General Mathematics Vol. 11, No. 1-2 (2003), 53-62

On a subclass of functions with negative coefficients

Mugur Acu

Dedicated to Professor dr. Gheorghe Micula on his 60^{th} birthday

Abstract

We determine conditions for a function to be n-close to convex of order $\alpha, \alpha \in [0, 1), n \in \mathbb{N}$, with negative coefficients.

2000 Mathematical Subject Classification: 30C45

1 Introduction

Let $\mathcal{H}(U)$ be the set of functions which are regular in the unit disc U,

$$A = \{ f \in \mathcal{H}(U) : f(0) = f'(0) - 1 = 0 \}$$

and $S = \{ f \in A : f \text{ is univalent in } U \}.$

In ([4]) the subfamily T of S consisting of functions f of the form

(1)
$$f(z) = z - \sum_{j=2}^{\infty} a_j z^j, \ a_j \ge 0, j = 2, 3, ..., \ z \in U$$

was introduced.

The purpose of this paper is to give a condition for $f \in T$ to be n-close to convex of order α , $\alpha \in [0, 1)$, $n \in \mathbb{N}$, and to determine some properties of this class.

2 Preliminary results

Let D^n be the Sălăgean differential operator (see [2]) $D^n : A \to A, n \in \mathbb{N}$, defined as:

$$D^{0}f(z) = f(z)$$
$$D^{1}f(z) = Df(z) = zf'(z)$$
$$D^{n}f(z) = D(D^{n-1}f(z))$$

Remark 2.1. If $f \in T$, $f(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j = 2, 3, ..., z \in U$ then $D^n f(z) = z - \sum_{j=2}^{\infty} j^n a_j z^j$.

Theorem 2.1.[2]. If $f(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j = 2, 3, ..., z \in U$ then the next assertions are equivalent:

(i) $\sum_{j=2}^{\infty} ja_j \le 1$ (ii) $f \in T$

(iii) $f \in T^*$, where $T^* = T \bigcap S^*$ and S^* is the well-known class of starlike functions.

Definition 2.1.[2]. Let $\alpha \in [0, 1)$ and $n \in \mathbb{N}$, then

$$S_n(\alpha) = \left\{ f \in A : Re \frac{D^{n+1}f(z)}{D^n f(z)} > \alpha, z \in U \right\}$$

is the set of n-starlike functions of order α .

Remark 2.2. If $f \in S_n(\alpha)$ according to the definition of the Sălăgean differential operator we can write that

$$Re\frac{z(D^n f(z))'}{D^n f(z)} > \alpha$$

and thus the function $F(z) = D^n f(z) \in S(\alpha), \ \alpha \in [0, 1)$, where

$$S(\alpha) = \left\{ h \in A : Re\frac{zh'(z)}{h(z)} > \alpha, \ z \in U \right\}.$$

Definition 2.2.[2]. $T_n(\alpha) = T \bigcap S_n(\alpha)$.

Definition 2.3.[3]. Let $\alpha \in [0,1), \beta \in (0,1]$ and let $n \in \mathbb{N}$; we define the class $T_n(\alpha, \beta)$ of n-starlike functions of order α and type β with negative coefficients by

$$T_n(\alpha,\beta) = \{ f \in A : |J_n(f,\alpha;z)| < \beta, z \in U \},\$$

where

$$J_n(f,\alpha;z) = \frac{\frac{D^{n+1}f(z)}{D^n f(z)} - 1}{\frac{D^{n+1}f(z)}{D^n f(z)} + 1 - 2\alpha}, \ z \in U$$

