On a subclass of functions with negative coefficients

Mugur Acu

Dedicated to Professor dr. Gheorghe Micula on his $60^{\text {th }}$ birthday

Abstract

We determine conditions for a function to be n-close to convex of order $\alpha, \alpha \in[0,1)$, $n \in \mathbb{N}$, with negative coefficients.

1 Introduction

Let $\mathcal{H}(U)$ be the set of functions which are regular in the unit disc U,

$$
A=\left\{f \in \mathcal{H}(U): f(0)=f^{\prime}(0)-1=0\right\}
$$

and $S=\{f \in A: f$ is univalent in $U\}$.
In ([4]) the subfamily T of S consisting of functions f of the form

$$
\begin{equation*}
f(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j}, a_{j} \geq 0, j=2,3, \ldots, z \in U \tag{1}
\end{equation*}
$$

was introduced.
The purpose of this paper is to give a condition for $f \in T$ to be n-close to convex of order $\alpha, \alpha \in[0,1), n \in \mathbb{N}$, and to determine some properties of this class.

2 Preliminary results

Let D^{n} be the Sălăgean differential operator (see [2]) $D^{n}: A \rightarrow A, n \in \mathbb{N}$, defined as:

$$
\begin{gathered}
D^{0} f(z)=f(z) \\
D^{1} f(z)=D f(z)=z f^{\prime}(z) \\
D^{n} f(z)=D\left(D^{n-1} f(z)\right)
\end{gathered}
$$

Remark 2.1. If $f \in T, f(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j}, a_{j} \geq 0, j=2,3, \ldots, z \in U$ then $D^{n} f(z)=z-\sum_{j=2}^{\infty} j^{n} a_{j} z^{j}$.

Theorem 2.1.[2]. If $f(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j}, a_{j} \geq 0, j=2,3, \ldots, z \in U$ then the next assertions are equivalent:
(i) $\sum_{j=2}^{\infty} j a_{j} \leq 1$
(ii) $f \in T$
(iii) $f \in T^{*}$, where $T^{*}=T \bigcap S^{*}$ and S^{*} is the well-known class of starlike functions.

Definition 2.1.[2]. Let $\alpha \in[0,1)$ and $n \in \mathbb{N}$, then

$$
S_{n}(\alpha)=\left\{f \in A: R e \frac{D^{n+1} f(z)}{D^{n} f(z)}>\alpha, z \in U\right\}
$$

is the set of n-starlike functions of order α.

Remark 2.2. If $f \in S_{n}(\alpha)$ according to the definition of the Sălăgean differential operator we can write that

$$
\operatorname{Re} \frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}>\alpha
$$

and thus the function $F(z)=D^{n} f(z) \in S(\alpha), \alpha \in[0,1)$, where

$$
S(\alpha)=\left\{h \in A: \operatorname{Re} \frac{z h^{\prime}(z)}{h(z)}>\alpha, z \in U\right\}
$$

Definition 2.2.[2]. $\quad T_{n}(\alpha)=T \bigcap S_{n}(\alpha)$.

Definition 2.3.[3]. Let $\alpha \in[0,1), \beta \in(0,1]$ and let $n \in \mathbb{N}$; we define the class $T_{n}(\alpha, \beta)$ of n-starlike functions of order α and type β with negative coefficients by

$$
T_{n}(\alpha, \beta)=\left\{f \in A:\left|J_{n}(f, \alpha ; z)\right|<\beta, z \in U\right\}
$$

where

$$
J_{n}(f, \alpha ; z)=\frac{\frac{D^{n+1} f(z)}{D^{n} f(z)}-1}{\frac{D^{n+1} f(z)}{D^{n} f(z)}+1-2 \alpha}, z \in U
$$

Remark 2.3. The class $T_{0}(\alpha, 1)$ is the class of starlike functions of order α with negative coefficients; $T_{1}(\alpha, 1)$ is the well-known class of convex functions of order α with negative coefficients; $T_{n}(\alpha, 1)$ is the class of n-starlike functions of order α with negative coefficients i.e. $T_{n}(\alpha, 1)=T \bigcap S_{n}(\alpha)$. We also note that the functions in $T_{n}(\alpha, \beta)$ are univalent because $T_{n}(\alpha, \beta) \subset$ $T_{n}(\alpha, 1), \beta \in(0,1)$ and $T_{n}\left(\alpha_{1}, \beta\right) \subset T_{n}(\alpha, \beta)$ with $1>\alpha_{1}>\alpha \geq 0$, $\beta \in(0,1]$.

