%_ ************************************************************************** %_ * The TeX source for AMS journal articles is the publisher's TeX code * %_ * which may contain special commands defined for the AMS production * %_ * environment. Therefore, it may not be possible to process these files * %_ * through TeX without errors. To display a typeset version of a journal * %_ * article easily, we suggest that you either view the HTML version or * %_ * retrieve the article in DVI, PostScript, or PDF format. * %_ ************************************************************************** % Author Package file for use with AMS-LaTeX 1.2 \controldates{22-JUL-1997,22-JUL-1997,22-JUL-1997,22-JUL-1997} \documentstyle[newlfont,draft]{era-l} \issueinfo{3}{09}{January}{1997} \dateposted{July 31, 1997} \pagespan{63}{71} \PII{S 1079-6762(97)00025-5} %\baselineskip=14pt %\parindent=0pt \swapnumbers %\newtheorem{prop}{Proposition}[section] \newtheorem{prop}[subsection]{Proposition} %\newtheorem{thm}{Theorem}[section] \newtheorem{thm}[subsection]{Theorem} \newtheorem*{linthm}{Linearization Theorem} \theoremstyle{remark} \newtheorem*{stepi}{Step I, {\em the quotient}} \newtheorem*{stepii}{Step II, {\em reduction of weights}} \newtheorem{rmk}{Remark}[subsection] \catcode`\@=11 \theoremstyle{definition} \newtheorem*{hcase}{Hyperbolic Case} %\font\tenmsx=msam10 %\font\sevenmsx=msam7 %\font\fivemsx=msam5 %\font\tenmsy=msbm10 %\font\sevenmsy=msbm7 %\font\fivemsy=msbm5 %\newfam\msxfam %\newfam\msyfam %\textfont\msxfam=\tenmsx \scriptfont\msxfam=\sevenmsx % \scriptscriptfont\msxfam=\fivemsx %\textfont\msyfam=\tenmsy \scriptfont\msyfam=\sevenmsy % \scriptscriptfont\msyfam=\fivemsy% %\def\hexnumber@#1{\ifcase#1 0\or1\or2\or3\or4\or5\or6\or7\or8\or9\or% % A\or B\or C\or D\or E\or F\fi } % The following 13 lines establish the use of the Euler Fraktur font. % To use this font, remove % from beginning of these lines. %\font\teneuf=eufm10 %\font\seveneuf=eufm7 %\font\fiveeuf=eufm5 %\newfam\euffam %\textfont\euffam=\teneuf %\scriptfont\euffam=\seveneuf %\scriptscriptfont\euffam=\fiveeuf %\def\frak{\relaxnext@\ifmmode\let\next\frak@\else % \def\next{\Err@{Use \string\frak\space only in math mode}}\fi\next} %\def\goth{\relaxnext@\ifmmode\let\next\frak@\else % \def\next{\Err@{Use \string\goth\space only in math mode}}\fi\next} %\def\frak@#1{{\frak@@{#1}}} %\def\frak@@#1{\noaccents@\fam\euffam#1} %\def\frak{\ifmmode\let\next\frak@\else % \def\next{\errmessage{Use \string\frak\space only in math mode}}\fi\next} %\def\goth{\ifmmode\let\next\frak@\else % \def\next{\errmessage{Use \string\goth\space only in math mode}}\fi\next} %\def\frak@#1{{\frak@@{#1}}} %\def\frak@@#1{\fam\euffam#1} % End definition of Euler Fraktur font. %\edef\msx@{\hexnumber@\msxfam} %\edef\msy@{\hexnumber@\msyfam} %\mathchardef\boxdot="2\msx@00 %\mathchardef\boxplus="2\msx@01 %\mathchardef\boxtimes="2\msx@02 %\mathchardef\square="0\msx@03 %\mathchardef\blacksquare="0\msx@04 %\mathchardef\centerdot="2\msx@05 %\mathchardef\lozenge="0\msx@06 %\mathchardef\blacklozenge="0\msx@07 %\mathchardef\circlearrowright="3\msx@08 %\mathchardef\circlearrowleft="3\msx@09 %\mathchardef\rightleftharpoons="3\msx@0A %\mathchardef\leftrightharpoons="3\msx@0B %\mathchardef\boxminus="2\msx@0C %\mathchardef\Vdash="3\msx@0D %\mathchardef\Vvdash="3\msx@0E %\mathchardef\vDash="3\msx@0F %\mathchardef\twoheadrightarrow="3\msx@10 %\mathchardef\twoheadleftarrow="3\msx@11 %\mathchardef\leftleftarrows="3\msx@12 %\mathchardef\rightrightarrows="3\msx@13 %\mathchardef\upuparrows="3\msx@14 %\mathchardef\downdownarrows="3\msx@15 %\mathchardef\upharpoonright="3\msx@16 %\let\restriction=\upharpoonright %\mathchardef\downharpoonright="3\msx@17 %\mathchardef\upharpoonleft="3\msx@18 %\mathchardef\downharpoonleft="3\msx@19 %\mathchardef\rightarrowtail="3\msx@1A %\mathchardef\leftarrowtail="3\msx@1B %\mathchardef\leftrightarrows="3\msx@1C %\mathchardef\rightleftarrows="3\msx@1D %\mathchardef\Lsh="3\msx@1E %\mathchardef\Rsh="3\msx@1F %\mathchardef\rightsquigarrow="3\msx@20 %\mathchardef\leftrightsquigarrow="3\msx@21 %\mathchardef\looparrowleft="3\msx@22 %\mathchardef\looparrowright="3\msx@23 %\mathchardef\circeq="3\msx@24 %\mathchardef\succsim="3\msx@25 %\mathchardef\gtrsim="3\msx@26 %\mathchardef\gtrapprox="3\msx@27 %\mathchardef\multimap="3\msx@28 %\mathchardef\therefore="3\msx@29 %\mathchardef\because="3\msx@2A %\mathchardef\doteqdot="3\msx@2B %\let\Doteq=\doteqdot %\mathchardef\triangleq="3\msx@2C %\mathchardef\precsim="3\msx@2D %\mathchardef\lesssim="3\msx@2E %\mathchardef\lessapprox="3\msx@2F %\mathchardef\eqslantless="3\msx@30 %\mathchardef\eqslantgtr="3\msx@31 %\mathchardef\curlyeqprec="3\msx@32 %\mathchardef\curlyeqsucc="3\msx@33 %\mathchardef\preccurlyeq="3\msx@34 %\mathchardef\leqq="3\msx@35 %\mathchardef\leqslant="3\msx@36 %\mathchardef\lessgtr="3\msx@37 %\mathchardef\backprime="0\msx@38 %\mathchardef\risingdotseq="3\msx@3A %\mathchardef\fallingdotseq="3\msx@3B %\mathchardef\succcurlyeq="3\msx@3C %\mathchardef\geqq="3\msx@3D %\mathchardef\geqslant="3\msx@3E %\mathchardef\gtrless="3\msx@3F %\mathchardef\sqsubset="3\msx@40 %\mathchardef\sqsupset="3\msx@41 %\mathchardef\vartriangleright="3\msx@42 %\mathchardef\vartriangleleft="3\msx@43 %\mathchardef\trianglerighteq="3\msx@44 %\mathchardef\trianglelefteq="3\msx@45 %\mathchardef\bigstar="0\msx@46 %\mathchardef\between="3\msx@47 %\mathchardef\blacktriangledown="0\msx@48 %\mathchardef\blacktriangleright="3\msx@49 %\mathchardef\blacktriangleleft="3\msx@4A %\mathchardef\vartriangle="0\msx@4D %\mathchardef\blacktriangle="0\msx@4E %\mathchardef\triangledown="0\msx@4F %\mathchardef\eqcirc="3\msx@50 %\mathchardef\lesseqgtr="3\msx@51 %\mathchardef\gtreqless="3\msx@52 %\mathchardef\lesseqqgtr="3\msx@53 %\mathchardef\gtreqqless="3\msx@54 %\mathchardef\Rrightarrow="3\msx@56 %\mathchardef\Lleftarrow="3\msx@57 %\mathchardef\veebar="2\msx@59 %\mathchardef\barwedge="2\msx@5A %\mathchardef\doublebarwedge="2\msx@5B %\mathchardef\angle="0\msx@5C %\mathchardef\measuredangle="0\msx@5D %\mathchardef\sphericalangle="0\msx@5E %\mathchardef\varpropto="3\msx@5F %\mathchardef\smallsmile="3\msx@60 %\mathchardef\smallfrown="3\msx@61 %\mathchardef\Subset="3\msx@62 %\mathchardef\Supset="3\msx@63 %\mathchardef\Cup="2\msx@64 %\let\doublecup=\Cup %\mathchardef\Cap="2\msx@65 %\let\doublecap=\Cap %\mathchardef\curlywedge="2\msx@66 %\mathchardef\curlyvee="2\msx@67 %\mathchardef\leftthreetimes="2\msx@68 %\mathchardef\rightthreetimes="2\msx@69 %\mathchardef\subseteqq="3\msx@6A %\mathchardef\supseteqq="3\msx@6B %\mathchardef\bumpeq="3\msx@6C %\mathchardef\Bumpeq="3\msx@6D %\mathchardef\lll="3\msx@6E %\let\llless=\lll %\mathchardef\ggg="3\msx@6F %\let\gggtr=\ggg %\mathchardef\circledS="0\msx@73 %\mathchardef\pitchfork="3\msx@74 %\mathchardef\dotplus="2\msx@75 %\mathchardef\backsim="3\msx@76 %\mathchardef\backsimeq="3\msx@77 %\mathchardef\complement="0\msx@7B %\mathchardef\intercal="2\msx@7C %\mathchardef\circledcirc="2\msx@7D %\mathchardef\circledast="2\msx@7E %\mathchardef\circleddash="2\msx@7F %\def\ulcorner{\delimiter"4\msx@70\msx@70 } %\def\urcorner{\delimiter"5\msx@71\msx@71 } %\def\llcorner{\delimiter"4\msx@78\msx@78 } %\def\lrcorner{\delimiter"5\msx@79\msx@79 } %\def\yen{\mathhexbox\msx@55 } %\def\checkmark{\mathhexbox\msx@58 } %\def\circledR{\mathhexbox\msx@72 } %\def\maltese{\mathhexbox\msx@7A } %\mathchardef\lvertneqq="3\msy@00 %\mathchardef\gvertneqq="3\msy@01 %\mathchardef\nleq="3\msy@02 %\mathchardef\ngeq="3\msy@03 %\mathchardef\nless="3\msy@04 %\mathchardef\ngtr="3\msy@05 %\mathchardef\nprec="3\msy@06 %\mathchardef\nsucc="3\msy@07 %\mathchardef\lneqq="3\msy@08 %\mathchardef\gneqq="3\msy@09 %\mathchardef\nleqslant="3\msy@0A %\mathchardef\ngeqslant="3\msy@0B %\mathchardef\lneq="3\msy@0C %\mathchardef\gneq="3\msy@0D %\mathchardef\npreceq="3\msy@0E %\mathchardef\nsucceq="3\msy@0F %\mathchardef\precnsim="3\msy@10 %\mathchardef\succnsim="3\msy@11 %\mathchardef\lnsim="3\msy@12 %\mathchardef\gnsim="3\msy@13 %\mathchardef\nleqq="3\msy@14 %\mathchardef\ngeqq="3\msy@15 %\mathchardef\precneqq="3\msy@16 %\mathchardef\succneqq="3\msy@17 %\mathchardef\precnapprox="3\msy@18 %\mathchardef\succnapprox="3\msy@19 %\mathchardef\lnapprox="3\msy@1A %\mathchardef\gnapprox="3\msy@1B %\mathchardef\nsim="3\msy@1C %%\mathchardef\napprox="3\msy@1D %\mathchardef\ncong="3\msy@1D %\def\napprox{\not\approx} %\mathchardef\varsubsetneq="3\msy@20 %\mathchardef\varsupsetneq="3\msy@21 %\mathchardef\nsubseteqq="3\msy@22 %\mathchardef\nsupseteqq="3\msy@23 %\mathchardef\subsetneqq="3\msy@24 %\mathchardef\supsetneqq="3\msy@25 %\mathchardef\varsubsetneqq="3\msy@26 %\mathchardef\varsupsetneqq="3\msy@27 %\mathchardef\subsetneq="3\msy@28 %\mathchardef\supsetneq="3\msy@29 %\mathchardef\nsubseteq="3\msy@2A %\mathchardef\nsupseteq="3\msy@2B %\mathchardef\nparallel="3\msy@2C %\mathchardef\nmid="3\msy@2D %\mathchardef\nshortmid="3\msy@2E %\mathchardef\nshortparallel="3\msy@2F %\mathchardef\nvdash="3\msy@30 %\mathchardef\nVdash="3\msy@31 %\mathchardef\nvDash="3\msy@32 %\mathchardef\nVDash="3\msy@33 %\mathchardef\ntrianglerighteq="3\msy@34 %\mathchardef\ntrianglelefteq="3\msy@35 %\mathchardef\ntriangleleft="3\msy@36 %\mathchardef\ntriangleright="3\msy@37 %\mathchardef\nleftarrow="3\msy@38 %\mathchardef\nrightarrow="3\msy@39 %\mathchardef\nLeftarrow="3\msy@3A %\mathchardef\nRightarrow="3\msy@3B %\mathchardef\nLeftrightarrow="3\msy@3C %\mathchardef\nleftrightarrow="3\msy@3D %\mathchardef\divideontimes="2\msy@3E %\mathchardef\varnothing="0\msy@3F %\mathchardef\nexists="0\msy@40 %\mathchardef\mho="0\msy@66 %\mathchardef\eth="0\msy@67 %\mathchardef\eqsim="3\msy@68 %\mathchardef\beth="0\msy@69 %\mathchardef\gimel="0\msy@6A %\mathchardef\daleth="0\msy@6B %\mathchardef\lessdot="3\msy@6C %\mathchardef\gtrdot="3\msy@6D %\mathchardef\ltimes="2\msy@6E %\mathchardef\rtimes="2\msy@6F %\mathchardef\shortmid="3\msy@70 %\mathchardef\shortparallel="3\msy@71 %\mathchardef\smallsetminus="2\msy@72 %\mathchardef\thicksim="3\msy@73 %\mathchardef\thickapprox="3\msy@74 %\mathchardef\approxeq="3\msy@75 %\mathchardef\succapprox="3\msy@76 %\mathchardef\precapprox="3\msy@77 %\mathchardef\curvearrowleft="3\msy@78 %\mathchardef\curvearrowright="3\msy@79 %\mathchardef\digamma="0\msy@7A %\mathchardef\varkappa="0\msy@7B %\mathchardef\hslash="0\msy@7D %\mathchardef\hbar="0\msy@7E %\mathchardef\backepsilon="3\msy@7F %% Use the next 4 lines with AMS-TeX: %%\def\Bbb{\relaxnext@\ifmmode\let\next\Bbb@\else %% \def\next{\Err@{Use \string\Bbb\space only in math mode}}\fi\next} %%\def\Bbb@#1{{\Bbb@@{#1}}} %%\def\Bbb@@#1{\noaccents@\fam\msyfam#1} %% Use the next 4 lines if NOT using AMS-TeX: %\def\Bbb{\ifmmode\let\next\Bbb@\else % \def\next{\errmessage{Use \string\Bbb\space only in math mode}}\fi\next} %\def\Bbb@#1{{\Bbb@@{#1}}} %\def\Bbb@@#1{\fam\msyfam#1}%% \catcode`\@=12 %\font\bbr=msbm10 %At top of file %e.g. in file should read $\hbox{\bbr{\char'122}}^p$ %\vbox{\hrule width 