Remark 2.3. The class $T_0(\alpha, 1)$ is the class of starlike functions of order α with negative coefficients; $T_1(\alpha, 1)$ is the well-known class of convex functions of order α with negative coefficients; $T_n(\alpha, 1)$ is the class of n-starlike functions of order α with negative coefficients i.e. $T_n(\alpha, 1) = T \bigcap S_n(\alpha)$. We also note that the functions in $T_n(\alpha, \beta)$ are univalent because $T_n(\alpha, \beta) \subset$ $T_n(\alpha, 1), \beta \in (0, 1)$ and $T_n(\alpha_1, \beta) \subset T_n(\alpha, \beta)$ with $1 > \alpha_1 > \alpha \ge 0$, $\beta \in (0, 1]$. **Theorem 2.2.[3].** Let $\alpha \in [0,1), \beta \in (0,1]$ and $n \in \mathbb{N}$. The function f of the form (1) is in $T_n(\alpha, \beta)$ if and only if

$$\sum_{j=2}^{\infty} j^n [j-1+\beta(j+1-2\alpha)]a_j \le 2\beta(1-\alpha)$$

The result is sharp and the extremal functions are:

$$f_j(z) = z - \frac{2\beta(1-\alpha)}{j^n[j-1+\beta(j+1-2\alpha)]} z^j, j = 2, 3, \dots$$

From this result we have $T_{n+1}(\alpha,\beta) \subset T_n(\alpha,\beta), n \in \mathbb{N}$.

Definition 2.4.[3]. Let $I_c : A \to A$ be the integral operator defined by $f = I_c(F)$, where $c \in (-1, \infty)$, $F \in A$ and

(2)
$$f(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} F(t) dt.$$

We note if $F \in A$ is a function of the form (1), then

(3)
$$f(z) = I_c F(z) = z - \sum_{j=2}^{\infty} \frac{c+1}{c+j} a_j z^j.$$

Remark 2.4. In [3] is showed that if $F \in T_n(\alpha, \beta)$ then $f = I_c(F) \in T_n(\alpha, \beta)$.

Definition 2.5.[1]. Let $f \in A$. We say that f is n-close to convex of order α with respect to a half-plane, and denote by $CC_n(\alpha)$ the set of these functions, if there exists $g \in S_n(0) = S_n$ so that

$$Re\frac{D^{n+1}f(z)}{D^ng(z)} > \alpha, \ z \in U,$$

where $n \in \mathbb{N}, \alpha \in [0, 1)$.

Remark 2.5. $CC_0(\alpha) = CC(\alpha)$, where $CC(\alpha)$ is the well-known class of close to convex functions of order α .

Remark 2.6. In [1] the author show that if $n \in \mathbb{N}$ and $\alpha \in [0, 1)$ then $CC_{n+1}(\alpha) \subset CC_n(\alpha)$ and thus the functions from $CC_n(\alpha)$ are univalent.

Remark 2.7. From Remark 2.3 and Theorem 2.2 we have for f of the form (1) with $f \in T_n(\alpha, 1) = T_n(\alpha)$:

$$\sum_{j=2}^{\infty} j^n (j-\alpha) a_j \le 1-\alpha, \text{ where } \alpha \in [0,1)$$

3 Main results

Definition 3.1. Let $f \in T$, $f(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j = 2, 3, ..., z \in U$. We say that f is in the class $CCT_n(\alpha), \alpha \in [0, 1)$, $n \in \mathbb{N}$, with respect to the function $g \in T_n(0)$, if:

$$Re\frac{D^{n+1}f}{D^ng} > \alpha, \ z \in U$$

Theorem 3.1. Let $\alpha \in [0,1)$ and $n \in \mathbb{N}$. The function $f \in T$ of the form (1) is in $CCT_n(\alpha)$, with respect to the function $g \in T_n(0)$, $g(z) = z - \sum_{j=2}^{\infty} b_j z^j$, $b_j \ge 0, j = 2, 3, ...,$ if and only if

(4)
$$\sum_{j=2}^{\infty} j^{n} [ja_{j} + (2-\alpha)b_{j}] < 1-\alpha$$

Proof. Let $f \in CCT_n(\alpha)$, with $\alpha \in [0, 1)$. We have

$$Re\frac{D^{n+1}f(z)}{D^ng(z)} > \alpha.$$

If we take $z \in [0, 1)$, we have (see Remark 2.1):

