# Posinormality versus hyponormality for Cesàro operators 

## Amelia Bucur

Dedicated to Professor dr. Gheorghe Micula on his $60^{\text {th }}$ birthday


#### Abstract

The aim of this paper is the study of a relation between posinormality operators and hyponormality operators. It has been proved that posinormality does not imply hyponormality [9], but properties of Cesàro matrix and the unilateral shift suggest the plausibility of the reverse implication.


2000 Mathematical Subject Classification: 47B20

## 1 Introduction

In this paper we study the properties of a large subclass of $B(\mathcal{H})$, the set of all bounded linear operators $T: \mathcal{H} \rightarrow \mathcal{H}$ on a Hilbert space $\mathcal{H}$. We refer
to $T^{*} T-T T^{*}$ as the self - commutator of T , denoted $\left[T^{*}, T\right]$. A self adjoint operator P is positive if $\langle P f, f\rangle \geq 0$ for all $f \in \mathcal{H}$; the operator T is normal if $\left[T^{*}, T\right]=0$ and T is hyponormal if $\left[T^{*}, T\right]$ is positive. When $T^{*}$ is hyponormal, we say T is cohyponormal; T is seminormal if T is hyponormal or cohyponormal. If T is the restriction of a normal operator to an invariant subspace, then T is subnormal.

If $A \in \mathcal{B}(\mathcal{H})$ is to belong to our class, then A must not be "too far" from normal; more precisely, there must exist an interrupter $S \in \mathcal{B}(\mathcal{H})$ such that $A A^{*}=A^{*} S A$, or equivalently, $\left[A^{*}, A\right]=A^{*}(I-S) A$.

Two observations suggest the additional requirement that S be self adjoint, even positive: (1) since $A A^{*}$ in self - adjoint, each operator A is our subclass must satisfy $A^{*} S^{*} A=A^{*} S A$;
(2) since $<S A f, A f>=<A^{*} S A f, f>=\left\|A^{*} f\right\|^{2}$ for all f, the interrupter S must be positive on Ran A (the range of A ).

If the posinormal operator A is nonzero, the associated interrupted P must satisfy the condition $\|P\| \geq 1$ since $\|A\|^{2}=\left\|A A^{*}\right\|=$ $=\left\|A^{*} P A\right\| \leq\left\|A^{*}\right\| \cdot\|P\| \cdot\|A\|=\|P\| \cdot\|A\|^{2}$.

Theorem 1.1. If $A$ is posinormal with interrupter $P$ and $A$ has dense range, then $P$ is unique.

Proof. See [10].

## 2 Examples

The example which motivated this motivated study is the Cesàro matrix

$$
C_{1}=\left(\begin{array}{cccc}
1 & 0 & 0 & \cdots \\
\frac{1}{2} & \frac{1}{2} & 0 & \cdots \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

regarded as an operator on $\mathcal{H}=l^{2}$. The standard orthonormal basis on $l^{2}$ will be denoted by $\left\{e_{n}: n=0,1,2, \ldots\right\}$. If D is the diagonal operator with diagonal $\left\{\frac{n+1}{n+2}: n=0,1,2, \ldots\right\}$, then a routine computation verifies that

$$
C_{1}^{*} D C_{1}=\left(\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{3} & \cdots \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{3} & \cdots \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right)=C_{1} C_{1}^{*}
$$

So the Cesàro operator on $\left(l^{2}\right)$ is posinormal with interrupter D. $C_{1}$ is known to be hyponormal, even subnormal (see [4]). In [1], $C_{1}$ is shown to be hyponormal by looking at determinants of finite sections of $\left[C_{1}^{*}, C_{1}\right]$. We include here a brief and different proof - one that takes advantage of the availability of D .

Theorem 2.1. $C_{1}$ is hyponormal.

