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Abstract

The aim of this paper is the study of a relation between posinor-

mality operators and hyponormality operators. It has been proved

that posinormality does not imply hyponormality [9], but properties

of Cesàro matrix and the unilateral shift suggest the plausibility of

the reverse implication.
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1 Introduction

In this paper we study the properties of a large subclass of B(H), the set

of all bounded linear operators T : H → H on a Hilbert space H. We refer
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to T ∗T − TT ∗ as the self - commutator of T, denoted [T ∗, T ]. A self -

adjoint operator P is positive if < Pf, f >≥ 0 for all f ∈ H; the operator

T is normal if [T ∗, T ] = 0 and T is hyponormal if [T ∗, T ] is positive. When

T ∗ is hyponormal, we say T is cohyponormal; T is seminormal if T is

hyponormal or cohyponormal. If T is the restriction of a normal operator

to an invariant subspace, then T is subnormal.

If A ∈ B(H) is to belong to our class, then A must not be “too far” from

normal; more precisely, there must exist an interrupter S ∈ B(H) such

that AA∗ = A∗SA, or equivalently, [A∗, A] = A∗(I − S)A.

Two observations suggest the additional requirement that S be self -

adjoint, even positive: (1) since AA∗ in self - adjoint, each operator A is

our subclass must satisfy A∗S∗A = A∗SA;

(2) since < SAf, Af >=< A∗SAf, f >= ||A∗f ||2 for all f, the inter-

rupter S must be positive on Ran A (the range of A).

If the posinormal operator A is nonzero, the associated interrupted P

must satisfy the condition ||P || ≥ 1 since ||A||2 = ||AA∗|| =

= ||A∗PA|| ≤ ||A∗|| · ||P || · ||A|| = ||P || · ||A||2.

Theorem 1.1. If A is posinormal with interrupter P and A has dense

range, then P is unique.

Proof. See [10].



Posinormality versus hyponormality for Cesàro operators 35

2 Examples

The example which motivated this motivated study is the Cesàro matrix

C1 =




1 0 0 · · ·
1
2

1
2 0 · · ·

1
3

1
3

1
3 · · ·

· · · · · · · · · · · ·
· · · · · · · · · · · ·




regarded as an operator on H = l2. The standard orthonormal basis on l2

will be denoted by {en : n = 0, 1, 2, ...}. If D is the diagonal operator with

diagonal
{

n + 1
n + 2 : n = 0, 1, 2, ...

}
, then a routine computation verifies that

C∗
1DC1 =




1 1
2

1
3 · · ·

1
2

1
2

1
3 · · ·

1
3

1
3

1
3 · · ·

· · · · · · · · · · · ·
· · · · · · · · · · · ·




= C1C
∗
1

So the Cesàro operator on (l2) is posinormal with interrupter D. C1 is known

to be hyponormal, even subnormal (see [4]). In [1], C1 is shown to be

hyponormal by looking at determinants of finite sections of [C∗
1 , C1]. We

include here a brief and different proof - one that takes advantage of the

availability of D.

Theorem 2.1. C1 is hyponormal.
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Proof. Since I −D is a positive operator, we have

< [C∗
1 , C1]f, f >=< (I −D)C1f, C1f >≥ 0

for all f .

We have, in the Cesàro operator, an example of a nonnormal posinormal

operator. The next proposition provides us with a large supply of additional

examples, including the unilateral shift U.

Propozition 2.1. Every unilateral weighted shift with nonzero weights is

posinormal.

Proof. See [10].

It is easy to see that if A is the unilateral weighted shift with weights wk,

then [A∗, A], is the diagonal matrix with diagonal entries {w2
0, w

2
1−w2

0, w
2
2−

w2
1, ...}. If {wk} is increasing, then A is hyponormal. The special case when

w0 = 2 and wk = 1 for all k ≥ 1 provides an example of a posinormal

operator that is neither hyponormal nor cohyponormal.

3 Posinormality versus hyponormality

The next result, from [2], will help settle the question (see Corollary 3.1)

about the relation posinormality - hyponormality.