4.5truein} %\def\part{\hangindent2 %\parindent\textindent} %%\def\sha{{\bf III}} %\def\swan{\mathop{\rightarrow}\limits} %\def\lineitem#1#2{\itemitem{#1 \ #2}} %\def\map#1{{\buildrel #1 \over \rightarrow}} %\def\Max{\mathop{\text{Max}}\limits} %\def\Min{\mathop{\text{Min}}\limits} %\def\ker{{\rm Ker \ }} \renewcommand\ker{\operatorname{Ker}} %\def\im{{\rm Im \ }} \newcommand\im{\operatorname{Im}} %\def\stmt#1{\medskip \noindent {\bf #1} \ \ } %\def\under{\mathop{\rightarrow}\limits} %\def\kay{\mathop{K}\limits} %\def\cay{\mathop{C}\limits} %\def\lay{\mathop{L}\limits} %\def\kee{\mathop{E}\limits} %\def\tee{\mathop{T}\limits} %\def\mod{{\rm mod \ }} %\font\smallfont=cmr7 %{\smallfont} %\def\part{\hangindent 2\parindent\textindent} %\def\circslash{\mathbin{\rlap{$/$}\circ}} %\def\circbslash{\mathbin{\rlap{$\backslash$}\circ}} %\def \renewcommand\r{\rlap{$\circ$}\backslash} %\def \renewcommand\l{\rlap{$\circ$}/} %\def \newcommand\A{{\Bbb A}} %\def \newcommand\B{{\Bbb B}} %\def \newcommand\C{{\Bbb C}} %\def \newcommand\D{{\Bbb D}} %\def \newcommand\E{{\Bbb E}} %\def\F{{\Bbb F}} %\def \newcommand\G{{\Bbb G}} %\def\H{{\Bbb H}} %\def\I{{\Bbb I}} %\def \newcommand\M{{\Bbb M}} %\def\K{{\Bbb K}} %\def \renewcommand\L{{\Bbb L}} %\def\N{{\Bbb N}} %\def\P{{\Bbb P}} %\def\Q{{\Bbb Q}} %\def \newcommand\R{{\Bbb R}} %\def\T{{\Bbb T}} %\def \newcommand\V{{\Bbb V}} %\def\Z{{\Bbb Z}} \newcommand\Z{{\Bbb Z}} %\def\1{{\Bbb 1}} %\def\ndiv{{\not \! | }} %\def\deg{{\rm deg \ }} %\def\O{{\rm O}} %\def\gm#1{\hbox{\german #1}} %\def\arrows{{\scriptstyle{\to \atop {\to \atop \ } } }} %\def\andot{\scriptstyle{. \atop{-\atop \ }}} %\def\longarrows{{\scriptstyle{\longrightarrow \atop {\longrightarrow %\atop \ } } }} %\font\german=eufm10 %\def\anchor{{ \, |\kern -.6em \lower 1ex \hbox{$\smile$}}} %\def \newcommand\beth{{\Bbb i}} %\font\sx=msam10 %\font\tencircw=lcirclew10 %\def\corners#1{\leavevmode\hskip1pt %\setbox0=\hbox{$#1$}{\dimen@=\ht0 %\advance\dimen@ by -1.4ex \raise\dimen@\hbox{\sx\char'160}#1% %\raise\dimen@\hbox{\sx\char'161}}\kern1pt} %\def\apply#1{\leavevmode\,\setbox0=\hbox{$#1$}{\dimen@=\ht0 %\advance\dimen@ by %..5ex\raise\dimen@\hbox{\smash{\tencircw\char7}}}\kern-4.0pt#1} %\catcode`@=12 %\font\bow=msbm10 %\def\dotcup{\buildrel\textstyle.\over\cup} %\def \newcommand\sub{\mathrel{\raise.4ex\hbox{$\mathop{\subset} \limits_{\rightarrow}$}}} %\def\Sup{\mathop{\rm sup\vphantom{\sum}}} \newcommand\Sup{\operatorname{sup}\vphantom{\sum}} %\def\pmb#1{\leavevmode\setbox0=\hbox{#1}% % \kern-.025em\copy0\kern-\wd0 % \kern.05em\copy0\kern-\wd0 % \kern-.025em\raise.0433em\box0} %\def\Romannumeral#1{{\uppercase\expandafter{\romannumeral#1}}} %\font\tensc=cmcsc10 \font\eightsc=cmcsc8 %\newfam\scfam \def\sc{\fam\scfam\tensc} %\textfont\scfam=\tensc \scriptfont\scfam=\eightsc %\def\qed{\vrule height .9ex width .8ex depth -.1ex } % square bullet %\font\blbx=msam10 %\font\bbr=msbm10 %blackboard bold R %\font\bigfont=cmbx10 at 12pt %\def %\newcommand\twid#1{\mathrel{\raise.4ex\hbox{$\mathop{#1} %\limits_{\sim}$}}} %to be worked out %\def\twidd#1{\mathrel{\raise.4ex\hbox{$\mathop{\scriptstyle{#1}} %\limits_{\sim}$}}} %Put twiddle beneath a symbol (maybe) \newcommand{\un}{\underbar} %\newcommand{\bc}{\begin{center}} %\newcommand{\ec}{\end{center}} \newcommand{\ov}{\overline} \newcommand{\varp}{\varepsilon} \newcommand{\GCD}{\operatorname{GCD}} \newcommand{\Spec}{\operatorname{Spec}} \begin{document} \title{$\Bbb C^*$-actions on $\Bbb C^3$ are linearizable} %\markboth{S. KALIMAN, M. KORAS, L. MAKAR-LIMANOV, AND P. RUSSELL} %{$\C^{\hbox{*}}$-ACTIONS ON $\C^{\hbox{3}}$ ARE LINEARIZABLE} %\setlength{\parskip}{1mm} %\begin{center}{\Large\bf $\C^*$-actions on $\C^3$ are linearizable}\\ %by\\ %S. Kaliman %\footnote {Partially supported by NSA grant}, %M. Koras, L. Makar-Limanov and P. Russell %\end{center} \author{S. Kaliman} \address{Department of Mathematics \& Computer Science, University of Miami, Coral Gables, FL 33124} \email{kaliman@paris-gw.cs.miami.edu} \author{M. Koras} \address{Institute of Mathematics, Warsaw University, Ul. Banacha 2, Warsaw, Poland} \email{koras@mimuw.edu.pl} \author{L. Makar-Limanov} \address{Department of Mathematics \& Computer Science, Bar-Ilan University, 52900 Ramat-Gan, Israel, and Department of Mathematics, Wayne State University, Detroit, MI 48202} \email{lml@bimacs.cs.biu.ac.il; lml@math.wayne.edu} \author{P. Russell} \address{Department of Mathematics \& Statistics, McGill University, Montreal, QC, Canada, and Centre Interuniversitaire, en Calcul Math\'ematique, Alg\'ebrique (CICMA)} \email{russell@Math.McGill.CA} \thanks{The first author was partially supported by an NSA grant} \commby{Hyman Bass} \date{March 5, 1997} \subjclass{Primary 14L30} %\issueinfo{3}{1}{June}{1997} \copyrightinfo{1997}{American Mathematical Society} \begin{abstract} We give the outline of the proof of the linearization conjecture: every algebraic $ %{\bf \C^*$-action on $ %{\bf \C^3$ is linear in a suitable coordinate system. \end{abstract} \maketitle %\vspace{1.0cm}\bigskip\begin{center}{\bf 1.