Proof. Since $I-D$ is a positive operator, we have

$$
<\left[C_{1}^{*}, C_{1}\right] f, f>=<(I-D) C_{1} f, C_{1} f>\geq 0
$$

for all $f$.
We have, in the Cesàro operator, an example of a nonnormal posinormal operator. The next proposition provides us with a large supply of additional examples, including the unilateral shift U .

Propozition 2.1. Every unilateral weighted shift with nonzero weights is posinormal.

Proof. See [10].
It is easy to see that if A is the unilateral weighted shift with weights $w_{k}$, then $\left[A^{*}, A\right]$, is the diagonal matrix with diagonal entries $\left\{w_{0}^{2}, w_{1}^{2}-w_{0}^{2}, w_{2}^{2}-\right.$ $\left.w_{1}^{2}, \ldots\right\}$. If $\left\{w_{k}\right\}$ is increasing, then A is hyponormal. The special case when $w_{0}=2$ and $w_{k}=1$ for all $k \geq 1$ provides an example of a posinormal operator that is neither hyponormal nor cohyponormal.

## 3 Posinormality versus hyponormality

The next result, from [2], will help settle the question (see Corollary 3.1) about the relation posinormality - hyponormality.

Theorem (Douglas) For $A, B \in \mathcal{B}(\mathcal{H})$ the following statements are equivalent:
(1) $\operatorname{Ran} \mathrm{A} \subseteq \operatorname{Ran} \mathrm{B}$
(2) $A A^{*} \leq \lambda^{2} B B^{*}$ for some $\lambda \geq 0$; and
(3) there exists a $T \in \mathcal{B}(\mathcal{H})$ such that $A=B T$.

Moreover, if (1), (2) and (3) hold, then there is an unique operator T such that:
(a) $\|T\|^{2}=\inf \left\{\mu \mid A A^{*} \leq \mu B B^{*}\right\} ;$
(b) Ker $\mathrm{A}=\operatorname{Ker} \mathrm{T}$.

We know that a hyponormal operator T must satisfy the inequality $\left\|T^{*} f\right\| \subseteq\|T f\|$ for all f . Statement (a) of the following proposition gives us an analogous result for posinormal operators; this result, together with the above theorem of Douglas, will lead to a characterization of posinormality (see Theorem 3.1).

Propozition 3.1. If $A$ is posinormal with (positive) interrupter $P$, then the following statements hold:
(a) $\left\|A^{*} f\right\|=\|\sqrt{P} A f\| \leq\|\sqrt{P}\| \cdot\|A f\|$ for every $f$ in $\mathcal{H}$
(b) $\|\sqrt{P} A\|=\|A\|$.

Proof. (a) Since A is posinormal and P is positive

$$
\left\|A^{*} f\right\|^{2}=<A A^{*} f, f>=<A^{*} P A f, f>=\|\sqrt{P} A f\|^{2} \leq\|\sqrt{P}\|^{2} \cdot\|A f\|^{2}
$$

for all f in $\mathcal{H}$.
(b) From (a) we see that $\left\|A^{*}\right\|=\|\sqrt{P} A\|$, and $\|A\|=\left\|A^{*}\right\|$ is universal.

We note that if A is posinormal, the condition (2) in the theorem above is satisfied with $\lambda=\|\sqrt{P}\|$ and $B=A^{*}$. If condition (3) in the theorem holds, then there is an operator $T \in \mathcal{B}(\mathcal{H})$ such that $A=A^{*} T$, so $A^{*}=T^{*} A$;
consequently, A is posinormal with interrupter $T T^{*}$. Thus Douglas theorem has led almost immediately to the following result.

Theorem 3.1. For $A \in \mathcal{B}(\mathcal{H})$ the following statements are equivalent:
(1) $A$ is posinormal;
(2) $\operatorname{Ran} A \leq \operatorname{Ran} A^{*}$;
(3) $A A^{*} \leq \lambda^{2} A^{*} A$ for some $\lambda \geq 0$; and
(4) there exists a $T \in \mathcal{B}(\mathcal{H})$ such that $A=A^{*} T$.

