An efficient ART1 Algorithm based on vector computation 43

Process the vigilance test for F2k output neuron:

r =
< vk(t), x(t) >

||x(t)|| ; if r > ρ (there exists resonance) then go to label L3;

otherwise (it is not resonance) go to label L4.

L3 Update the vectors vk(t) and wk(t) as follows

A(t) = x(t) ∧ V T (t)o(t)(5)

vk(t + 1) = vk(t) + α[A(t)− vk(t)](6)

wk(t + 1) =
vk(t + 1)

0, 5 + ||vk(t + 1)||
vj(t + 1) = vj(t), wj(t + 1) = wj(t) for all j = 1,M, j 6= k.

Put oj(t + 1) = 1, j = 1,M and store the input pattern in the class Ak.

Go to label L6 (the end of DO cycle).

L4 Disable the output neuron F2k i.e. ok(t) = 0 and go to label L2.

When o(t) = θ the network rejects the input vector x(t) and it is stored in

a reject set RI(x). Go to label L5.

L5 Put the old weights on the positions of new weights and re-enable all

the output neurons, namely

vj(t + 1) = vj(t), wj(t + 1) = wj(t), oj(t + 1) = 1 for all j = 1,M.

L6 CONTINUE go to label L1.

Step 3. We repeat the Step 2 with the input set RI(x) for a new N

(cardinal of reject set).

Step 4. Print the content of classes and the matrixes W and V.

We call this algorithm ALGOART1Version2.

44 Nicolae Popoviciu

4 One Numerical Example and Two Algo-

rithms

We would like to classify in even or odd the numbers 1, 2, 3, 4, 5, 6, 7

given in the usual binary-coded-decimal format [5]. hence the input data

are given by the set I(x) having the form

I(x) = {x(1), x(2), x(3), x(4), x(5), x(6), x(7)},

x(1) =




0

0

1


 , x(2) =




0

1

0


 , x(3) =




0

1

1


 , x(4) =




1

0

0


 ,

x(5) =




1

0

1


 , x(6) =




1

1

0


 , x(7) =




1

1

1


 .

Hence n = 3 i.e. the input layer F1 contains 3 neurons; N = 7 and t = 1, 7.

We call A1 the class containing the even numbers and A2 the class with odd

numbers. Consequently, M = 2 and the output layer contains 2 neurons.

The other initializing parameters are ρ = 0, 3 (vigilance parameter), α = 0, 9

(learning rate) and the weights for time t = 1

W (1) =




1/4 1/4

1/4 1/4

1/4 1/4


 , V (1) =


 1 1 1

1 1 1


 , o(1) =


 1

1


 .

Our computation task is to find the weights matrices W (8) = W ∗, V (8) =

V ∗, when the neural network is considered to be learned.

An efficient ART1 Algorithm based on vector computation 45

The numerical results for ALGOART1Version1.

The special rule: the winner is the second between the equals.

Epoch 1. We use the natural order of input vectors and ρ = 0, 3.

t = 1; x(1); net1(1) =< w1(1) >= 1/4; net2(1) =< w2(1), x(1) >= 1/4;

max{1/4; 1/4} = 1/4; (indecision, tie); take k = 2; vigilance test

r =
< v2(1), x(1) >

||x(1)|| = 1
1 = 1 > ρ = 0.3 (there exists resonance);

x(1) is accepted by F22; x(1) ∈ A2; true; update the vectors w2, v2

v2(2) = v2(1) ∗ x(1) = (001)T ; w2(2) =
v2(2)

0, 5 + ||v2(2)|| = (002/3)T

W (2) =




1/4 0

1/4 0

1/4 2/3


 , V (2) =


 1 1 1

0 0 1


 , o(2) =


 1

1


 .

t = 2; x(2); max{1/4; 0} = 1/4; (decision); winner k = 1; vigilance test

r =
< v1(2); x(2) >

||x(2)|| =
1

1
= 1 > ρ = 0, 3 (there exists resonance);

x(2) is accepted by F21; x(2) ∈ A1; true; update the vectors w1, v1

v1(3) = v1(2) ∗ x(2) = (0 1 0)T ; w1(3) =
v1(3)

0, 5 + ||v1(3)|| = (0 2/3 0)T

W (3) =




0 0

2/3 0

0 2/3


 ; V (3) =


 0 1 0

0 0 1


 ; o(3) =


 1

1


 .

t = 3; x(3); max{2/3; 2/3} = 2/3; (indecison, tie); take k = 2; vigilance test :

r =
< v2(3), x(3) >

||x(3)|| =
1

2
= 0.5 > ρ = 0.3 (resonance); x(3) ∈ A2; true;

v2(4) = v2(3) ∗ x(30 = (0 0 1)T ; w2(4) =
v2(4)

0.5 + ||v2(4)|| = (0 0 2/3)T

46 Nicolae Popoviciu

W (4) = W (3); V (4) = V (3); o(4) = (11)T .

t = 4; x(4); max{0; 0} = 0; (indecision, tie); we analyze both cases:

take k = 1; vigilance test r = 0 < ρ = 0.3 (isn,t resonance); put o1(4) = 0

and net2(4) = 0; max{0} = 0; k = 2; r = 0 < ρ = 0.3; (isn,t resonance);

o2(4) = 0; x(4) is rejected by F2 layer.