Theorem (Douglas) For A,B ∈ B(H) the following statements are equiv-

alent:

(1) Ran A ⊆ Ran B
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(2) AA∗ ≤ λ2BB∗ for some λ ≥ 0; and

(3) there exists a T ∈ B(H) such that A = BT .

Moreover, if (1), (2) and (3) hold, then there is an unique operator T

such that:

(a) ||T ||2 = inf{µ|AA∗ ≤ µBB∗};
(b) Ker A = Ker T.

We know that a hyponormal operator T must satisfy the inequality

||T ∗f || ⊆ ||Tf || for all f. Statement (a) of the following proposition gives us

an analogous result for posinormal operators; this result, together with the

above theorem of Douglas, will lead to a characterization of posinormality

(see Theorem 3.1).

Propozition 3.1. If A is posinormal with (positive) interrupter P, then the

following statements hold:

(a) ||A∗f || = ||√PAf || ≤ ||√P || · ||Af || for every f in H
(b) ||√PA|| = ||A||.

Proof. (a) Since A is posinormal and P is positive

||A∗f ||2 =< AA∗f, f >=< A∗PAf, f >= ||
√

PAf ||2 ≤ ||
√

P ||2 · ||Af ||2

for all f in H.

(b) From (a) we see that ||A∗|| = ||√PA||, and ||A|| = ||A∗|| is universal.

We note that if A is posinormal, the condition (2) in the theorem above

is satisfied with λ = ||√P || and B = A∗. If condition (3) in the theorem

holds, then there is an operator T ∈ B(H) such that A = A∗T , so A∗ = T ∗A;
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consequently, A is posinormal with interrupter TT ∗. Thus Douglas theorem

has led almost immediately to the following result.

Theorem 3.1. For A ∈ B(H) the following statements are equivalent:

(1) A is posinormal;

(2) Ran A ≤ Ran A∗;

(3) AA∗ ≤ λ2A∗A for some λ ≥ 0; and

(4) there exists a T ∈ B(H) such that A = A∗T .

Moreover if (1), (2), (3), and (4) hold, then there is an unique operator

T such that:

a) ||T 2|| = inf{µ|AA∗ ≤ µA∗A};
b) Ker A = Ker T.

Corollary 3.1. Every hyponormal operator is posinormal.

Proof. If a is hyponormal, the condition (3) is satisfied with λ = 1.

Let [A] = {TA : T ∈ B(H)}, the left ideal in B(H) generated by A. If A

is posinormal, then, because of (4), we have A∗ = T ∗A for some bounded

operator T, so A∗ ∈ [A]. Conversely, if A∗ ∈ [A], then A∗ = kA for some

k ∈ B(H), so A is posinormal with interrupter P = k∗R. In summary, we

have the following corollary.

Corollary 3.2. A is posinormal if and only if A∗ ∈ [A].

We note that if A is hyponormal, then for some contraction k, A∗ = kA

(see [10], p. 3). A straight forward computation shows that in the case of
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the Cesàro operator the contraction k = k(C1) takes from k(C1) = (kmn)

where

kmn =





1
n + 2 , if m ≤ n

−n + 1
n + 2 , if m = n + 1

0, if m > n + 1.

It is not hard to verify that k(C1)
∗ · k(C1) = D.

While the Cesàro matrix C1 is hyponormal, the remaining p-Cesàro

matrices:

Cp =




1 0 0 0 · · ·(
1
2

)p (
1
2

)p

0 0 · · ·
(

1
3

)p (
1
3

)p (
1
3

)p

0 · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·




where p > 1 are not (see [7]) there will use Corollary 3.2 to show that all of

these operators are, however, posinormal. Define Bp = (bmn) by

bmn =





1−
(

n + 1
n + 2

)p

, if m ≤ n

−
(

n + 1
n + 2

)p

, if m = n + 1

0, if m > n + 1.