Theorem 2.2.[3]. Let $\alpha \in[0,1), \beta \in(0,1]$ and $n \in \mathbb{N}$. The function f of the form (1) is in $T_{n}(\alpha, \beta)$ if and only if

$$
\sum_{j=2}^{\infty} j^{n}[j-1+\beta(j+1-2 \alpha)] a_{j} \leq 2 \beta(1-\alpha)
$$

The result is sharp and the extremal functions are:

$$
f_{j}(z)=z-\frac{2 \beta(1-\alpha)}{j^{n}[j-1+\beta(j+1-2 \alpha)]} z^{j}, j=2,3, \ldots
$$

From this result we have $T_{n+1}(\alpha, \beta) \subset T_{n}(\alpha, \beta), n \in \mathbb{N}$.

Definition 2.4.[3]. Let $I_{c}: A \rightarrow A$ be the integral operator defined by $f=I_{c}(F)$, where $c \in(-1, \infty), F \in A$ and

$$
\begin{equation*}
f(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} F(t) d t \tag{2}
\end{equation*}
$$

We note if $F \in A$ is a function of the form (1), then

$$
\begin{equation*}
f(z)=I_{c} F(z)=z-\sum_{j=2}^{\infty} \frac{c+1}{c+j} a_{j} z^{j} . \tag{3}
\end{equation*}
$$

Remark 2.4. In [3] is showed that if $F \in T_{n}(\alpha, \beta)$ then $f=I_{c}(F) \in$ $T_{n}(\alpha, \beta)$.

Definition 2.5.[1]. Let $f \in A$. We say that f is n-close to convex of order α with respect to a half-plane, and denote by $C C_{n}(\alpha)$ the set of these functions, if there exists $g \in S_{n}(0)=S_{n}$ so that

$$
R e \frac{D^{n+1} f(z)}{D^{n} g(z)}>\alpha, z \in U
$$

where $n \in \mathbb{N}, \alpha \in[0,1)$.

Remark 2.5. $C C_{0}(\alpha)=C C(\alpha)$, where $C C(\alpha)$ is the well-known class of close to convex functions of order α.

Remark 2.6. In [1] the author show that if $n \in \mathbb{N}$ and $\alpha \in[0,1)$ then $C C_{n+1}(\alpha) \subset C C_{n}(\alpha)$ and thus the functions from $C C_{n}(\alpha)$ are univalent.

Remark 2.7. From Remark 2.3 and Theorem 2.2 we have for f of the form (1) with $f \in T_{n}(\alpha, 1)=T_{n}(\alpha)$:

$$
\sum_{j=2}^{\infty} j^{n}(j-\alpha) a_{j} \leq 1-\alpha, \text { where } \alpha \in[0,1)
$$

3 Main results

Definition 3.1. Let $f \in T, f(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j}, a_{j} \geq 0, j=2,3, \ldots, z \in U$. We say that f is in the class $C C T_{n}(\alpha), \alpha \in[0,1), n \in \mathbb{N}$, with respect to the function $g \in T_{n}(0)$, if:

$$
\operatorname{Re} \frac{D^{n+1} f}{D^{n} g}>\alpha, z \in U
$$

Theorem 3.1. Let $\alpha \in[0,1)$ and $n \in \mathbb{N}$. The function $f \in T$ of the form (1) is in $C C T_{n}(\alpha)$, with respect to the function $g \in T_{n}(0), g(z)=z-\sum_{j=2}^{\infty} b_{j} z^{j}$, $b_{j} \geq 0, j=2,3, \ldots$, if and only if

$$
\begin{equation*}
\sum_{j=2}^{\infty} j^{n}\left[j a_{j}+(2-\alpha) b_{j}\right]<1-\alpha \tag{4}
\end{equation*}
$$

Proof. Let $f \in C C T_{n}(\alpha)$, with $\alpha \in[0,1)$. We have

$$
\operatorname{Re} \frac{D^{n+1} f(z)}{D^{n} g(z)}>\alpha
$$

If we take $z \in[0,1$), we have (see Remark 2.1):

$$
\begin{equation*}
\frac{1-\sum_{j=2}^{\infty} j^{n+1} a_{j} z^{j-1}}{1-\sum_{j=2}^{\infty} j^{n} b_{j} z^{j-1}}>\alpha \tag{5}
\end{equation*}
$$

