Archival Version
These pages are not updated anymore.
They reflect the state of
.
For the current production of this journal, please refer to
http://www.math.psu.edu/era/.
The Schl{\"a}fli formula in Einstein manifolds with boundary
This journal is archived by the American Mathematical
Society. The master copy is available at
http://www.ams.org/era/
The Schl{\"a}fli formula in Einstein manifolds with boundary
Igor Rivin, Jean-Marc Schlenker
Abstract.
We give a smooth analogue of the classical Schl{\"a}fli
formula, relating the variation of the volume bounded by a hypersurface moving
in a general Einstein manifold and the integral of the variation of the mean
curvature. We extend it to variations of the metric in a Riemannian Einstein
manifold with boundary, and apply it to Einstein cone-manifolds, to isometric
deformations of Euclidean hypersurfaces, and to the rigidity of Ricci-flat
manifolds with umbilic boundaries.
\\ \\
\noindent {\sc R\'esum\'e.} On donne
un analogue r{\'e}gulier de la formule classique de Schl{\"a}fli, reliant la
variation du volume born{\'e} par une hypersurface se d{\'e}pla{\c c}ant dans
une vari{\'e}t{\'e} d'Einstein {\`a} l'int{\'e}grale de la variation de la
courbure moyenne. Puis nous l'{\'e}tendons aux variations de la m{\'e}trique
{\`a} l'int{\'e}rieur d'une vari{\'e}t{\'e} d'Einstein riemannienne {\`a}
bord. On l'applique aux cone-vari{\'e}t{\'e}s d'Einstein, aux d{\'e}formations
isom{\'e}triques d'hypersurfaces de $E^n$, et {\`a} la rigidit{\'e} des
vari{\'e}t{\'e}s Ricci-plates {\`a} bord ombilique.
Copyright 1999 American Mathematical Society
Retrieve entire article
Article Info
- ERA Amer. Math. Soc. 05 (1999), pp. 18-23
- Publisher Identifier: S 1079-6762(99)00057-8
- 1991 Mathematics Subject Classification. Primary 53C21
- Key words and phrases. Vanishing theorems; null spaces
- Received by the editors July 31, 1998
- Posted on March 22, 1999
- Communicated by Walter Neumann
- Comments (When Available)
Igor Rivin
Department of Mathematics,
University of Manchester,
Oxford Road, Manchester M13 9PL, G.B.
E-mail address: irivin@ma.man.ac.uk
Jean-Marc Schlenker
Topologie et Dynamique (URA 1169 CNRS),
B{\^a}t. 425,
Uni\-ver\-sit{\'e} de Paris-Sud,
91405 Orsay Cedex, France
E-mail address: jean-marc.schlenker@math.u-psud.fr
Electronic Research Announcements of the AMS Home page