We observe that B1 = k(C1). To see that Bp is bounded when p > 1, we

note that this matrix can be decomposed as Bp = Y + Z where Y = (ymn)

satisfies ymn = bmn when m = n + 1 and ymn = 0 otherwise (so Y is a

weighted shift) and Z is the upper triangular matrix whose entries on and

above the main diagonal agree with those form Bp and whose other entries

are all zero. We note that the entries of Z are all nonnegative. Since
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1 − (n + 1)p

(n + 2)p <
p

n + 2 for all p > 1 (see [3, Theorem 42, 2.15.3, page 40]),

Z is entrywise dominated by pC∗
1 , an operator known to be bounded; Y

is clearly a bounded operator, and consequently Bp is also bounded and

||Bp|| ≤ ||Y || + ||Z|| ≤ 1 + 2p. A routine computation gives C∗
p = BpCp,

and the following theorem has been proved.

Theorem 3.2. Cp is posinormal for all p ≥ 1.

We have seen that C1 is posinormal, but what about C∗
1? Corollary

3.2 will help us here also, for it can be verified that C1 = BC∗
1 when

B = C1 − U∗, so C1 ∈ [C∗
1 ]; it can also be easily checked that

k(C)B = I = Bk(C). While B∗B is the interrupter for the posinormal

operator C∗
1 , the matrix product in the other order takes on a much sim-

pler form; BB∗ is the diagonal matrix with diagonal
{

2, 3
2 , 4

3 , 5
4 , ...

}
. These

observations justify the next theorem and its corollary.

Theorem 3.3. C∗
1 is posinormal with interrupter P = B∗B = (C∗

1 −
U)(C1 − U∗).

Corollary 3.3. ||C1 − U∗|| = √
2.
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4 Shift - conjugated Cesàro matrices.

In this section we consider the terraced matrix Tk+1 = (Uk)∗C1U
∗, where U

is an unilateral shift, for positive integers k:

Tk =




1
k

0 0 · · · · · ·
1

k + 1
1

k + 1
0 · · · · · ·

1
k + 2

1
k + 2

1
k + 2

· · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·




.

Visually, Tk+1 can be obtained from the Cesàro matrix C1 by deleting the

first k rows and columns from C1. We note that in fact for all k > 0 (and not

just the positive integers) the matrix Tk gives a bounded operator on l2 : Tk

can be expressed as DkC1 where Dk is the diagonal matrix with diagonal{
1 + n
k + n

: n = 0, 1, 2, ...
}

, it is clear by inspection that ||Tk|| ≤ ||C1|| = 2 for

k ≥ 1 (the proof that ||C1|| = 2 appears in [1]), and for 0 < k < 1, we have

||Tk|| = ||DkC1|| ≤ ||Dk|| · ||C1|| = 2
k
. Results from [8] and [9] justify the

remaining assertions of the next theorem.

Theorem 4.1. For each k > 0, Tk is a bounded operator on l2; ||Tk|| = 2

when k ≥ 1 and ||Tk|| ≤ 2
k

when 0 < k < 1.

We show that, for all k > 0, Tk is posinormal with interrupter P = (pmn)

whose entries are given by

pmn =





n2 + (2k + 1)n + k2 + 1
(n + k + 1)2 , if m = n

1− k
(m + k + 1)(n + k + 1)

, if m 6= n.
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Note that when k = 1, P reduces to the diagonal operator D. To see

that P is bounded, we observe that P can be decomposed as P = L +

R + C∗ where R is the diagonal matrix with diagonal from P and L is

the lower triangular matrix whose entries below the main diagonal agree

with those from P and whose other entries are all zero, then ||R|| ≤ 1 and

||L|| ≤ |k − 1| · ||C1|| = 2|k − 1|, so ||P || ≤ 1 + 4|k − 1|.
One can check that PTk = (αmn) has matrix entries satisfying:

αmn =





n + 1
(m + k + 1)(n + k)

, if m ≥ n

1− k
(m + k + 1)(n + k)

