EMIS/ELibM Electronic Journals

Outdated Archival Version

These pages are not updated anymore. They reflect the state of 20 August 2005. For the current production of this journal, please refer to http://www.math.psu.edu/era/.



\documentclass{era-l}

\pagespan{101}{107}
\PII{S 1079-6762(96)00014-5}

\newtheorem{theorem}{Theorem}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{conjecture}[theorem]{Conjecture}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}

\renewcommand\a{\alpha}
\renewcommand\b{\beta}
\newcommand\s{\sigma}
\newcommand\f{\phi}
\newcommand\g{\gamma}
\newcommand\p{\psi}
\newcommand\e{\epsilon}
\renewcommand\d{\delta}
\newcommand\D{\Delta}
\renewcommand\o{\omega}
\renewcommand\O{\Omega}
\newcommand\ty{\infty}
\newcommand\ddfrac[2]{{\displaystyle {\frac{#1}{#2}}}}
\newcommand\dint{\displaystyle \int }
\renewcommand{\Re}{\operatorname{Re}}
\renewcommand{\Im}{\operatorname{Im}}
\begin{document}

\title[Positive solutions of Yamabe-type equations]{On the existence of
   positive solutions of Yamabe-type equations on the Heisenberg group}

\author{L. Brandolini} \address{Dipartimento di Matematica, Via Saldini 50, 20133 Milano, Italy}
\email{brandolini@vmimat.mat.unimi.it}

\author{ M. Rigoli}
\address{Dipartimento di Matematica, Via Saldini 50, 20133 Milano, Italy}
\email{rigoli@vmimat.mat.unimi.it}

\author{A. G. Setti}
\address{Dipartimento di Matematica, Via Saldini 50, 20133 Milano, Italy}
\email{setti@vmimat.mat.unimi.it}

\subjclass{Primary 35H05; Secondary 35J70}

\commby{Richard Schoen}
\date{March 8, 1996}
\keywords{Heisenberg group, hypoelliptic equations, CR-Yamabe problem}

\begin{abstract}
We study nonexistence, existence and uniqueness of positive
solutions of the equation $\Delta _{H^n}u+a(x)u-b(x)u^\sigma =0$ with $\sigma >1$ on the Heisenberg group $H^n$. Our results hold, with essentially
no changes, also for the Euclidean version of the above equation. Even in
this case they appear to be new.
\end{abstract}
\maketitle
\section*{Introduction}
Let $H^n$ be the Heisenberg group of real dimension $2n+1,$ i.e. the
nilpotent Lie group which as a manifold is the product
$$
H^n={\mathbb C}^n\times {\mathbb R}
$$
and whose group structure is given by
$$
(z,t)\circ (z^{\prime },t^{\prime })=\left( z+z^{\prime },t+t^{\prime }+2
\Im (z,z^{\prime })\right) ,
$$
$$
 (z,t),\,(z^{\prime },t^{\prime })\in
H^n,
$$
where $(\,,\,)$ denotes the usual Hermitian product on ${\mathbb C}^n.$

A (real) basis for the Lie algebra of left-invariant vector fields on $H^n$
is given by
$$
X_j=2\Re\frac \partial {\partial z_j}+2\Im z_j\frac
\partial {\partial t},\quad Y_j=2\Im\frac \partial {\partial z_j}-2
\Re z_j\frac \partial {\partial t},\quad \frac \partial {\partial t},
$$
for $j=1,2,\dots ,n.$ The above basis satisfies Heisenberg's canonical
commutation relations for position and momentum
$$
\left[ X_j,Y_k\right] =-4\delta _{j\,k}\frac \partial {\partial
t},
$$
all other commutators being $0.$ It follows that the vector fields $X_j,$ $Y_k$ satisfy H\"ormander's condition, and the real part of the Kohn-Spencer
Laplacian, defined by
\begin{equation}
\label{pre.3}\Delta _{H^n}=\sum_{j=1}^n\left( X_j^2+Y_j^2\right) ,
\end{equation}
is hypoelliptic by H\"ormander's theorem (\cite{H}).

