EMIS/ELibM Electronic Journals

Outdated Archival Version

These pages are not updated anymore. They reflect the state of 20 August 2005. For the current production of this journal, please refer to http://www.math.psu.edu/era/.


%_ **************************************************************************
%_ * The TeX source for AMS journal articles is the publisher's TeX code    *
%_ * which may contain special commands defined for the AMS production      *
%_ * environment.  Therefore, it may not be possible to process these files *
%_ * through TeX without errors.  To display a typeset version of a journal *
%_ * article easily, we suggest that you either view the HTML version or    *
%_ * retrieve the article in DVI, PostScript, or PDF format.                *
%_ **************************************************************************
% Author Package file for use with AMS-LaTeX 1.2
\controldates{6-NOV-1998,6-NOV-1998,6-NOV-1998,6-NOV-1998}
 
\documentclass{era-l}
%\documentstyle[12pt,amssymb]{amsart}
\newtheorem*{thm}{Main Theorem}
% \renewcommand{\thethm}{}
\newtheorem{theorem}{Theorem}
\newtheorem{corollary}{Corollary} 
\newtheorem*{problem}{Problem}
% \renewcommand{\theproblem}{}
\newtheorem*{lemma}{Lemma}
%\renewcommand{\thelemma}{}
\theoremstyle{definition}
\newtheorem*{example}{Example}
%\renewcommand{\theexample}{}
%\renewcommand{\theremark}{}

\begin{document}
\title[ NONABELIAN SYLOW SUBGROUPS]{Nonabelian Sylow subgroups of 
finite groups of even order}

\author[N.~Chigira]{Naoki Chigira}
\address{Department of Mathematical Sciences,
 Muroran Institute of Technology, Hokkaido 050-8585, Japan}
\email{chigira@muroran-it.ac.jp} 

\author[N.~Iiyori]{Nobuo Iiyori}
\address{Department of Mathematics, Faculty of Education, 
 Yamaguchi University, Yamaguchi 753-8512, Japan}
\email{iiyori@po.yb.cc.yamaguchi-u.ac.jp}

\author[H.~Yamaki]{Hiroyoshi Yamaki}
\address{Department of Mathematics, 
 Kumamoto University, Kumamoto 860-8555, Japan}
\email{yamaki@gpo.kumamoto-u.ac.jp}

%    General info
\subjclass{Primary 20D05, 20D06, 20D20}

\issueinfo{4}{12}{}{1998}
\dateposted{November 10, 1998}
\pagespan{88}{90}
\PII{S 1079-6762(98)00051-1}
\def\copyrightyear{1998}
\copyrightinfo{1998}{American Mathematical Society}

\date{October 20, 1997}

\commby{Efim Zelmanov}


\keywords{Sylow subgroups, prime graphs, simple groups}

%\noindent {\it AMS 1991 subject classifications}:  

\begin{abstract}
We have been able to prove that every nonabelian Sylow subgroup
of a finite group of even order contains a nontrivial element which 
commutes with
an involution.  The proof depends upon the consequences of the 
classification of finite
simple groups.
\end{abstract}


\thanks{The third author was
supported in part by Grant-in-Aid for Scientific Research 
(No. 8304003, No. 08640051), Ministry of Education, Science, Sports and 
Culture, Japan.}

\maketitle

%\vspace{48pt}

The purpose of this note is to announce \cite{ciy}:
%\bigskip
\begin{thm}
Every nonabelian Sylow subgroup of a finite group of even order 
contains a nontrivial element which commutes with an involution.
\end{thm}
%\bigskip
 Let $G$ be a finite group and $\Gamma (G)$ the prime graph of $G$.
$\Gamma (G)$ is the graph such that the vertex set is the set of prime
divisors of $|G|$, and two distinct vertices $p$ and $r$ are joined by 
an edge
if and only if there exists an element of order $pr$ in $G$.  Let $n( 
\Gamma (G))$
be the number of connected components of $\Gamma (G)$ and $d_G(p,r)$  the
distance between two vertices $p$ and $r$ of $\Gamma (G)$.  It has been 
proved
that $n( \Gamma (G)) \leq 6$ in \cite{williams}, \cite{iy4}, 
\cite{kondrat'ev}, \cite{iy3}.

%\bigskip
\begin{theorem}\label{thm:1}
Let $G$ be a finite group of even order and $p$ a prime divisor 
of $|G|$.
If $d_G(2,p) \geq 2$, then a Sylow $p$-subgroup of $G$ is abelian.
\end{theorem}
%\bigskip
Theorem \ref{thm:1} is a restatement of the 
Main Theorem in terms of the prime graph 
$\Gamma (G)$.
%\bigskip
\begin{corollary}
Let $G$ be a finite group of even order and $p$ a prime divisor of 
$|G|$.
If $\Delta $ is a connected component of $\Gamma (G) - \{p \}$ not 
containing $2$, then 
a Sylow $r$-subgroup of $G$ is abelian for any $r \in \Delta $.
\end{corollary}
There is a certain relation between a subgraph $\Gamma(G)-\{p\}$ 
 of $\Gamma(G)$ and Brauer characters of $p$-modular representations of
$G$ (see \cite{ci1}).