Moreover if (1), (2), (3), and (4) hold, then there is an unique operator $T$ such that:
a) $\left\|T^{2}\right\|=\inf \left\{\mu \mid A A^{*} \leq \mu A^{*} A\right\}$;
b) $\operatorname{Ker} A=\operatorname{Ker} T$.

Corollary 3.1. Every hyponormal operator is posinormal.

Proof. If a is hyponormal, the condition (3) is satisfied with $\lambda=1$.
Let $[A]=\{T A: T \in \mathcal{B}(\mathcal{H})\}$, the left ideal in $\mathcal{B}(\mathcal{H})$ generated by A. If A is posinormal, then, because of (4), we have $A^{*}=T^{*} A$ for some bounded operator T , so $A^{*} \in[A]$. Conversely, if $A^{*} \in[A]$, then $A^{*}=k A$ for some $k \in \mathcal{B}(\mathcal{H})$, so A is posinormal with interrupter $P=k^{*} R$. In summary, we have the following corollary.

Corollary 3.2. $A$ is posinormal if and only if $A^{*} \in[A]$.

We note that if A is hyponormal, then for some contraction $k, A^{*}=k A$ (see [10], p. 3). A straight forward computation shows that in the case of
the Cesàro operator the contraction $k=k\left(C_{1}\right)$ takes from $k\left(C_{1}\right)=\left(k_{m n}\right)$ where

$$
k_{m n}=\left\{\begin{array}{cc}
\frac{1}{n+2}, & \text { if } m \leq n \\
-\frac{n+1}{n+2}, & \text { if } m=n+1 \\
0, & \text { if } m>n+1
\end{array}\right.
$$

It is not hard to verify that $k\left(C_{1}\right)^{*} \cdot k\left(C_{1}\right)=D$.
While the Cesàro matrix $C_{1}$ is hyponormal, the remaining p-Cesàro matrices:

$$
C_{p}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \ldots \\
\left(\frac{1}{2}\right)^{p} & \left(\frac{1}{2}\right)^{p} & 0 & 0 & \ldots \\
\left(\frac{1}{3}\right)^{p} & \left(\frac{1}{3}\right)^{p} & \left(\frac{1}{3}\right)^{p} & 0 & \ldots \\
\ldots & \cdots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right)
$$

where $p>1$ are not (see [7]) there will use Corollary 3.2 to show that all of these operators are, however, posinormal. Define $B_{p}=\left(b_{m n}\right)$ by

$$
b_{m n}=\left\{\begin{array}{cc}
1-\left(\frac{n+1}{n+2}\right)^{p}, & \text { if } m \leq n \\
-\left(\frac{n+1}{n+2}\right)^{p}, & \text { if } m=n+1 \\
0, & \text { if } m>n+1
\end{array}\right.
$$

We observe that $B_{1}=k\left(C_{1}\right)$. To see that $B_{p}$ is bounded when $p>1$, we note that this matrix can be decomposed as $B_{p}=Y+Z$ where $Y=\left(y_{m n}\right)$ satisfies $y_{m n}=b_{m n}$ when $m=n+1$ and $y_{m n}=0$ otherwise (so Y is a weighted shift) and Z is the upper triangular matrix whose entries on and above the main diagonal agree with those form $B_{p}$ and whose other entries are all zero. We note that the entries of $Z$ are all nonnegative. Since
$1-\frac{(n+1)^{p}}{(n+2)^{p}}<\frac{p}{n+2}$ for all $p>1$ (see [3, Theorem 42, 2.15.3, page 40]), $Z$ is entrywise dominated by $p C_{1}^{*}$, an operator known to be bounded; $Y$ is clearly a bounded operator, and consequently $B_{p}$ is also bounded and $\left\|B_{p}\right\| \leq\|Y\|+\|Z\| \leq 1+2 p$. A routine computation gives $C_{p}^{*}=B_{p} C_{p}$, and the following theorem has been proved.