From $g \in T_{n}(0)=T_{n}(0,1), g(z)=z-\sum_{j=2}^{\infty} b_{j} z^{j}, b_{j} \geq 0, j=2,3, \ldots$, we have (see Remark 2.7):

$$
\begin{equation*}
\sum_{j=2}^{\infty} j^{n+1} b_{j} \leq 1 \tag{6}
\end{equation*}
$$

We have: $\sum_{j=2}^{\infty} j^{n} b_{j} z^{j-1} \leq \sum_{j=2}^{\infty} j^{n+1} b_{j} z^{j-1}<\sum_{j=2}^{\infty} j^{n+1} b_{j}$.
From (6) we obtain: $\sum_{j=2}^{\infty} j^{n} b_{j} z^{j-1}<1$ and thus $1-\sum_{j=2}^{\infty} j^{n} b_{j} z^{j-1}>0$.
In this condition from (5) we obtain:

$$
1-\sum_{j=2}^{\infty} j^{n+1} a_{j} z^{j-1}>\alpha\left[1-\sum_{j=2}^{\infty} j^{n} b_{j} z^{j-1}\right]
$$

Letting $z \rightarrow 1^{-}$along the real axis we have:

$$
1-\sum_{j=2}^{\infty} j^{n+1} a_{j}>\alpha-\sum_{j=2}^{\infty} j^{n} \alpha b_{j},
$$

and thus:

$$
\sum_{j=2}^{\infty} j^{n}\left[j a_{j}-\alpha b_{j}\right]<1-\alpha
$$

From $\sum_{j=2}^{\infty} j^{n}\left[j a_{j}+(2-\alpha) b_{j}\right]>\sum_{j=2}^{\infty} j^{n}\left[j a_{j}-\alpha b_{j}\right]$ we have that from

$$
\begin{equation*}
\sum_{j=2}^{\infty} j^{n}\left[j a_{j}+(2-\alpha) b_{j}\right]<1-\alpha \tag{7}
\end{equation*}
$$

we obtain $\operatorname{Re} \frac{D^{n+1} f(z)}{D^{n} g(z)}>\alpha$.
Now let take $f \in T$ and $g \in T_{n}(0)$ for which the relation (4) hold.
The condition $R e \frac{D^{n+1} f(z)}{D^{n} f(z)}>\alpha$ is equivalent with

$$
\begin{equation*}
\alpha-\operatorname{Re}\left(\frac{D^{n+1} f(z)}{D^{n} g(z)}-1\right)<1 \tag{8}
\end{equation*}
$$

We have

$$
\begin{gathered}
\alpha-R e\left(\frac{D^{n+1} f(z)}{D^{n} g(z)}-1\right) \leq \alpha+\left|\frac{D^{n+1} f(z)}{D^{n} g(z)}-1\right|= \\
=\alpha+\left|\frac{1-\sum_{j=2}^{\infty} j^{n+1} a_{j} z^{j-1}}{1-\sum_{j=2}^{\infty} j^{n} b_{j} z^{j-1}}-1\right| \leq \alpha+\frac{\sum_{j=2}^{\infty} j^{n}\left|b_{j}-j a_{j}\right| \cdot|z|^{j-1}}{1-\sum_{j=2}^{\infty} j^{n} b_{j}|z|^{j-1}} \leq \\
\leq \alpha+\frac{\sum_{j=2}^{\infty} j^{n}\left|b_{j}-j a_{j}\right|}{1-\sum_{j=2}^{\infty} j^{n} b_{j}} \leq \alpha+\frac{\sum_{j=2}^{\infty} j^{n}\left(b_{j}+j a_{j}\right)}{1-\sum_{j=2}^{\infty} j^{n} b_{j}}= \\
=\frac{\alpha+\sum_{j=2}^{\infty} j^{n}\left[j a_{j}+(1-\alpha) b_{j}\right]}{1-\sum_{j=2}^{\infty} j^{n} b_{j}}
\end{gathered}
$$

Using (8) we obtain:

$$
\alpha+\sum_{j=2}^{\infty} j^{n}\left[j a_{j}+(2-\alpha) b_{j}\right]<1
$$

that is the condition (4).