\quad Introduction}\end{center}\medskip \section{Introduction} The purpose of this note is to outline the main ingredients in a proof of the following %\vspace{.1cm}{\bf \begin{linthm} %:\quad Every algebraic action of the torus $T=\C^*$ on affine space $X=\C^3$ is linearizable, that is linear in suitably chosen coordinates for $X$. \end{linthm} %\vspace{.1cm} It is known that the action has a fixpoint $0\in X$ (\cite{B-B}). The {\em weights} of the action are the weights %$$ \[ a_1,\ a_2,\ a_3 %$$ \] of the (diagonalized) action on the tangent space $T_0X$. (They are independent of the choice of fixpoint \cite{KbR}.) We will assume tacitly that the action is effective, or, equivalently, that $\GCD(a_1, a_2, a_3)=1$. Put %$$ \[ \delta =\dim X//T,\quad \tau = \dim X^T. %$$ \] Then $2\ge\delta\ge\tau\ge 0$. %\vspace{.1cm} It is known that {\em fixpointed} actions, that is those for which all weights have the same sign, are linearizable \cite{KbR}. This settles the following cases: %\vspace{.1cm} $\delta =0=\tau$, or three nonzero weights of the same sign; $\delta =1=\tau$, or one zero weight, two nonzero weights of the same sign; $\delta =2=\tau$, or two zero weights, one nonzero weight. %\vspace{.1cm} \noindent The case %\vspace{.1cm} $\delta=2, \tau=1$, or one zero weight, two nonzero weights of opposite sign, %\vspace{.1cm} \noindent was settled in \cite{KR1}. %\vspace{.1cm} It remains to consider the %{\bf Hyperbolic Case}:\quad \begin{hcase} $\delta=2, \tau=0$, or three nonzero weights, not all of the same sign. \end{hcase} %\vspace{.2cm} A program to settle this case was proposed in \cite{KR2}. It has two quite distinct components. %\vspace{.1cm}{\bf Step I}, {\em the quotient}. \begin{stepi} Show that $X//T$ is as expected for a linear action, i.e. %$$ \[ X//T\simeq T_0X//T. %$$ \] \end{stepi} Let $\omega_\alpha\subset\C^*$ be the group of $\alpha $-roots of 1. Linearizability follows from Step I (see \ref{1:4} below) in the case $\dim X^{w_\alpha}\le 1$ for all $ \alpha >1$, or equivalently, if the weights are pairwise relatively prime. This leads to %\vspace{.1cm}{\bf Step II}, {\em reduction of weights}. \begin{stepii} Reduction of the proof to the case of pairwise relatively prime weights. \end{stepii} %\vspace{.1cm} If $\alpha >1$ and $\alpha$ divides two weights, then $X'=X/\omega_\alpha $ is a smooth, affine threefold, but only after linearizability has been established is it at all clear that $X'\simeq\C^3$. We are therefore led to study more general $\C^*$-threefolds. %\vspace{.2cm} %{\bf 1.1\quad Standard conditions}: \subsection{Standard conditions}\label{1:1} Let $X$ be a $\C^*$-threefold. We consider the following conditions. %\vspace{.1cm} (i) $X$ is smooth and the action of $T=\C^*$ is {\em hyperbolic}, %$$ \[ %\mbox \text{i.e. there is a unique fixpoint}\ 0\ %\mbox \text{and}\ \dim X//T=2. %$$ \] (ii) $X$ is contractible. (iii) $\ov\kappa (X)=-\infty $ ($\ov\kappa =$ logarithmic Kodaira dimension). %\vspace{.1cm} If we have \ref{1:1} (i), the weights of the action are defined as above for $X=\C^3$, and we assume %$$ \[ a_1 <0,\ a_2>0,\ a_3>0,\qquad \GCD(a_1,a_2,a_3)=1. %$$ \] We put %$$ \[ \alpha _i=\GCD(\{ a_1, a_2, a_3\}-\{ a_i\}). %$$ \] Then %$$ \[ -a_1=a\alpha_2\alpha_3, \quad a_2=b\alpha_1\alpha_3, \quad a_3=c\alpha_1\alpha_2 %$$ \] with $a,b,c>0$ and {\em reduced} (pairwise relatively prime). %\vspace{.2cm}{\bf 1.2\quad Proposition} (\cite{KR3}, 2.5): \begin{prop}[{\cite{KR3}, 2.5}]\label{1:2} Let $X$ satisfy \ref{1:1} (i). %\vspace{.1cm} (i) Suppose $\alpha_i>1$. Then $\dim X^{\omega_{\alpha_i}}=2$ and %$$ \[ X'=X/\omega_{\alpha_i} %$$ \] satisfies \ref{1:1} (i) for $T'=T/\omega_{\alpha_i}\simeq\C^*$ with weights $a_i$ and $a_j/\alpha _i$ for $j\ne i$. (ii) $X^\# =X/\omega_{\alpha_1\alpha_2\alpha_3}$ satisfies \ref{1:1} (i) for $T^\# =T/\omega_{\alpha_1\alpha_2\alpha_3}\simeq\C^*$ and {\em reduced} weights $-a,b,c$. (iii) $X//T=X'//T'=X^\# //T^\#$. (iv) If $X$ satisfies \ref{1:1} (ii) or (iii), then so do $X'$ and $X^\# $. \end{prop} %\vspace{.2cm} Let $X$ satisfy \ref{1:1} (i) and (ii). We put (\cite{KR3}, 1.4) %$$ \[ X^+=\{x\in X |\lim_{t\rightarrow 0}t\cdot x=0\}. %$$ \] Then $X^+\simeq\C^2$ and $X^+=F^{-1}(0)$, where $F$ is semiinvariant of weight $a_1.\ \omega_{a_1}$ acts on %$$ \[ X_1=F^{-1}(1) %$$ \] and we have (\cite{KR1}, Lemma 2) %\vspace{.2cm}{\bf 1.3} \hskip 2truein \subsection{} $X//T\simeq X_1/w_{a_1}$. %\vspace{.2cm} The reduction of the proof to Steps I and II is now contained in %\vspace{.2cm}{\bf 1.4 Proposition} ([KR3] ): \begin{prop}[{\cite{KR3}, 2.3, 2.8, and 1.10}]\label{1:4} Let $X$ satisfy \ref{1:1} (i) and (ii) and suppose the weights are reduced. If %$$ \[ X//T\simeq T_0 X//T, %$$ \] or equivalently %$$ \[ X_1/\omega_a\simeq\C^2/\omega_a, %$$ \] where $\omega_a$ acts diagonally on $\C^2$ with weights $\equiv b,c \mod a$, then %$$ \[ X_1\simeq\C^2, %$$ \] and %$$ \[ X\simeq_e\C^3 %$$ \] ($X$ is equivariantly isomorphic to $\C^3=T_0X$). \end{prop} %\vglue .5truein\bigskip\bc{\bf 2.\quad The quotient}\ec\medskip \section{The quotient} %\vspace{.2cm} {\bf 2.1 Theorem} (\cite{KR4}, 1.2): \begin{thm}[{\cite{KR4}, 1.2}]\label{2:1} Suppose $X$ satisfies all conditions of \ref{1:1}. Then %$$ \[ S'=X//\C^*\simeq T_0 X//\C^* . %$$ \] \end{thm} By \ref{1:2}, we may assume the weights are reduced when studying the quotient. Also, \ref{2:1} is known (\cite{KR2}) when $S'$ is smooth, or equivalently $a=1$. So we assume $a>1$. Then by \cite{KR4}, 2.4 %\vspace{.2cm}{\bf \ref{2:2}} \subsection{}\label{2:2} $S'$ is contractible, $\ov\kappa(S')=-\infty,\ S'$ has a unique singular point $q,\ q$ is analytically of the type of the origin in $\C^2/\omega_a$, and Pic$(S'-q)\simeq\Z/a\Z$. %\vspace{.2cm}{\bf 2.3 Theorem } (\cite{K}): \begin{thm}[{\cite{K}}]\label{2:3} If $S'$ is as in \ref{2:2}, then %\vspace{.1cm} (i) if $\ov\kappa(S'-q)=-\infty$, then $S'\simeq\C^2/\omega_a$, %\vspace{.1cm} (ii) $\ov\kappa(S'-q)\neq 0,1$. \end{thm} %\vspace{.2cm} It remains to rule out $\ov\kappa(S'-q)=2$ to complete Step I. %\vspace{.2cm}{\bf 2.4 Theorem} (\cite{KR4}, \ref{1:1}): \begin{thm}[{\cite{KR4}, 1.1}]\label{2:4} Let %$$ \[ S'=X//T %$$ \] with $X$ satisfying all conditions of \ref{1:1}. Then %$$ \[ \ov\kappa(S'-q)<2. %$$ \] \end{thm} %\vspace{.2cm} The proof is rather involved. It relies in a crucial way on the theory of open algebraic surfaces, in particular the inequalities of Miyaoka \cite{M} and Kobayashi \cite{Ko} and the results on the existence of affine rulings of Miyanishi and Tsunoda \cite{MT}. %\vspace{.2cm}{\bf 2.5 Proposition} (\cite{KR4}, 2.8): \begin{prop}[{\cite{KR4}, 2.8}]\label{2:5} Let $S'$ be as in \ref{2:4}. There exists a desingularization $S$ of $S'$ admitting an $\A^1$-ruling with all but one component $E$ of the exceptional locus $\hat E$ in fibres. Moreover, $S-\Delta$ is simply connected, where $\Delta=\hat E-E$. \end{prop} %\vspace{.2cm} The proof of \ref{2:4} proceeds by a detailed analysis of such ``good'' rulings under the conditions of \ref{2:2}. %\vglue .5truein\newpage\bigskip\bc{\bf 3.\quad \section{Reduction of weights and ``exotic affine spaces''} %\ec\medskip %\vspace{.2cm} Step II, the reduction of weights, is achieved in a roundabout way. In \cite{KR3}, an explicit construction is given of a class of smooth, contractible $\C^*$-threefolds that encompasses, in the equivariant sense, all possible counterexamples to linearization. It is then shown in \cite{KM-L} that only the ``obviously'' equivariantly trivial threefolds in the class are isomorphic to $\C^3$ (without reference to the $\C^*$-action). The others are in themselves interesting examples of ``exotic affine spaces'' (algebraic varieties homeomorphic to $\C^3$). They include the threefolds described in \cite{D}, 4.36. %\vspace{.2cm}{\bf 3.1 Theorem} (\cite{KR3}, 4.1): \begin{thm}[{\cite{KR3}, 4.1}]\label{3:1} The threefolds %$$ \[ X=%\mbox \Spec A %$$ \] satisfying \ref{1:1} (i) and (ii) and %$$ \[ X//\C^*\simeq T_0 X//\C^* %$$ \] are precisely the ones obtained as follows. %\vspace{.1cm} (1) Let %$$ \[ -a=a'_1,\ b=a'_2,\ c=a'_3 %$$ \] be a triple of reduced weights with $a,b,c>0$. (These define a hyperbolic $\C^*$-action on %$$ \[ W=%\mbox \Spec B\simeq\C^3 %$$ \] with $B=\C[\eta,\xi,\zeta]$ and $\eta,\xi,\zeta$ homogeneous of weight $-a,b,c$). %\vspace{.1cm} (2) Let %$$ \[ \alpha_1,\alpha_2,\alpha_3 %$$ \] be a reduced triple of positive integers with $\GCD(\alpha_i, a'_i)=1,\ i=1,2,3$. %\vspace{.1cm} (3) Let $C_2$ and $C_3$ be $\omega_a$-homogeneous ``lines'' (curves isomorphic to $\C$) in $W_1=%\mbox \Spec k[\xi,\zeta]\simeq\C^2$, identified with $\eta^{-1}(1)\subset W$, such that %\vspace{.2cm} (i) $C_2$ and $C_3$ meet normally in $r\geq 1$ points, including the origin, %\vspace{.1cm} (ii) $U_i=\overline{\C^*\cdot C_i}\subset W$ is smooth, $i=2,3$. %\vspace{.2cm} (4) Let $U_1=W^+=\eta^{-1}(0)$. %\vspace{.2cm} Then $X$ is the ``tri-cyclic'' cover of $W$ ramified to order $\alpha_i$ over $U_i,\ i=1,2,3$, that is, %$$ \[ A=B[z_1,z_2,z_3], %$$ \] where $z^{\alpha_i}_i=u_i$ with $u_1=\eta$ and for $i=2,3,\ u_i$ is an equation for $U_i$ and uniquely determined by %$$ \[ s^{-a'_i}f_i(\xi s^{a'_2},\zeta s^{a'_3})=u_i(s^{-a'_1},\xi,\zeta), %$$ \] where $f_i$ is an equation for $C_i\subset W_1$. %\vspace{.2cm} Moreover, %$$ \[ B=\C[u_1,u_2,u^*_3]=\C[u_1,u^*_2,u_3], %$$ \] with $u_i$ and $u^*_i$ homogeneous of weight $a'_i$ and if \[ %\begin{array}{rl} u_2=G_2(u_1,u^*_2,u_3)\quad%\mbox \text{and}\quad u_3=G_3(u_1,u_2,u^*_3), \] then the equations \[ %\begin{array}{l} z^{\alpha_2}_2=G_2(z^{\alpha_1}_1,z^*_2,z^{\alpha_3}_2) \quad%\mbox \text{and} \quad z^{\alpha_3}_3=G_3(z^{\alpha_1}_1,z^{\alpha_2}_2,z^*_3) \] describe $X$ (in two ways) as a hypersurface in $\C^4$. \end{thm} %\vspace{.2cm}{\bf 3.1.1 Remark} (i): \begin{rmk} 1) (3)(ii) imposes a rather mild restriction that can be made quite explicit (\cite{KR3}, 1.11.1). 2) Possibilities for $f_2,f_3$, and hence for $G_2,G_3$, can be worked out explicitly with the help of the {\em epimorphism theorem} of Abhyankar, Moh and Suzuki \cite{AM}, \cite{S}. \end{rmk} %\vspace{.2cm} The key to \ref{3:1} is the following observation. %\vspace{.2cm}{\bf 3.2 Proposition} (\cite{KR3}, 2.6, 2.7): \begin{prop}[{\cite{KR3}, 2.6, 2.7}]\label{3:2} Suppose $X$ is as in \ref{3:1} and $\alpha_2=1,\ \alpha_3>1$. Then %$$ \[ X/\omega_{\alpha_3}\simeq_e\C^3\ %\mbox \text{implies}\ X\simeq_e\C^3 . %$$ \] A similar result holds if $\alpha_2>1,\ \alpha_3=1$. Also, %$$ \[ X/\omega_{\alpha_1}\simeq_e\C^3\ %\mbox \text{implies}\ X\simeq_e\C^3. %$$ \] \end{prop} In view of \ref{1:4} we obtain a commutative diagram %\newpage \[\begin{array}{ccccc} & &X& & \\ & & & & \\ &\swarrow& &\searrow& \\ & & & & \\ \C^3\simeq_eX/\omega_{\alpha_2}& & & &X/\omega_{\alpha_3}\simeq_e\C^3\\ & & & & \\ &\searrow& &\swarrow& \\ & & & & \\ & &X/\omega_{\alpha_2\alpha_3}\simeq_e\C^3& & \\ & & & & \\ & &\downarrow& & \\ & &X/\omega_{\alpha_1\alpha_2\alpha_3}\simeq_e\C^3& & \end{array}\] \ref{3:1} is an elaboration of the possibilities for such a diagram. It is not difficult to decide when $X$ is equivariantly isomorphic to $\C^3$ (see \ref{3:4}). The question of just isomorphism with $\C^3$, on the other hand, proved to be much more elusive. %\vspace{.2cm} %{\bf 3.3} \subsection{} Let us for instance choose $a=b=c=1,\ \alpha_2=2$ and $\alpha_3=3$ and a parabola and straight line for $C_2$ and $C_3$. Then in suitable coordinates $X$ is defined in $\C^4$ by %$$ \[ x+x^2y+z^2+t^3=0. %$$ \] $X$ is dominated birationally by $\C^3$ and there exists a surjective quasi-finite map $\C^3\rightarrow X$ (\cite{KR3}, 7.7 and 7.8). It is shown in \cite{M-L1} that, nevertheless, $X$ is not isomorphic to $\C^3$. The proof is based implicitly on the computation of the following invariant: %$$ \[ AK(X) = \bigcap_{\partial \in LND(X)} %{\rm Ker} \ker \partial %$$ \] where $LND(X)$ is the set of locally nilpotent derivations on the ring $\C [X]$ of regular functions on $X$. For this hypersurface $AK(X) \ne \C$, but clearly $AK(\C^3 ) = \C$.