Theorem 3.2. $C_{p}$ is posinormal for all $p \geq 1$.

We have seen that $C_{1}$ is posinormal, but what about $C_{1}^{*}$ ? Corollary 3.2 will help us here also, for it can be verified that $C_{1}=B C_{1}^{*}$ when $B=C_{1}-U^{*}$, so $C_{1} \in\left[C_{1}^{*}\right]$; it can also be easily checked that $k(C) B=I=B k(C)$. While $B^{*} B$ is the interrupter for the posinormal operator $C_{1}^{*}$, the matrix product in the other order takes on a much simpler form; $B B^{*}$ is the diagonal matrix with diagonal $\left\{2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \ldots\right\}$. These observations justify the next theorem and its corollary.

Theorem 3.3. $C_{1}^{*}$ is posinormal with interrupter $P=B^{*} B=\left(C_{1}^{*}-\right.$ $U)\left(C_{1}-U^{*}\right)$.

Corollary 3.3. $\left|\mid C_{1}-U^{*} \|=\sqrt{2}\right.$.

## 4 Shift - conjugated Cesàro matrices.

In this section we consider the terraced matrix $T_{k+1}=\left(U^{k}\right)^{*} C_{1} U^{*}$, where U is an unilateral shift, for positive integers k :

$$
T_{k}=\left(\begin{array}{ccccc}
\frac{1}{k} & 0 & 0 & \cdots & \cdots \\
\frac{1}{k+1} & \frac{1}{k+1} & 0 & \cdots & \cdots \\
\frac{1}{k+2} & \frac{1}{k+2} & \frac{1}{k+2} & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

Visually, $T_{k+1}$ can be obtained from the Cesàro matrix $C_{1}$ by deleting the first $k$ rows and columns from $C_{1}$. We note that in fact for all $k>0$ (and not just the positive integers) the matrix $T_{k}$ gives a bounded operator on $l^{2}: T_{k}$ can be expressed as $D_{k} C_{1}$ where $D_{k}$ is the diagonal matrix with diagonal $\left\{\frac{1+n}{k+n}: n=0,1,2, \ldots\right\}$, it is clear by inspection that $\left\|T_{k}\right\| \leq\left\|C_{1}\right\|=2$ for $k \geq 1$ (the proof that $\left\|C_{1}\right\|=2$ appears in [1]), and for $0<k<1$, we have $\left\|T_{k}\right\|=\left\|D_{k} C_{1}\right\| \leq\left\|D_{k}\right\| \cdot\left\|C_{1}\right\|=\frac{2}{k}$. Results from [8] and [9] justify the remaining assertions of the next theorem.

Theorem 4.1. For each $k>0, T_{k}$ is a bounded operator on $l^{2} ;\left\|T_{k}\right\|=2$ when $k \geq 1$ and $\left\|T_{k}\right\| \leq \frac{2}{k}$ when $0<k<1$.

We show that, for all $k>0, T_{k}$ is posinormal with interrupter $P=\left(p_{m n}\right)$ whose entries are given by

$$
p_{m n}= \begin{cases}\frac{n^{2}+(2 k+1) n+k^{2}+1}{(n+k+1)^{2}}, & \text { if } m=n \\ \frac{1-k}{(m+k+1)(n+k+1)}, & \text { if } m \neq n\end{cases}
$$

Note that when $k=1, P$ reduces to the diagonal operator D. To see that $P$ is bounded, we observe that $P$ can be decomposed as $P=L+$ $R+C^{*}$ where R is the diagonal matrix with diagonal from P and L is the lower triangular matrix whose entries below the main diagonal agree with those from P and whose other entries are all zero, then $\|R\| \leq 1$ and $\|L\| \leq|k-1| \cdot \| C_{1}| |=2|k-1|$, so $\|P\| \leq 1+4|k-1|$.