, if m < n
;

using these entries, it is not hard to verify that TkT
∗
k = T ∗

k PTk. In order to

see that Tk is posinormal, it remains to show that P is positive; it suffices to

show that PN , the N th finite section of P; (involving rows m = 0, 1, ..., N,

and columns n = 0, 1, ..., N), has positive determinant for each positive in-

teger N. For columns n = 1, 2, N , we multiply the nth column from PN by

k + n + 1
k + n

and then substract from the (n−1)st column. Call the new matrix

P ′
N and note that det P ′

N = det PN . We now work with the rows of P ′
N : For

m = 1, 2, ..., N , we multiply the mth row from P ′
N by k + m + 1

k + m
and then

subtract from the (n−1)st row. The resulting matrix is tridiagonal and also

has the same determinant as PN ; that new matrix is constantly -1 on the two

off-diagonals and is almost constantly 2 on the main diagonal - the only ex-

ception is the last entry: k2 + 2NK + N2 + N + 1
(K + N + 1)2 . To finish our computa-

tion, we work this tridiagonal matrix into triangular form: multiply each row

m = 0, 1, ..., N −1 by m + 1
m + 2 and add to the (m+1)st row. The new matrix
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is triangular and has diagonal

{
2, 3

4 , 4
3 , ..., N + 1

N , N + k2 + 1
(N + 1)(N + k + 1)2

}
;

from this we conclude that det PN = N + k2 + 1
(N+k+1)2

.

We note that the positivity (and uniqueness) of P could have been

demonstrated more briefly using the fact that Tk has dense range; however,

our computational procedure provides a springboard for investigating the

positivity of I −P . To see when I −P is positive, we compute det(I −P )N

where (I − P )N is the N th finite section of I − P . Following exactly the

same sequence of column and row operations we used for PN , we arrive at

a tridiagonal matrix of the following form:

Y N =




d0 a0 0 · · · · · · 0

a0 d1 a1 · · · · · · 0

0 a1 d2 · · · · · · 0

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · dN−1 aN−1

0 0 · · · · · · aN−1 dN




where an = − 1
k + n + 1

, dn = 2k + 2n + 3
(k + n + 1)3 (0 ≤ n ≤ N − 1), and dN =

2k + N
(N + k + 1)2 . In transforming Y N into a triangular matrix with the same

determinant, we find that the new matrix has diagonal entries δn which are

given by a recursion formula: δ0 = d0, δn = dn − a2
n−1

δn−1
(1 ≤ n ≤ N). An

induction argument shows that δn ≥ n + k + 2
(n + k + 1)2 for 0 ≤ n ≤ N − 1; since

dN departs the pattern set by the earlier d′′ns, δn must be handled separately:

δN = dN − a2
N−1

N − 1 ≥
k − 1

(N + k + 1)2 . So det(I − P )N =
N∏

j=0

δj > 0 for k > 1.

The computation just completed tells us that Tk is hyponormal when



44 Amelia Bucur

K > 1. Further calculations reveal an exact value for the determinant (we

omit the details):

det(I − P )N =

[
N∏

j=0

1

j + k + 1

][
(k − 1)

N−1∑
j=0

1

j + k + 1
+

2k + N

N + k + 1

]
.

For k < 1, det(I − P )N is eventually negative, so Tk is not hyponormal in

this case. We summarize the main results in the following theorem.

Theorem 4.2. Tk is posinormal for all k > 0; Tk is hyponormal if and only

if k ≥ 1.

5 Discrete Cesàro operator C1

In this brief section we consider the lower triangular matrices

C1 =




1 0 0 · · · · · ·
1
2

1
2 0 · · · · · ·

1
3

1
3

1
3 · · · · · ·

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·




,

regarded as operators on l2. These operators have been studied in [5,6].

Define B = (bmn) by

bmn =





1
n + 2 , if m ≤ n

−n + 1
n + 2 , if m = n + 1

0, if m > n + 1.
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We note that B is the contraction (hence bounded) operator k(C1) from

section 2. A routine computation gives C∗
1 = BC1, settling the question of

posinormality for C1.

Theorem 5.1. C1 is posinormal.
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[3] G. Hardy, J.E. Littlewood, G. Pólya, Inequalities, Second Edition,

Cambridge University Press, Cambridge, 1989.

[4] T.L. Kriete III, D. Trutt, The Cesàro Operator in l2 is Subnormal,
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Math. Soc., 86 (1982), 405 - 409.

[6] H.C. Rhaly, Jr., Generalized Cesàro Matrices, Canad. Math. Bull., 27
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