(5)
$$\frac{1 - \sum_{j=2}^{\infty} j^{n+1} a_j z^{j-1}}{1 - \sum_{j=2}^{\infty} j^n b_j z^{j-1}} > \alpha$$

From $g \in T_n(0) = T_n(0,1)$, $g(z) = z - \sum_{j=2}^{\infty} b_j z^j$, $b_j \ge 0, j = 2, 3, ...$, we have (see Remark 2.7):

(6)
$$\sum_{j=2}^{\infty} j^{n+1} b_j \le 1.$$

We have: $\sum_{j=2}^{\infty} j^n b_j z^{j-1} \leq \sum_{j=2}^{\infty} j^{n+1} b_j z^{j-1} < \sum_{j=2}^{\infty} j^{n+1} b_j.$ From (6) we obtain: $\sum_{j=2}^{\infty} j^n b_j z^{j-1} < 1 \text{ and thus } 1 - \sum_{j=2}^{\infty} j^n b_j z^{j-1} > 0.$ In this condition from (5) we obtain:

$$1 - \sum_{j=2}^{\infty} j^{n+1} a_j z^{j-1} > \alpha \left[1 - \sum_{j=2}^{\infty} j^n b_j z^{j-1} \right]$$

Letting $z \to 1^-$ along the real axis we have:

$$1 - \sum_{j=2}^{\infty} j^{n+1}a_j > \alpha - \sum_{j=2}^{\infty} j^n \alpha b_j,$$

and thus:

$$\sum_{j=2}^{\infty} j^n [ja_j - \alpha b_j] < 1 - \alpha.$$

From $\sum_{j=2}^{\infty} j^n [ja_j + (2-\alpha)b_j] > \sum_{j=2}^{\infty} j^n [ja_j - \alpha b_j]$ we have that from

(7)
$$\sum_{j=2}^{\infty} j^{n} [ja_{j} + (2-\alpha)b_{j}] < 1-\alpha$$

we obtain $Re \frac{D^{n+1}f(z)}{D^n g(z)} > \alpha$. Now let take $f \in T$ and $g \in T_n(0)$ for which the relation (4) hold. The condition $Re \frac{D^{n+1}f(z)}{D^n f(z)} > \alpha$ is equivalent with

(8)
$$\alpha - Re\left(\frac{D^{n+1}f(z)}{D^n g(z)} - 1\right) < 1$$

We have

$$\begin{split} \alpha - Re\left(\frac{D^{n+1}f(z)}{D^n g(z)} - 1\right) &\leq \alpha + \left|\frac{D^{n+1}f(z)}{D^n g(z)} - 1\right| = \\ &= \alpha + \left|\frac{1 - \sum_{j=2}^{\infty} j^{n+1} a_j z^{j-1}}{1 - \sum_{j=2}^{\infty} j^n b_j z^{j-1}} - 1\right| \leq \alpha + \frac{\sum_{j=2}^{\infty} j^n |b_j - ja_j| \cdot |z|^{j-1}}{1 - \sum_{j=2}^{\infty} j^n b_j |z|^{j-1}} \leq \\ &\leq \alpha + \frac{\sum_{j=2}^{\infty} j^n |b_j - ja_j|}{1 - \sum_{j=2}^{\infty} j^n b_j} \leq \alpha + \frac{\sum_{j=2}^{\infty} j^n (b_j + ja_j)}{1 - \sum_{j=2}^{\infty} j^n b_j} = \\ &= \frac{\alpha + \sum_{j=2}^{\infty} j^n [ja_j + (1 - \alpha)b_j]}{1 - \sum_{j=2}^{\infty} j^n b_j} \end{split}$$

Using (8) we obtain:

$$\alpha + \sum_{j=2}^{\infty} j^n [ja_j + (2-\alpha)b_j] < 1$$

that is the condition (4).