W (5) = W (4); V (5) = V (4); o(5) = (1 1)T .

t = 5; x(5); (decision); k = 2; r = 0.5 > ρ = 0.3; resonance; x(5) ∈ A2; true

update vectors w2, v2 and we obtain

W (6) = W (5); V (6) = V (5); o(6) = (1 1)T .

t = 6; x(6); (decision) k = 1; r = 0.5 > ρ = 0.3; resonance; x(6) ∈ A1; true;

update w1, v1 and we obtain

W (7) = W (6); V (7) = V (6); o(7) = (1 1)T .

t = 7; x(7); (indecision, tie); take k = 2; r = 1/3 > ρ = 0.3; resonance;

x(7) ∈ A2; true; update w2, v2 and we obtain

W (8) =




0 0

2/3 0

0 2/3


 = W∗; V (8) =


 0 1 0

0 0 1


 = V ∗ .Stop.

The content od classes is A1 = {x(2), x(4), A2 = {x(1), x(3), x(5), x(7),

x(4) is rejected. The network is learned by the weights matrices W ∗ and

V ∗. We can continue in the same way with Epoch 2 and obtain the same

result as in Epoch 1.

An efficient ART1 Algorithm based on vector computation 47

Remark 2. During the Epoch 1 let us suppose we use the input vectors in

the following mixed order I(x) = {x(7), x(1), x(6), x(2), x(5), x(3), x(4)}.
We obtain the same result as before and x(4) is also rejected. Nevertheless

there exist several small differences between the intermediate results of the

Epoch 1 (See Table 1 below).

The numerical results for ALGOART1Version2.

The special rule: the winner is the second between the equals.

Epoch 1. We use the natural order of input vectors and ρ = 0.3,

α = 0.9.

W (1) =




1/4 1/4

1/4 1/4

1/4 1/4


 , V (1) =


 1 1 1

1 1 1


 , o(1) =


 1

1


 .

t = 1; x(1); max{net1(1); net2(1) = max{1/4; 1/4} = 1/4; (indecision); take

winner k = 2; vigilance test r = 1
1 = 1 > ρ = 0.3; resonance; x(1) ∈ A2;

update v2, w2 by (5) and (6): v2(2) = v2(1) + 0.9[A(1)− v2(1)]

A(1) = x(1) ∧ V (1)T o(1) = (001)T ,

v2(2) =




1

1

1


 + 0.9




−1

−1

0


 =




0.1

0.1

1


 ,

w2(2) =
v2(2)

0.5 + ||v2(2)|| =
1

1.7




0.1

0.1

1


 =




0.06

0.06

0.59


 ;

48 Nicolae Popoviciu

W (2) =




0.25 0.06

0.25 0.06

0.25 0.59


 , V (2) =


 1 1 1

0.1 0.1 1


 , o(2) =


 1

1


 .

t = 2; x(2); max{net1(2), net2(2) = max{0.25; 0.06} = 0.25 (decision), k =

1; vigilance test r = 1
1 = 1 > ρ = 0.3; resonance; x(2) ∈ A1; update v1, w1

as v1(3) = v1(2) + 0.9[A(2)− v1(2)],

A(2) = x(2) ∧ V (2)T o(2) = (0 1 0)T , v1(3) = (0.1 1 0.1)T ,

w1(3) =
v1(3)

0.5 + ||v1(3)|| = (0.06 0.59 0.06)T ;

W (3) =




0.06 0.06

0.59 0.06

0.06 0.59


 , V (3) =


 0.1 1 0.1

0.1 0.1 1


 , o(3) =


 1

1


 .

Remark 3. It would be better to work with more than two decimal figures.

t = 3; x(3); max{0.65; 0.65} = 0.65 (indecision); take winner k = 2; vi-

gilance test r =
< v2(3), x(3) >

||x(3)|| = 1.1
2 = 0.55 > ρ = 0.3; resonance;

x(3) ∈ A2; update v2, w2;

v2(4) = v2(3) + 0.9[A(3)− v2(3)]; A(3) = x(3) ∧ V (3)T o(3) = (0 1 1)

v2(4) = (0.1 0.91 1)T ; w2(4) =
v2(4)

2.51
= (0.04 0.36 0.40)T ;

W (4) =




0.06 0.04

0.59 0.36

0.06 0.40


 , v(4) =


 0.1 1 0.1

0.1 0.91 1


 , o(4) =


 1

1


 .

t = 4; x(4); max{0.06; 0.04 = 0.06; (decision); k = 1; vigilance test r =

< v1(4), x(4) >
||x(4)|| = 0.1

1 = 0.1 < ρ = 0.3; isn,t resonance; o1(4) = 0;

An efficient ART1 Algorithm based on vector computation 49

max{net2(4)|o2(4) = 1} = max{0.04} = 0.04; k = 2; r =
< v2(4), x(4) >

||x(4)|| =

0.1
1 = 0.1 < ρ = 0.3; isn,t resonance; o2(4) = 0; x(4) is rejected by the

network.