\\ %\vspace{.2cm} Let $X$ be as in \ref{3:1}. We define %$$ \[ \varp=(r-1)(\alpha_2-1)(\alpha_3-1) %$$ \] ($\varp=$ rank $\pi_2(X-X^+)$ is an invariant of the higher-dimensional knot $(X,X^+)$ (\cite{KR3}, 4.8)). %\vspace{.2cm}{\bf 3.4 Theorem} (\cite{KR3}, remark following 5.1): \begin{thm}[{\cite{KR3}, remark following 5.1}]\label{3:4} Let $X$ be as in \ref{3:1}. Then $X\simeq_e\C^3$ if and only if $\varp=0$. \end{thm} %\vspace{.2cm}{\bf 3.5 Theorem} (\cite{KM-L}): \begin{thm}[{\cite{KM-L}}]\label{3:5} Let $X$ be as in \ref{3:1}. If $\varp>0$, then $X\not\simeq\C^3$. %\\ \end{thm} %\vspace{.2cm} If now $X$ is $\C^3$ with a hyperbolic $\C^*$-action, then by \ref{2:1} it is one of the $X$ in \ref{3:1} and hence $X\simeq_e\C^3$ by \ref{3:4} and \ref{3:5}. %\vglue .5truein\bigskip\bc{\bf 4.\quad The computation of $AK(X)$}\ec\medskip \section{The computation of $AK(X)$} %\vspace{.2cm} {\bf 4.1} \subsection{}\label{4:1} Theorem \ref{3:5} is again the consequence of the fact that $AK(X) \ne \C$ \cite{KM-L}. More precisely, $AK(X) = \C [X]$ unless $X$ is isomorphic to a hypersurface in $\C^4$ given by one of the following equations: \[ \begin{array}{rr} %\mbox \text{(i)}& \, \, \, \, \, x+x^ky+z^{\alpha_2}+t^{\alpha_3}=0\quad %{\rm \text{or}\\ \qquad \\ %\mbox \text{(ii)}& \, \, \, \, \, x+y(x^k+z^{\alpha_2})^l+t^{\alpha_3}=0 \end{array} \] where $k \geq 2, l \geq 1,\ %{\rm \text{and in the second equation}\ (kl, \alpha_3)=1$. In case (i) $AK(X)$ is the restriction of $\C [x]$ to $X$ and in case (ii) $AK(X)$ is the restriction of $\C [x,z]$ to $X$. %\vspace{.2cm}{\bf 4.2} \subsection{}\label{4:2} The scheme of the computation of $AK(X)$ is discussed below. Every $X$ from \ref{3:1} is the hypersurface $P(x,y,z,t)=0$ where \[ %\begin{array}{rl} (x,y,z,t)=(z_3^*,z_1,z_2,z_3) \quad %{\rm \text{and}\quad P(x,y,z,t)=t^{\alpha_3}-G_3(y^{\alpha_1},z^{\alpha_2},x). \] The polynomials from \ref{4:1} (i) and (ii) are examples of such $P$. A derivation $\partial$ on $\C [X]$ is said to be of {\em Jacobian type} if $\partial (f)$ coincides with the restriction of $J_{x,y,z,t}(P,\varphi_1,\varphi_2,\varphi )$ to $X$ where $\varphi_1,\varphi_2 \in \C [x,y,z,t]$ are fixed and the restriction of $\varphi \in \C [x,y,z,t]$ to $X$ coincides with $f \in \C [X]$. %\vspace{.2cm}{\bf 4.3 Proposition} (\cite{KM-L}): \begin{prop}[{\cite{KM-L}}]\label{4:3} Let $\delta \in LND(X)$ be nontrivial and let $\varphi_1,\varphi_2$ be such that $\varphi_1|_X,\varphi_2|_X\in %{\rm Ker \ker %} \delta$ and $P, \varphi_1,\varphi_2$ are algebraically independent. Then $\partial$ has the same kernel as $\delta$. \end{prop} Furthermore, since the transcendence degree of the field of fractions of $%{\rm Ker} \ker\delta$ is $2$ \cite{M-L1}, one can always find $\varphi_1,\varphi_2,$ and therefore $\partial$ as above. %\vspace{.2cm}{\bf \ref{4:4}} \subsection{}\label{4:4} We consider degree functions $L$ on $\C[x,y,z,t]$ obtained by assigning real weights to the variables. The $L$-quasi-leading part $\varphi^L$ of a nonzero polynomial $\varphi$ is the sum of the terms from $\varphi$ whose $L$-degree coincides with $L(\varphi)$. Suppose, given $\varphi_1$, there exists a degree function $L_1$ with positive values such that for any other degree function $L_2$ with positive values each nonzero monomial from $\varphi^{L_2}$ is also present in $\varphi^{L_1}$. We then call %$$ \[ \hat\varphi :=\varphi^{L_1} %$$ \] the quasi-leading part of $\varphi$. In cases \ref{4:1} (i) and (ii) $\hat {P}$ coincides with $x^ky+z^{\alpha_2}+t^{\alpha_3}$ and $y(x^k+z^{\alpha_2})^l+t^{\alpha_3}$ respectively. In all other cases $\hat {P}$ also exists and can be computed explicitly by virtue of the Abhyankar-Moh-Suzuki theorem (see 3.1.1 (ii)). Consider further only those degree functions (may be with negative values) which satisfy the condition %$$ \[ P^L = \hat {P}. %$$ \] %{\bf 4.5 Proposition} (\cite{KM-L}): \begin{prop}[{\cite{KM-L}}]\label{4:5} Let $\partial$ be a nontrivial locally nilpotent derivation of Jacobian type on $\C [X]$. Then polynomials $\varphi_1,\varphi_2$ can be chosen so that $\varphi_1|_X,\varphi_2|_X\in\ %{\rm Ker} \ker \partial$ and $\hat {P} , \varphi_1^L,\varphi_2^L$ are algebraically independent. \end{prop} %\vspace{.2cm}{\bf 4.6} \subsection{}\label{4:6} With $\partial$ as in \ref{4:5}, suppose that $\hat {X}$ is the hypersurface $\hat {P} (x,y,z,t)=0 $ in $\C^4$ and that $\partial^L$ is the derivation on $\C [{\hat X}]$ such that $\partial^L (f)$ coincides with restriction of $J_{x,y,z,t}(\hat {P},\varphi_1^L,\varphi_2^L,\varphi )$ to $\hat {X}$, where the restriction of $\varphi \in \C [x,y,z,t]$ to $\hat {X}$ coincides with $f \in \C [\hat {X}]$. Then $\partial^L$ is nontrivial and also