Remark 3.1. If we take $f \equiv g$ we obtain from Theorem 3.1

$$\sum_{j=2}^{\infty} j^{n} a_{j} [ja_{j} + 2 - \alpha] < 1 - \alpha$$

From $\sum_{j=2}^{\infty} j^{n} a_{j} [j + 2 - \alpha] > \sum_{j=2}^{\infty} ja_{j} (j - \alpha)$ we obtain:
$$\sum_{j=2}^{\infty} ja_{j} (j - \alpha) < 1 - \alpha$$

Thus we obtain the result from Remark 2.7.

Remark 3.2. From the proof of the Theorem 3.1 we obtain a necessary condition for a function $f \in T$, $f(z) = z - \sum_{j=2}^{\infty} a_j z^j$ to be in the class $CCT_n(\alpha), \ \alpha \in [0,1), \ n \in \mathbb{N}$, with respect to the function $g \in T_n(0),$ $g(z) = z - \sum_{j=2}^{\infty} b_j z^j$:

$$\sum_{j=2}^{\infty} j^n [ja_j - \alpha b_j] < 1 - \alpha.$$

Theorem 3.2. If $F \in CCT_n(\alpha), \alpha \in [0,1), n \in \mathbb{N}$, with respect to the function $G \in T_n(0)$ and $f = I_c(F), g = I_c(F)$ where I_c is defined by (2), then $f \in CCT_n(\alpha)$ with respect to the function $g \in T_n(0)$ (see Remark 2.4)

Proof. From $F(z) = z - \sum_{j=2}^{\infty} a_j z^j, a_j \ge 0, j = 2, 3, ...$ and $f(z) = I_c(F)(z)$ we have (see (3)):

$$f(z) = z - \sum_{j=2}^{\infty} \alpha_j z^j$$
, where $\alpha_j = \frac{c+1}{c+j} a_j$, $j = 2, 3, ...$

From
$$G(z) = z - \sum_{j=2}^{\infty} b_j z^j, b_j \ge 0, j = 2, 3, \dots$$
 and $g(z) = I_c(G)(z)$ we

have:

$$g(z) = z - \sum_{j=2}^{\infty} \beta_j z^j$$
, where $\beta_j = \frac{c+1}{c+j} b_j$, $j = 2, 3, ...$

From $F \in CCT_n(\alpha)$ with respect to the function $G \in T_n(0)$ we have (see Theorem 3.1):

(9)
$$\sum_{j=2}^{\infty} j^n [ja_j + (2-\alpha)b_j] < 1-\alpha.$$

From Theorem 3.1 we need only to show that:

$$\sum_{j=2}^{\infty} j^n [j\alpha_j + (2-\alpha)\beta_j] < 1 - \alpha.$$

We have for $c \in (-1, \infty)$ and j = 2, 3, ...:

$$\sum_{j=2}^{\infty} j^{n} [j\alpha_{j} + (2-\alpha)\beta_{j}] =$$
$$= \sum_{j=2}^{\infty} \frac{c+1}{c+j} j^{n} [ja_{j} + (2-\alpha)b_{j}] < \sum_{j=2}^{\infty} j^{n} [ja_{j} + (2-\alpha)b_{j}]$$

From (9) we have:

$$\sum_{j=2}^{\infty} j^n [j\alpha_j + (2-\alpha)\beta_j] < 1 - \alpha.$$

References

 D. Blezu, On the n-uniform close to convex functions with respect to a convex domain, General Mathematics, Vol. 9, Nr. 3 - 4, 2001, 3 - 14.

- [2] G. S. Sălăgean, Geometria Planului Complex, Ed. Promedia Plus, Cluj
 Napoca, 1999.
- [3] G. S. Sălăgean, On some classes of univalent functions, Seminar of geometric function theory, Cluj - Napoca, 1983.
- [4] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 5 (1975), 109 - 116.

University "Lucian Blaga" of Sibiu
Department of Mathematics
Str. Dr. I. Raţiu, Nr. 5–7,
550012 - Sibiu, Romania.
E-mail address: acu_mugur@yahoo.com