One can check that $P T_{k}=\left(\alpha_{m n}\right)$ has matrix entries satisfying:

$$
\alpha_{m n}= \begin{cases}\frac{n+1}{(m+k+1)(n+k)}, & \text { if } m \geq n \\ \frac{1-k}{(m+k+1)(n+k)}, & \text { if } m<n\end{cases}
$$

using these entries, it is not hard to verify that $T_{k} T_{k}^{*}=T_{k}^{*} P T_{k}$. In order to see that $T_{k}$ is posinormal, it remains to show that P is positive; it suffices to show that $P_{N}$, the $N^{t h}$ finite section of P; (involving rows $m=0,1, \ldots, N$, and columns $n=0,1, \ldots, N)$, has positive determinant for each positive integer N . For columns $n=1,2, N$, we multiply the $n^{\text {th }}$ column from $P_{N}$ by $\frac{k+n+1}{k+n}$ and then substract from the $(n-1)^{s t}$ column. Call the new matrix $P_{N}^{\prime}$ and note that $\operatorname{det} P_{N}^{\prime}=\operatorname{det} P_{N}$. We now work with the rows of $P_{N}^{\prime}$ : For $m=1,2, \ldots, N$, we multiply the $m^{t h}$ row from $P_{N}^{\prime}$ by $\frac{k+m+1}{k+m}$ and then subtract from the $(n-1)^{s t}$ row. The resulting matrix is tridiagonal and also has the same determinant as $P_{N}$; that new matrix is constantly -1 on the two off-diagonals and is almost constantly 2 on the main diagonal - the only exception is the last entry: $\frac{k^{2}+2 N K+N^{2}+N+1}{(K+N+1)^{2}}$. To finish our computation, we work this tridiagonal matrix into triangular form: multiply each row $m=0,1, \ldots, N-1$ by $\frac{m+1}{m+2}$ and add to the $(m+1)^{\text {st }}$ row. The new matrix
is triangular and has diagonal $\left\{2, \frac{3}{4}, \frac{4}{3}, \ldots, \frac{N+1}{N}, \frac{N+k^{2}+1}{(N+1)(N+k+1)^{2}}\right\}$; from this we conclude that $\operatorname{det} P_{N}=\frac{N+k^{2}+1}{(N+k+1)^{2}}$.

We note that the positivity (and uniqueness) of P could have been demonstrated more briefly using the fact that $T_{k}$ has dense range; however, our computational procedure provides a springboard for investigating the positivity of $I-P$. To see when $I-P$ is positive, we compute $\operatorname{det}(I-P)_{N}$ where $(I-P)_{N}$ is the $N^{t h}$ finite section of $I-P$. Following exactly the same sequence of column and row operations we used for $P_{N}$, we arrive at a tridiagonal matrix of the following form:

$$
\bar{Y}_{N}=\left(\begin{array}{cccccc}
d_{0} & a_{0} & 0 & \cdots & \cdots & 0 \\
a_{0} & d_{1} & a_{1} & \cdots & \cdots & 0 \\
0 & a_{1} & d_{2} & \cdots & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & d_{N-1} & a_{N-1} \\
0 & 0 & \cdots & \cdots & a_{N-1} & d_{N}
\end{array}\right)
$$

where $a_{n}=-\frac{1}{k+n+1}, d_{n}=\frac{2 k+2 n+3}{(k+n+1)^{3}}(0 \leq n \leq N-1)$, and $d_{N}=$ $\frac{2 k+N}{(N+k+1)^{2}}$. In transforming $\bar{Y}_{N}$ into a triangular matrix with the same determinant, we find that the new matrix has diagonal entries $\delta_{n}$ which are given by a recursion formula: $\delta_{0}=d_{0}, \delta_{n}=d_{n}-\frac{a_{n-1}^{2}}{\delta_{n-1}}(1 \leq n \leq N)$. An induction argument shows that $\delta_{n} \geq \frac{n+k+2}{(n+k+1)^{2}}$ for $0 \leq n \leq N-1$; since $d_{N}$ departs the pattern set by the earlier $d_{n}^{\prime \prime} s, \delta_{n}$ must be handled separately: $\delta_{N}=d_{N}-\frac{a_{N-1}^{2}}{N-1} \geq \frac{k-1}{(N+k+1)^{2}}$. So $\operatorname{det}(I-P)_{N}=\prod_{j=0}^{N} \delta_{j}>0$ for $k>1$.