%\bigskip
\begin{theorem}\label{thm:2}
Let $G$ be a finite nonabelian simple group and $p$ an odd prime divisor 
of $|G|$.
Then $d_G(2,p)=1$ or $2$ provided $d_G(2,p)< \infty$. 
\end{theorem}
%\bigskip
%\nopagebreak
The significance of the prime graphs of finite groups can be found in
\cite{c1}, \cite{ci1}, \cite{iiyori1}, \cite{iiyori2}, \cite{iy1},
\cite{iy2}, \cite{y2}, \cite{y3}.
We apply the classification of finite simple groups (see \cite{c1},
\cite{c2}, \cite{ciy}, \cite{iy1}, \cite{iy4}, \cite{y1}).
It has been proved that a minimal counterexample to Theorem \ref{thm:1} is a 
nonabelian
simple group.  We will give some examples of case 
by case analysis for finite simple groups.
Theorem \ref{thm:1} holds true for the sporadic simple groups by Atlas of Finite 
Groups
although we can find several typos in it. For a positive integer $k$ 
let $\pi (k)$ be
the set of all prime divisors of $k$.
Let $\pi_0=\{p\in \pi(G) \mid d_G(2,p)=1\}$. Then we do not have to think 
about primes
in $\pi_0$ in order to give the proof of Theorem \ref{thm:1}. 
\begin{example}
Let $G$ be the alternating group on $n$-letters and $p\in \pi (G)$.
It is trivial that Theorem \ref{thm:1} holds true for $A_5$ and $A_6$.
Assume that $n\geq 7$.
If $p\leq n-4$, then $d_G(2,p)=1$.  If $p\geq n-3$, then Sylow 
$p$-subgroups
of $G$ are cyclic of order $p$.  Thus Theorem \ref{thm:1}
holds true for the alternating groups.
\end{example}
\begin{example}
Let $G=PSL(n,q)$,  $q\equiv 0\pod{2}$.  
Then $|G|=q^{n(n-1)/2} \prod\limits_{i=1}^{n-1} (q^{i+1}-1)d^{-1}$, 
$d=(n,q-1)$. 
Let $I_j$  be the $j \times j$ identity matrix.
Put 
%\begin{equation*}
\[t_k^{\prime}=
\begin{pmatrix}
I_k & 0 & 0\\
0 & I_{n-2k} & 0\\
I_k & 0 & I_k \\
\end{pmatrix}.\]
%\end{equation*}
Then $t_k^{\prime}\ (1\leq k \leq r)$, where $r=[n/2]$, are 
representatives of the conjugacy classes of involutions in $SL(n,q)$. 
The centralizer of $t_k^{\prime}$ in $SL(n,q)$ is the set of all matrices
of the form
\[\begin{pmatrix}
A & 0 & 0\\
H & B & 0\\
K & L & A\\
\end{pmatrix},\]
where $(\operatorname{det}A)^2\operatorname{det}B=1$ and $A$ is 
a $k\times k$ nonsingular matrix.
Denote $t_k$ the homomorphic image of $t_k^{\prime}$ in $PSL(n,q)$.
Then $t_k$ $(1\leq k \leq r)$ are representatives of the conjugacy 
classes
of involutions in $PSL(n,q)$.  Let $C_k=C_G(t_k)$. Then
\[ \pi (C_k)=\pi (2 \prod\limits_{i=1}^{n-2k}(q^i-1)/(q-1)d)\]
and
\[ \pi_0 = \pi(\prod\limits_{k=1}^r|C_k|)=\pi (2
\prod\limits_{i=1}^{n-2}(q^i-1)).\]
Suppose $n\geq 4$. Then the only factors of $|G|$ to be considered
are $(q^{n-1}-1)(q^n-1)$.  There are maximal tori $T(A_{n-2})$ of order 
$(q^{n-1}-1)d^{-1}$
and $T(A_{n-1})$ of order $(q^n-1)/(q-1)d$. Let $p\in \pi 
(T(X))-\pi_{0}$, where
$X=A_{n-1}$ or $A_{n-2}$.  Let $P$ be a Sylow $p$-subgroup of $T(X)$. 
Then $d_G(2,p)=1$ or $P$ is a Sylow $p$-subgroup of $G$.  
Since $P$ is abelian, Theorem \ref{thm:1} holds true for $G=PSL(n,q)$, $n\geq 4$.