Remark 3.1. If we take $f \equiv g$ we obtain from Theorem 3.1

$$
\sum_{j=2}^{\infty} j^{n} a_{j}\left[j a_{j}+2-\alpha\right]<1-\alpha
$$

From $\sum_{j=2}^{\infty} j^{n} a_{j}[j+2-\alpha]>\sum_{j=2}^{\infty} j a_{j}(j-\alpha)$ we obtain:

$$
\sum_{j=2}^{\infty} j a_{j}(j-\alpha)<1-\alpha
$$

Thus we obtain the result from Remark 2.7.

Remark 3.2. From the proof of the Theorem 3.1 we obtain a necessary condition for a function $f \in T, f(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j}$ to be in the class $C C T_{n}(\alpha), \alpha \in[0,1), n \in \mathbb{N}$, with respect to the function $g \in T_{n}(0)$, $g(z)=z-\sum_{j=2}^{\infty} b_{j} z^{j}:$

$$
\sum_{j=2}^{\infty} j^{n}\left[j a_{j}-\alpha b_{j}\right]<1-\alpha
$$

Theorem 3.2. If $F \in C C T_{n}(\alpha), \alpha \in[0,1), n \in \mathbb{N}$, with respect to the function $G \in T_{n}(0)$ and $f=I_{c}(F), g=I_{c}(F)$ where I_{c} is defined by (2), then $f \in C C T_{n}(\alpha)$ with respect to the function $g \in T_{n}(0)$ (see Remark 2.4)

Proof. From $F(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j}, a_{j} \geq 0, j=2,3, \ldots$ and $f(z)=I_{c}(F)(z)$ we have (see (3)):

$$
f(z)=z-\sum_{j=2}^{\infty} \alpha_{j} z^{j}, \text { where } \alpha_{j}=\frac{c+1}{c+j} a_{j}, j=2,3, \ldots
$$

From $G(z)=z-\sum_{j=2}^{\infty} b_{j} z^{j}, b_{j} \geq 0, j=2,3, \ldots$ and $g(z)=I_{c}(G)(z)$ we have:

$$
g(z)=z-\sum_{j=2}^{\infty} \beta_{j} z^{j}, \text { where } \beta_{j}=\frac{c+1}{c+j} b_{j}, j=2,3, \ldots
$$

From $F \in C C T_{n}(\alpha)$ with respect to the function $G \in T_{n}(0)$ we have (see Theorem 3.1):

$$
\begin{equation*}
\sum_{j=2}^{\infty} j^{n}\left[j a_{j}+(2-\alpha) b_{j}\right]<1-\alpha \tag{9}
\end{equation*}
$$

From Theorem 3.1 we need only to show that:

$$
\sum_{j=2}^{\infty} j^{n}\left[j \alpha_{j}+(2-\alpha) \beta_{j}\right]<1-\alpha
$$

We have for $c \in(-1, \infty)$ and $j=2,3, \ldots$:

$$
\begin{gathered}
\sum_{j=2}^{\infty} j^{n}\left[j \alpha_{j}+(2-\alpha) \beta_{j}\right]= \\
=\sum_{j=2}^{\infty} \frac{c+1}{c+j} j^{n}\left[j a_{j}+(2-\alpha) b_{j}\right]<\sum_{j=2}^{\infty} j^{n}\left[j a_{j}+(2-\alpha) b_{j}\right]
\end{gathered}
$$

From (9) we have:

$$
\sum_{j=2}^{\infty} j^{n}\left[j \alpha_{j}+(2-\alpha) \beta_{j}\right]<1-\alpha
$$

References

[1] D. Blezu, On the n-uniform close to convex functions with respect to a convex domain, General Mathematics, Vol. 9, Nr. 3-4, 2001, 3-14.
[2] G. S. Sălăgean, Geometria Planului Complex, Ed. Promedia Plus, Cluj - Napoca, 1999.
[3] G. S. Sălăgean, On some classes of univalent functions, Seminar of geometric function theory, Cluj - Napoca, 1983.
[4] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 5 (1975), 109-116.

University "Lucian Blaga" of Sibiu
Department of Mathematics
Str. Dr. I. Raţiu, Nr. 5-7,
550012 - Sibiu, Romania.
E-mail address: acu_mugur@yahoo.com