In $H^n$ one has a natural origin $0=(0,0)$ and a distinguished distance
function from $0$ defined by
$$
\rho(x)=\rho(z,t)=\left( |z|^4+t^2\right) ^{1/4},
$$
which is homogeneous of degree one with respect to the Heisenberg dilations $(z,t)\to (\delta z,\delta ^2t).$ The distance between two points $x,$ $x^{\prime }\in H^n$ is then given by $d(x,x^{\prime })=\rho(x^{-1}x^{\prime }).$

We also define the density function with respect to $0$ by
$$
\psi (x)=\psi (z,t)=\frac{|z|^2}{\rho(z,t)^2},\quad \mbox{for }x\neq 0,
$$
and note that $0\leq \psi (x)\leq 1.$ If $u$ is a ``radial
function'', that is, $u(z,t)=f\left( \rho(z,t)\right) $ for $f\,:\,[0,+\infty
)\to {\mathbb R}$ of class $C^2$, then
$$
\Delta _{H^n}u=\psi \left\{ f^{\prime \prime }(\rho)+\frac{2n+1}\rho f^{\prime }(\rho)\right\} .\nonumber
$$

In this paper we consider the equation
\begin{equation}
\label{maineq}\Delta _{H^n}u\,+\,a(x)u\,-\,b(x)|u|^{\sigma -1}u\,=\,0,
\end{equation}
with $\sigma >1$ constant, and determine conditions on the coefficients $a(x),$ $b(x)$ in order to guarantee the existence (resp., nonexistence) of
positive solutions on $H^n$.

Our problem is motivated by the following geometric fact. The vector fields $Z_j=X_j+iY_j$ span a subbundle $T_{1,0}$ of the complexified tangent
bundle of $H^n,$ and give rise to its canonical CR structure with contact
form $\theta $, which is determined modulo the transformation
\begin{equation}
\label{conftrans}\tilde \theta \,=\,u^{2/n}\theta
\end{equation}
for $01$, and let $a,b\in C^0(H^n)$ satisfy
\begin{equation}
\label{0.1}\left\{
\begin{array}{l}
a(x)\leq \psi (x)a_2\left( \rho(x)\right),  \\
\\
b(x)\geq \psi (x)b_1\left( \rho(x)\right)
\end{array}
\right. \mbox{on }\,H^n,
\end{equation}
with $a_2,$ $b_1\in C^0([0,+\infty )).$ Assume that for some constant $A\leq
n,$
$$
a_2(t)\leq \frac{A^2}{t^2},
$$
that $b_1(t)\geq 0$ on $[0,+\infty ),$ and that for some integer $k,$
$$
\left\{
\begin{array}{lc}
\displaystyle{\liminf_{t\to +\infty }b_1(t)\ddfrac{(\log t)^{\sigma +1}\log
(\log t)\cdots \log ^{(k)}(t)}{t^{n(\sigma -1)-2}}>0} & \mbox{if }A=n, \\  &
\\
\displaystyle{\liminf_{t\to +\infty }b_1(t)\ddfrac{(\log t)\log (\log
t)\cdots \log ^{(k)}(t)}{t^{(n-\sqrt{n^2-A^2})(\sigma -1)-2}}>0} &
\mbox{if }A0,$ and that there exist an integer $k
$ and a constant $C>0$ such that
$$
\left\{
\begin{array}{l}
b_1(t)\geq 0\quad
\mbox{on}\,\,[0,+\infty ), \\  \\
\displaystyle{\liminf_{t\to +\infty }t^2\log t\log (\log t)\cdots \log
^{(k)}(t)\,b_1(t)\geq C>0.}
\end{array}
\right.
$$
Then \eqref{0.4} has no positive solution on $H^n$.
\end{theorem}


\section{Existence results}

\begin{theorem}
\label{tC}Let $a$, $b\in C^\infty (H^n)$, $\mu \le 2$, $1<\sigma \le \frac{n+2}n$,
$$
A_\mu >\left\{
\begin{array}{ccc}
0 & \text{if} & \mu <2, \\
\ddfrac{2n}{\sigma -1} & \text{if} & \mu =2,
\end{array}
\right. ,
$$
and let $\gamma \in {\mathbb R}$. Assume that $a$ and $b$ satisfy 
$$
\psi (x)a_1(\rho(x))\le a(x)\le \psi (x)a_2(\rho(x))\;\;\text{on }H^n
$$
and
$$
\psi (x)b_1(\rho(x))\le b(x)\le \psi (x)b_2(\rho(x))\;\;\text{on }H^n,
$$
respectively, for suitable $a_1,a_2,b_1,b_2\in C^0([0,+\infty ))$ with
$$
a_1(t)=A_\mu t^{-\mu }\qquad \text{for }t\gg 1,
$$
$$
\begin{array}{ll}
\text{i)} & b_1(t)\ge 0
\text{ on }[0,+\infty )\text{ and }b_1(t)>0\text{ in }[t_0,+\infty ), \\  &
\\
\text{ii)} & b_2(t)\le c_1t^{-\frac 2n\gamma -\mu }\text{ for }t\gg 1,
\end{array}
$$
with $c_1>0$ and $t_0$ such that $a_2(t)\le \frac{n^2}{t^2}$ on $(0,t_0]$.
Then there exists a positive solution $u$ of \eqref{0.4} on $H^n$ satisfying
the further requirement
$$
u(x)\ge c_2\rho(x)^{\frac{2\gamma }{n(\sigma -1)}}
$$
for some constant $c_2>0$ and $\rho(x)$ sufficiently large.
\end{theorem}