locally nilpotent \cite{M-L1}. %\vspace{.2cm}{\bf 4.7} \subsection{}\label{4:7} Since $\hat {P}$ is known explicitly, we can find all nontrivial locally nilpotent derivations of Jacobian type on $\C [{\hat {X}}]$. If $P$ is not as in \ref{4:1} (i) or (ii) there are no such derivations. By \ref{4:3} and \ref{4:6} there is no nontrivial locally nilpotent derivation on $\C [{X}]$, that is, $AK(X)= \C [X]$. %\vspace{.2cm}{\bf 4.8} \subsection{}\label{4:8} In case \ref{4:1} (ii) the kernel of any nontrivial locally nilpotent derivation $\partial^L$ on $\C [{\hat {X}}]$ is contained in $\C [x,z] |_{\hat {X}}$. Since this is true for every $L$ satisfying condition \ref{4:4}, it follows (\cite{KM-L}, Theorem 8.4) that the kernel of the corresponding nontrivial locally nilpotent derivation $\partial$ on $\C [X]$ is contained in $\C [x,z]|_X$. The transcendence degree of the field of fractions of $\ker\partial$ is 2 and $\ker\partial$ is algebraically closed in $\C [X]$ \cite{M-L1}. Hence $\ker\partial = \C [x,z]$. In case \ref{4:1} (ii) nontrivial locally nilpotent derivations on $\C [X]$ exist, for instance $J_{x,y,z,t}(P,x,z,\varphi)|_X$. This yields $AK(X)=\C [x,z]|_X$. %\vspace{.2cm}{\bf 4.9} \subsection{}\label{4:9} In case \ref{4:1} (i) nontrivial locally nilpotent derivations on $\C [X]$ exist as well. Examples are $J_{x,y,z,t}(P,x,z,\varphi)|_X$ and $J_{x,y,z,t}(P,x,t,\varphi)|_X$. The intersection of the kernels of these locally nilpotent derivations is $\C [x]|_X$, whence it suffices to show that $x \in %{\rm Ker} \ker \partial$ for every nontrivial $\partial \in LND(X)$. It can be shown that $ %{\rm Ker} \ker \partial^L \subset \C [x,z,t]|_{\hat {X}}$ \cite{KM-L}. Varying $L$ under the condition \ref{4:4} we prove that $ %{\rm Ker} \ker\partial \subset \C [x,z,t]|_X$. From this we deduce that $\partial (\C [x,z,t]|_X) \subset x^k \C [x,z,t]|_X$ with $k$ as in \ref{4:1}. Since $\C [x,z,t]|_X \not\subset %{\rm Ker} \ker\partial$, there exists $f \in %{\rm Ker} \ker \partial \setminus 0$ which is divisible by $x$, and then $x\in %{\rm Ker} \ker\partial$ by \cite{FLN}, that is, $AK(X)=\C [x]$. %Let $g \in %{\rm Ker}\ker \partial^2 \setminus %{\rm Ker}\ker \partial$. %For every $h \in \C [X]$ there exist %$f,f_0,f_1, \ldots ,f_n \in %{\rm Ker} %\ker\partial$ %such that $f \ne 0$ and $fh=\sum_{i=0}^n f_ig^i$ [M-L1]. %Using this equality for $h=y$ we see that %$y=\psi /f$ on $X$ where both $f,\psi \in \C [x,z,t]|_X$. %On the other hand $y=-(x+z^{\alpha_2}+t^{\alpha_3})x^{-k}$ %by 3.6(i). Hence $f$ is divisible by $x$, and then %$x \in %{\rm Ker}\ker \partial$ by [M-L1], that is, $AK(X)=\C [x]$.\\ %\vglue .5truein\bigskip\bc{\bf 5.\quad Further results}\ec\medskip \section{Further results} Once \ref{2:5} and \ref{2:2} are established, the fact that $S'=X//T$ can be forgotten in the proof of \ref{2:4}. In special cases, a geometric characterization of $\C^2/\omega_a$ is obtained. %\vspace{.2cm}{\bf 5.1 Theorem} (\cite{KR4}, 10.1): \begin{thm}[{\cite{KR4}, 10.1}]\label{5:1} Suppose $S'$ is as in \ref{2:2}. If either $q$ is an ordinary $a$-fold point, that is $b\equiv c\mod a$, or the minimal resolution of $q$ is a single $(-a)$-curve, or $q$ is a rational double point, that is, $b\equiv -c \mod a$, or the minimal resolution of $q$ is a chain of $a-1\ (-2)$-curves, then %$$ \[ S'\simeq\C^2/\omega_a . %$$ \] \end{thm} We do not know whether the restriction on the analytic type of $q$ is needed in \ref{5:1}. %\vspace{.1cm} Extending the arguments of \cite{KP}, Popov \cite{P} recently proved that any effective action of a noncommutative, connected reductive group on $\C^3$ is linearizable. Since effective actions of $(\C^*)^r,\ r>1$, are linearizable by \cite{B-B}, we obtain %\vspace{.2cm}{\bf 5.2 Theorem}: \begin{thm}\label{5:2} Any action of a connected, reductive group $G$ on $\C^3$ is linearizable. \end{thm} %\vspace{.1cm} It is an open question whether the connectedness assumption in \ref{5:2} can be removed, and in particular, whether finite group actions on $\C^3$ are linearizable. %\vspace{.1cm} It is reasonable to expect that our methods and results will shed some light in general on codimension 2 torus actions on $\C^n$. As an illustration, consider the possibility that $X\times\C\simeq\C^4$, where $X$ is a $\C^*$-threefold. For linearizability of the obvious $(\C^*)^2$-action the following {\em weak cancellation conjecture} is required: {\em Let $X$ be an affine threefold such that $X\times\C\simeq\C^4$. Then $X\simeq\C^3$ or $X$ does not admit an effective $\C^*$-action}. This is known for nonhyperbolic actions. For hyperbolic actions, one would have to show that $X\times\C\not\simeq\C^4$ for the threefolds in \ref{3:1}. This is true in the case when $X$ is not isomorphic to a hypersurface of the form \ref{4:1} (i) or (ii) since $AK(Y \times \C)= \C [Y]$ for every algebraic manifold $Y$ with $AK(Y) = \C [Y]$ \cite{M-L2}. %\vspace{.2cm} We remark that linearizability of $\G_m$-actions on $\A^3$ in positive characteristic is an open question, even in certain nonhyperbolic cases. %\bc %{\bf References} %\ec \begin{thebibliography}{GGGG} %\vglue .25truein %\begin{itemize} \bibitem[AM]{AM} S. S. Abhyankar, T.