W (5) = W (4), V (5) = V (4), o(5) =


 1

1


 .

t = 5; x(5); max{0.12; 0.08} = 0.12; decision; winner k = 1; vigilance test

r = 0.2
2 = 0.1 < ρ = 0.2; isn,t resonance; o1(5) = 0;

max{net2(5)|o5(5) = 1} = max{0.08} = 0.08; winner k = 2;

r =
< v2(5), x(5) >

||x(5)|| = 1.1
2 = 0.55 > ρ = 0.3; resonance; x(5) ∈ A2; update

v2, w2 with o(5) =


 0

1


; A(5) = x(5) ∧ V (5)T o(5) = (0.1 0.1)T ,

v2(6) = (0.1 0.09 1)T , w2(6) =
v2(6)

1.69
= (0.06 0.05 0.59)T

W (6) =




0.06 0.06

0.59 0.05

0.06 0.59


 , V (6) =


 0.1 1 0.1

0.1 0.09 1


 , o(6) =


 1

1


 .

t = 6; x(6); max{0.65; 0.11} = 0.65; decision; winner k = 1; vigilance test

r =
1.1

2
= 0.55 > ρ = 0.3; resonance; x(6) ∈ A1; update v1, w1

A(6) = (0.2 1 0), v1(7) = (0.19 1 0.01)T , w1(7) =
v1(7)

1.7
= (0.11 0.59 0)T ;

W (7) =




0.11 0.06

0.59 0.05

0.00 0.59


 , v(7) =


 0.19 1 0.01

0.10 0.09 1


 , o(7) =


 1

1




50 Nicolae Popoviciu

t = 7; x(7); max(0.70; 0.701) = 0.701; decision; winner k = 2; vigilance test

r = 0.39 > ρ = 0.3; resonance; x(7) ∈ A2; update v2, w2

A(7) = (0.29 1 1)T , v2(8) = (0.27 0.91 1)T , w2(8) = (0.1 0.34 0.37)T

W (8) =




0.11 0.10

0.59 0.34

0.00 0.37


 = W∗, V (8) =


 0.19 1.00 0.01

0.27 0.91 1.00


 = V ∗. Stop.

Epoch 2. We test only the vector x(4) which was rejected.

t = 8; x(4); o(8) =


 1

1


;

net1(8) =< w1(8), x(4) >= 0.11, net2(8) =< w2(8), x(4) >= 0.1,

max{0.11; 0.1} = 0.11; decision; k = 1; vigilance test;

r =
< v1(8), x(4) >

||x(4)|| =
0.19

1
= 0.19 < ρ = 0.3; isn,t resonance; o1(8) = 0

k = 2; r = 0.27 < ρ = 0.3; isn,t resonance; x(4) is rejected.

Hence A1 = {x(2); x(6), A2 = {x(1); x(3); x(5); x(7).

Now we summarize the numerical results we have obtained. By ALGO-

ART1Version1 we have Table 1 (indecision=indec; decision=dec)

I(x) x(1) x(2) x(3) x(4) x(5) x(6) x(7)

max{net} indec dec indec indec dec dec indec

class A2 A1 A2 rejected A2 A1 A2

3 decisions; 4 indecisons;

I(x) x(1) x(2) x(3) x(4) x(5) x(6) x(7)

max{net} indec dec dec dec dec indec indec

class A2 A2 A1 A1 A2 A2 rejected

4 decisions; 3 indecisons.

An efficient ART1 Algorithm based on vector computation 51

By ALGOART1Version2 we obtained Table 2.

I(x) x(1) x(2) x(3) x(4) x(5) x(6) x(7)

max{net} indec dec indec dec dec dec dec

class A2 A1 A2 rejected A2 A1 A2

5 decisions; 2 indecisons

5 Conclusions

ALGOART1Version2 is more refined and it assures better numerical results

than ALGOART1Version1.

References

[1] Caudell T. P., Healy M. J., Lateral Priming Adaptive Resonance Theory

(LAPART)-2: Innovation in ART; Chapter 6 in recent Advances in

ANN. design and Applications, Edited by Lakhms Jain and Ana Maria

Fanelli, The CRC Press, 2000

[2] Jain K. Anil, Mao Jianchang, Mohiuddin K. M., Artificial Neural Net-

works: A Tutorial, IEEE, MArch, 1996.

[3] Krose Ben, Van der Smagt P., An Introduction to Neural Networks,

Chapter 6, Eight Edition, University of Amsterdam, 1996.

[4] Georgiopoulos M., Heileman G. L., Huang L., Neural Networks. Prop-

erties of Learning Related to Pattern Diversity in ART1, Vol. 4, pp.

751-757, 1991.

52 Nicolae Popoviciu

[5] Murgan T. A. & Co., Structuri de Retele Neurale Artificiale. Simulari

in MATLAB, Editura Polithenică, Bucharest, 1995.

[6] Rao B. V., C++, Neural Networks and Fuzzy logic, Chapter 10, MT-

Books, IDG Books Worldwide, Inc. 1995.

Hyperion University of Bucharest

Calea Călăraşilor 169

Bucharest, Romania