Suppose that $n=3$.  Then $|G|=q^3(q^2-1)(q^3-1)d^{-1}$ and 
there are three classes of maximal tori of orders
\[(q-1)^2d^{-1}, \quad (q^2-1)d^{-1}, \quad (q^2+q+1)d^{-1}.\]
We note that a torus of order $(q^2+q+1)d^{-1}$ is an isolated subgroup.
If $q > 4$,  then $d_G(2,r)=2$ for $r\in \pi (q+1)$. Let $R$ be a Sylow
$r$-subgroup of $G$. Then $R$ is contained in a maximal torus of
order $(q^2-1)d^{-1}$.  If $q=4$, then $G=PSL(3,4)$ and 
$|G|=2^6\cdot3^2\cdot5\cdot7$.
If  $q=2$, then  $G=PSL(3,2)$ and $|G|=2^3\cdot3\cdot7$.
We have verified Theorem \ref{thm:1} for $n=3$.  It is trivial that Theorem \ref{thm:1} 
holds true for $PSL(2,q)$.
\end{example}
\begin{theorem}\label{thm:3}
Let $G$ be a simple group of Lie type and $T$ a maximal torus. Let 
$p\in \pi(T)-\pi_0$.
Then $T$ contains a Sylow $p$-subgroup of $G$.
\end{theorem}
Theorem \ref{thm:3} is a corollary of Theorem \ref{thm:1}. 
Actually we prove Theorem \ref{thm:3} for specified
tori  when we verify Theorem \ref{thm:1} for the simple groups of Lie type.
%\bigskip
\begin{thebibliography}{99}
\bibitem{c1} N. Chigira,
Finite groups whose abelian subgroups have consecutive orders,
Osaka J. Math. {\bf 35} (1998), 439--445. 
\bibitem{c2} N. Chigira,
Number of Sylow subgroups and $p$-nilpotence of finite groups,
J. Algebra {\bf 201} (1998), 71--85. \CMP{98:09}
\bibitem{ci1} N. Chigira and N. Iiyori,
Prime graphs and Brauer characters,
To appear in J. Group Theory.
\bibitem{ciy} N. Chigira, N. Iiyori and H. Yamaki,
Nonabelian Sylow subgroups of finite groups of even order,
in preparation.
\bibitem{iiyori1} N. Iiyori,
Sharp characters and prime graphs of finite groups,
J. Algebra
{\bf 163}
(1994),
1--8. \MR{94m:20021}
\bibitem{iiyori2} N. Iiyori,
A conjecture of Frobenius and the simple groups of Lie type IV,
J. Algebra
{\bf 154}
(1993),
188--214.  \MR{94d:20014}
\bibitem{iy1} N. Iiyori and H. Yamaki,
On a conjecture of Frobenius,
Bull. Amer. Math. Soc.
{\bf 25}
(1991),
413--416. \MR{92e:20014}
\bibitem{iy2} N. Iiyori and H. Yamaki,
A conjecture of Frobenius and the simple groups of Lie type III,
J. Algebra
{\bf 145}
(1992),
329--332.  \MR{93c:20033}
\bibitem{iy3} N. Iiyori and H. Yamaki,
A conjecture of Frobenius,
Sugaku Expositions, Amer. Math. Soc.
{\bf 9}
(1996),
69--85. \MR{97a:00046}
\bibitem{iy4} N. Iiyori and H. Yamaki,
Prime graph components of the simple groups of Lie type over the
fields of even characteristic,
J. Algebra
{\bf 155}
(1993),
335--343; 
Corrigenda,
{\bf 181}
(1996),
659. \MR{94e:05268}
\bibitem{kondrat'ev} A. S. Kondrat'ev,
Prime graph components of finite simple groups,
Math. USSR Sbornik
{\bf 67}
(1990),
235--247.  \MR{90h:20018}
\bibitem{williams} J. S. Williams,
Prime graph components of finite groups,
J. Algebra
{\bf 69}
(1981),
487--513.  \MR{82j:20054}
\bibitem{y1} H. Yamaki,
A characterization of the Suzuki simple groups of order $448,345,497,600$,
J. Algebra
{\bf 40}
(1976),
229--244.  \MR{53:13384}
\bibitem{y2} H. Yamaki,
A conjecture of Frobenius and the sporadic simple groups I,
Comm. Algebra
{\bf 11}
(1983),
2513--2518;
II,
Math. Comp.
{\bf 46}
 (1986),
609--611;
Supplement.
Math. Comp.
{\bf 46}
 (1986),
S43--S46.  \MR{85k:20049}; \MR{87i:20033}
\bibitem{y3} H. Yamaki,
A conjecture of Frobenius and the simple groups of Lie type I,
Arch. Math.
{\bf 42}
(1984),
344--347;
II,
J. Algebra
{\bf 96}
(1985),
391--396.  \MR{85j:20010};  \MR{87i:20032}
\end{thebibliography}
\end{document}
<\PRE>