-T. Moh, {\em Embeddings of the line in the plane}, J. Reine Angew. Math. {\bf 276} (1975), 148--166. \MR{52:407} \bibitem[B-B]{B-B} A. Bialynicki-Birula, {\em Remarks on the action of an algebraic torus on $k^n$}, I and II, Bull. Acad. Polon. Sci. Ser. Sci. Math. {\bf 14} (1966), 177--181 and {\bf 15} (1967), 123--125. \MR{34:178}; \MR{35:6666} \bibitem[D]{D} A. Dimca, {\em Singularities and topology of hypersurfaces}, Universitext, Springer, 1992. \MR{94b:32058} \bibitem[FLN]{FLN} M. Ferrero, Y. Lequain, A. Nowicki, {\em A note on locally nilpotent derivations}, J. Pure Appl. Algebra {\bf 79} (1992), 45--50. \MR{93b:13007} \bibitem[K]{K} M. Koras, {\em A characterization of $\A^2/\Z_a$}, Comp. Math. {\bf 87} (1993), 241--267. \MR{94e:14045} \bibitem[Ko]{Ko} R. Kobayashi, {\em Uniformization of complex surfaces}, Adv. Stud. Pure Math. {\bf 18} (1990), 313--394. \MR{93g:32042} \bibitem[KbR]{KbR} T. Kambayashi, P. Russell, {\em On linearizing algebraic torus actions}, J. Pure Applied Algebra, {\bf 23} (1982), 243--250. \MR{83d:14027} \bibitem[KM-L]{KM-L} S. Kaliman, L. Makar-Limanov, {\em On the Russell-Koras contractible threefolds}, J. Alg. Geometry (to appear). \bibitem[KP]{KP} H. Kraft, V. Popov, {\em Semisimple group actions on the three-dimensional affine space are linear}, Comment. Math. Helv. {\bf 60} (1985), 466--479. \MR{87a:14039} \bibitem[KR1]{KR1} M. Koras, P. Russell, {\em $\G_m$-actions on $\A^3$}, Canad. Math. Soc. Conf. Proc. {\bf 6} (1986), 269--276. \MR{87j:14076} \bibitem[KR2]{KR2} M. Koras, P. Russell, {\em On linearizing ``good'' $\C^*$-actions on $\C^3$}, Can. Math. Soc. Conf. Proc. {\bf 10} (1989), 92--102. \MR{90i:14050} \bibitem[KR3]{KR3} M. Koras and P. Russell, {\em Contractible threefolds and $\C^*$-actions on $\C^3$}, CICMA reports 1995-04, to appear in J. Alg. Geometry. \bibitem[KR4]{KR4} M. Koras and P. Russell, {\em Actions on $\C^3$: the smooth locus is not of hyperbolic type}, CICMA reports, 1996-06. \bibitem[M]{M} Y. Miyaoka, {\em The maximal number of quotient singularities on surfaces with given numerical invariants}, Math. Ann. {\bf 26} (1984), 159--171. \MR{85j:14060} \bibitem[M-L1]{M-L1} L. Makar-Limanov, {\em On the hypersurface $x+x^2y+z^2+t^3=0$ in $\C^4$}, Israel Math. J. {\bf 96} (1996), 419--429. \CMP{97:08} \bibitem[M-L2]{M-L2} L. Makar-Limanov, {\em Facts about cancellation}, preprint, 1996. \bibitem[MT]{MT} M. Miyanishi, S. Tsunoda, {\em Noncomplete algebraic surfaces with logarithmic Kodaira dimension $-\infty$ and with nonconnected boundaries at infinity}, Japan J. Math {\bf 10} (1984), 195--242. \MR{88b:14029} \bibitem[P]{P} V. Popov, {\em Algebraic actions of connected reductive groups on $\A^3$ are linearizable}, preprint, 1996. \bibitem[S]{S} M. Suzuki, {\em Propri\'et\'es topologiques des polynomes de deux variables complexes et automorphismes alg\'ebriques de l'espace $\C^2$}, J. Math. Soc. Japan {\bf 26} (1974), 241--257. \MR{49:3188} %\end{itemize} \end{thebibliography} %\vglue .5truein %\begin{tabular}{ll} %Sh. Kaliman& M. Koras\\ %Department of Mathematics&Institute of Mathematics\\ %\& Computer Science&Warsaw University\\ %University of Miami&Ul. Banacha 2\\ %Coral Gables, FL 33124&Warsaw\\ %U.S.A.&Poland\\[3ex] %L. Makar-Limanov&K.P. Russell\\ %Department of Mathematics&Department of Mathematics \\ %\& Computer Science&\& Statistics\\ %Bar-Ilan University&McGill University\\ %52900 Ramat-Gan&Montreal, QC\\ %Israel;&Canada;\\ %Department of Mathematics&Centre Interuniversitaire\\ %Wayne State University&en calcul Math\'ematique\\ %Detroit, MI 48202&Alg\'ebrique (CICMA)\\ %U.S.A.& \quad %\end{tabular} \end{document} \endinput 02-Jul-97 08:47:04-EST,586328;000000000000 Return-path:Return-path: aom@math.psu.edu Received: from AXP14.AMS.ORG by AXP14.AMS.ORG (PMDF V5.1-8 #16534) id <01IKR74IEJ4G001O4K@AXP14.AMS.ORG>; Wed, 2 Jul 1997 08:46:59 EST Received: from gate1.ams.org by AXP14.AMS.ORG (PMDF V5.1-8 #16534) with SMTP id <01IKQ3TTI5HS001ZFV@AXP14.AMS.ORG>; Tue, 01 Jul 1997 13:59:51 -0500 (EST) Received: from leibniz.math.psu.edu ([146.186.130.2]) by gate1.ams.org via smtpd (for axp14.ams.org [130.44.1.14]) with SMTP; Tue, 01 Jul 1997 17:59:10 +0000 (UT) Received: from pascal.math.psu.edu (aom@pascal.math.psu.edu [146.186.130.199]) by math.psu.edu (8.8.5/8.7.3) with ESMTP id NAA20019 for ; Tue, 01 Jul 1997 13:59:07 -0400 (EDT) Received: (from aom@localhost) by pascal.math.psu.edu (8.8.5/8.7.3) id NAA07300 for pub-submit@MATH.AMS.ORG; Tue, 01 Jul 1997 13:59:04 -0400 (EDT) Resent-date: Wed, 02 Jul 1997 08:46:55 -0400 (EDT) Date: Tue, 01 Jul 1997 13:59:04 -0400 (EDT) Resent-from: "pub-submit@ams.org " From: Alexander O Morgoulis Subject: *accepted to ERA-AMS, Volume 3, Number 1, 1997* Resent-to: pub-jour@MATH.AMS.ORG To: pub-submit@MATH.AMS.ORG Resent-message-id: <01IKR780W8TA001O4K@AXP14.AMS.ORG> Message-id: <199707011759.NAA07300@pascal.math.psu.edu> MIME-version: 1.0 Content-type: TEXT/PLAIN; CHARSET=US-ASCII %% Modified July 1, 1997 by A. Morgoulis %% Modified June 25, 1997 by A. Morgoulis %revised file combining 3 files % Date: 2-JUL-1997 % \pagebreak: 0 \newpage: 2 \displaybreak: 0 % \eject: 0 \break: 0 \allowbreak: 0 % \clearpage: 0 \allowdisplaybreaks: 0 % $$: 66 {eqnarray}: 0 % \linebreak: 0 \newline: 2 % \mag: 0 \mbox: 11 \input: 0 % \baselineskip: 1 \rm: 23 \bf: 54 \it: 0 % \hsize: 0 \vsize: 0 % \hoffset: 0 \voffset: 0 % \parindent: 3 \parskip: 1 % \vfil: 0 \vfill: 0 \vskip: 0 % \smallskip: 0 \medskip: 6 \bigskip: 5 % \sl: 0 \def: 92 \let: 12 \renewcommand: 0 % \tolerance: 0 \pretolerance: 0 % \font: 20 \noindent: 1 % ASCII 13 (Control-M Carriage return): 0 % ASCII 10 (Control-J Linefeed): 0 % ASCII 12 (Control-L Formfeed): 0 % ASCII 0 (Control-@): 0 %