The computation just completed tells us that $T_{k}$ is hyponormal when
$K>1$. Further calculations reveal an exact value for the determinant (we omit the details):

$$
\operatorname{det}(I-P)_{N}=\left[\prod_{j=0}^{N} \frac{1}{j+k+1}\right]\left[(k-1) \sum_{j=0}^{N-1} \frac{1}{j+k+1}+\frac{2 k+N}{N+k+1}\right]
$$

For $k<1, \operatorname{det}(I-P)_{N}$ is eventually negative, so $T_{k}$ is not hyponormal in this case. We summarize the main results in the following theorem.

Theorem 4.2. $T_{k}$ is posinormal for all $k>0 ; T_{k}$ is hyponormal if and only if $k \geq 1$.

## 5 Discrete Cesàro operator $C_{1}$

In this brief section we consider the lower triangular matrices

$$
C_{1}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & \cdots \\
\frac{1}{2} & \frac{1}{2} & 0 & \cdots & \cdots \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \ldots & \cdots & \cdots & \cdots
\end{array}\right)
$$

regarded as operators on $l^{2}$. These operators have been studied in $[5,6]$.
Define $B=\left(b_{m n}\right)$ by

$$
b_{m n}= \begin{cases}\frac{1}{n+2}, & \text { if } m \leq n \\ -\frac{n+1}{n+2}, & \text { if } m=n+1 \\ 0, & \text { if } m>n+1\end{cases}
$$

We note that B is the contraction (hence bounded) operator $k\left(C_{1}\right)$ from section 2. A routine computation gives $C_{1}^{*}=B C_{1}$, settling the question of posinormality for $C_{1}$.

Theorem 5.1. $C_{1}$ is posinormal.

## References

[1] A. Brown, P.R. Halmos, A.L. Shiels, Cesàro Operators, Acta Sci. Math. Szeged, 26 (1965), 125-137.
[2] R.G. Douglas, On Majorization, Factorization, and Range Inclusion of Operators on Hilbert Spaces, Proc. Amer. Math. Soc., 17 (1966), 413 415.
[3] G. Hardy, J.E. Littlewood, G. Pólya, Inequalities, Second Edition, Cambridge University Press, Cambridge, 1989.
[4] T.L. Kriete III, D. Trutt, The Cesàro Operator in $l^{2}$ is Subnormal, Amer. J. Math., 93 (1971), 215 - 225.
[5] H.C. Rhaly, Jr., Discrete Generalized Cesàro Operators, Proc. Amer. Math. Soc., 86 (1982), 405-409.
[6] H.C. Rhaly, Jr., Generalized Cesàro Matrices, Canad. Math. Bull., 27 (1984), 417-422.
[7] H.C. Rhaly, Jr., p-Cesàro Matrices, Houston J. Math., 15 (1989), No.1, 137-146.
[8] H.C. Rhaly, Jr., Terraced Matrices, Bull. London Math. Soc., 21 (1989), 399-406.
[9] H.C. Rhaly, Jr., Posinormal operators, J. Math. Soc. Japan, vol. 46, No. 4, 1994, 587-605.
[10] B.E. Rhodes, Generalized Haussdorf Matrices Bounded on $l^{p}$ and $c$, Acta Sci. Math. Szeged, 43 (1981), 333-345.
"Lucian Blaga" University of Sibiu
Department of Mathematics
Str. Dr. I. Raţiu, no. 5-7
550012 - Sibiu, Romania
E-mail address: amelia.bucur@ulbsibiu.ro