\begin{definition}
We say that a solution $U$ of equation \eqref{0.4} on $H^n$ is \emph{maximal}
if for any other solution $u$ on $H^n$ we have$$
u(x)\le U(x)\text{\ \ for }x\in H^n.
$$
\end{definition}

\begin{theorem}
\label{E}Let $a,b\in C^0(H^n)$. Suppose there exist $a_2,b_1,b_2\in
C^0([0,+\infty ))$ satisfying
$$
a_2(t)\le \frac{n^2}{t^2}
$$
and
$$
\begin{array}{ll}
\text{i)} & b_1(t)\ge 0\;
\text{on }[0,+\infty )\text{ and }b_1(t)>0\text{ for }t\gg 1, \\  &  \\
\text{ii)} & tb_2(t)\in L^1(+\infty ),
\end{array}
$$
such that
$$
0\le a(x)\le \psi (x)a_2(\rho(x))\;\;\text{on }H^n
$$
and
$$
\psi (x)b_1(\rho(x))\le b(x)\le \psi (x)b_2(\rho(x))\;\;\text{on }H^n.
$$
Then, there exists a unique, positive, maximal solution $U$ of \eqref{0.4} on $H^n$ satisfying
$$
\lim _{\rho(x)\rightarrow +\infty }U(x)=+\infty .
$$

Furthermore, if for some constant $c>0$
$$
b_1(t)\ge ct^{-k}\text{, for }k>2\text{ and }t\gg 1,
$$
then$$
U(x)\le C\rho(x)^{\frac{k-2}{\sigma -1}}
$$
for some constant $C>0$ and $\rho(x)\gg 1$.

Similarly, if for some constant $c>0$$$
b_2(t)\le ct^{-h}\text{, for }h>2\text{ and }t\gg 1,
$$
then$$
U(x)\ge C\rho(x)^{\frac{h-2}{\sigma -1}}
$$
for some constant $C>0$ and $\rho(x)\gg 1$.

In particular, in the case where$$
C_1\psi (x)\left[ 1+\rho(x)\right] ^{-k}\le b(x)\le C_2\psi (x)\left[
1+\rho(x)\right] ^{-k}
$$
for some constants $C_1,C_2>0$, we find that$$
U(x)\asymp \rho(x)^{\frac{k-2}{\sigma -1}}\;
\text{as }\rho(x)\rightarrow +\infty .
$$
\end{theorem}

\begin{theorem}
Let $a,b\in C^0(H^n).$ Suppose there exist $a_2,b_1\in C^0([0,+\infty ))$
satisfying
$$
a_2(t)\le \frac{n^2}{t^2},
$$
$$
b_1(t)\ge 0\;\text{on }[0,+\infty )\text{ and }b_1(t)>0\text{ for }t\gg 1,
$$
such that
$$
0\le a(x)\le \psi (x)a_2(\rho(x))\;\;\text{on }H^n
$$
and
$$
\psi (x)b_1(\rho(x))\le b(x)\;\;\text{on }H^n.
$$
If there exists a positive subsolution $u$ of \eqref{0.4}, then there
exists a unique, positive, maximal solution $U$ of \eqref{0.4} on $H^n$
satisfying
$$
\lim _{\rho(x)\rightarrow +\infty }U(x)=+\infty .
$$
\end{theorem}

\section{A uniqueness result}

\begin{theorem}
\label{tU} Let $a(x),$ $b(x)\in C^0(H^n)$ satisfy $b(x)\geq 0$ on $H^n,$ and
$$
a(x)\leq \psi (x)a_2\left( \rho(x)\right) \quad \text{on }H^n,
$$
where $a_2\in C^0([0,+\infty )$ satisfies
\begin{equation}
\label{U.2}a_2(t)\leq \frac{A^2}{t^2}\qquad \text{on }(0,+\infty ),
\end{equation}
with $A\le n$. Let $u,v\in C^2(H^n)$ be positive solutions of equation \eqref
{0.4}. If
\begin{equation}
\label{U.3}(u-v)(x)=\left\{
\begin{array}{ll}
o\left( \rho(x)^{-n}\log (\rho(x))\right) & \text{for }A=n, \\
\\
o\left( \rho(x)^{-n+\sqrt{n^2-A^2}}\right) & \text{for }A