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Thompson has shown that up to conjugation there are only
finitely many congruence subgroups of PSL(2, R) of fixed
genus. For PSL(2, Z), Cox and Parry found an explicit bound for
the level of a congruence subgroup in terms of its genus. This
result was used by the author and Pauli to compute the congru-
ence subgroups of PSL(2, Z) of genus less than or equal to 24.
However, the bound of Cox and Parry applies only to PSL(2, Z).
In this paper a result of Zograf is used to find a bound for the
level of any congruence subgroup in terms of its genus. Using
this result, a list of all congruence subgroups, up to conjugacy,
of PSL(2, R) of genus 0 and 1 is found.

This tabulation is used to answer a question of Conway and
Norton who asked for a complete list of genus 0 subgroups, G,
of PSL(2, R) such that

(i) G contains Γ0(N) for some N .

(ii) G contains the translation z �→ z + k iff k is an integer.

Thompson has also shown that for fixed genus there are
only finitely many subgroups of PSL(2, R) which satisfy these
conditions. We call these groups “moonshine groups.” The list
of genus 1 moonshine groups is also found. All computations
were performed using Magma.

1. INTRODUCTION

Thompson has shown the following:

Theorem 1.1. [Thompson 80] Up to conjugation there are
only finitely many congruence subgroups of PSL(2, R) of
fixed genus g.

This result is a stronger version of a result originally
conjectured by Rademacher, that there are only finitely
many genus 0 congruence subgroups of PSL(2, Z). This
problem was studied by Knopp and Newman [Knopp and
Newman 65], McQuillen [McQuillan 66a, McQuillan 66b],
and Dennin [Dennin 71, Dennin 72, Dennin 74]. Cox and
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Parry [Cox and Parry 84a, Cox and Parry 84b], indepen-
dently of Thompson, showed that there are only finitely
many congruence subgroups of PSL(2, Z) of fixed genus.
The work of Cox and Parry applies only to subgroups
of PSL(2, Z), but for this case their results give explicit
bounds which they used to find a list of all congruence
subgroups of PSL(2, Z) of genus 0. These bounds formed
the basis of the tabulation in [Cummins and Pauli 03] of
all congruence subgroups of PSL(2, Z) of genus less than
or equal to 24.

Thompson’s result was motivated by a desire to study
the groups which appear in “moonshine.” Conway and
Norton [Conway and Norton 79] conjectured that the ap-
propriate groups are the genus 0 subgroups of PSL(2, R)
such that

(i) G contains Γ0(N) for some N .

(ii) G contains the translation z �→ z + k iff k is an
integer.

Thompson used Theorem 1.1 to show that for fixed
genus g there are only finitely many groups which satisfy
these properties. We will call such groups “moonshine
groups” of genus g.1

The motivation for this paper was to extend the ex-
plicit bounds of Cox and Parry to the general case, then
to use these results to find all congruence and moon-
shine groups of low genus—in this case genus 0 and 1.
The list of all congruence subgroups (up to conjugacy)
in PSL(2, R) is contained in Table 2 and the notation is
explained in Section 6. All computations were performed
using Magma [Bosma et al. 97].

Genus 0 moonshine groups are of particular inter-
est. The study of the Hauptmoduls (or normalized
generators) of the fields of automorphic functions of
genus 0 groups has a long history—particularly the
“j-function” which is the generator of the field of
automorphic functions of PSL(2, Z). The discovery
of moonshine [McKay 78, Thompson 79, Conway and
Norton 79, Borcherds 92] generated additional interest
in this study. Computations [Conway and Norton
79, Alexander et al. 92, Norton 82] have extended the
list of known Hauptmoduls, but whether or not this list
was complete was not known. For the rational case we
find there are 616 groups which correspond to the list
of 616 rational Hauptmoduls found by Norton [Norton
97]—so this list is complete. We find that there are
5,870 irrational Hauptmoduls. However, as described in

1A better term might be “moonshine type groups,” since it is
not know if all these groups are involved in moonshine.

Section 3, there is an action of Z/24Z on these groups
and also Galois conjugation. There are 6,486 genus
0 moonshine groups, but only 371 equivalence classes
under the corresponding equivalence relation. Of these,
310 have a rational representative and the remaining 61
are irrational. The list of these representative groups is
contained in Table 3. See Tables 5 and 7 for detailed
summaries and Section 6 for notation. Tables 4, 6,
and 8 contain the corresponding information for the
genus 1 moonshine groups. There is some overlap
between these results and those of the paper of Chua
and Lang [Chua and Lang 03]. This is discussed in
more detail in Section 7. Note: All tables can be found
at http://www.expmath.org/expmath/volumes/13/13.3/
cumminstables.pdf.

2. LEVEL BOUNDS

The aim of this section is to find a bound on the level of
a congruence subgroup in terms of its genus. As part of
this analysis we will find generalizations of the results of
Larcher and Wohlfahrt.

If G is a discrete subgroup of PSL(2, R) which is
commensurable with Γ = PSL(2, Z) = SL(2, Z)/{±1}
(i.e., if G ∩ PSL(2, Z), has finite index in both G and
PSL(2, Z)), then G acts on the extended upper half plane
H∗ = H ∪ Q ∪ {∞} by fractional linear transformations
and the genus of G is defined to be the genus of the cor-
responding Riemann surface H∗/G. Where convenient
we identify G with the corresponding group of fractional
linear transformations.

From a computational point of view, it is easier to
work with subgroups of Γ = SL(2, Z) and SL(2, R), rather
than Γ and PSL(2, R). There is a one-to-one correspon-
dence between the subgroups of PSL(2, R) and the sub-
groups of SL(2, R) which contain −1. Thus in this pa-
per we shall mostly deal with subgroups of SL(2, R) and,
where appropriate, we shall assume that these subgroups
contain −1. If G is a subgroup of SL(2, R) and we need to
refer to its image in PSL(2, R), then this will be denoted
by G. When we refer to geometric invariants such as
the genus or cusp number of G we mean the correspond-
ing invariants of G. Another important computational
point is that in any subgroup of SL(2, R) which is com-
mensurable with SL(2, Z) every element is a multiple of
some matrix with integer entries and positive determi-
nant. Thus any such subgroup is isomorphic to a sub-
group of PGL(2, Q)+ and so is the image of a subgroup
of GL(2, Q)+. The discussions in this paper, for the most
part, are stated in terms of subgroups of SL(2, R), but
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for writing the Magma programs it was easier to trans-
late the results into GL(2, Q)+ and work with multiples
of integer matrices.

The key result in the study of the commensurability
class of Γ in SL(2, R) is the following:

Definition 2.1.

Γ0(f)+ = {e−1/2

(
a b
c d

)
∈ SL(2, R)

∣∣∣ a, b, c, d, e ∈ Z,

e|f, e|a, e|d, f |c, ad − bc = e}.

Theorem 2.2. [Helling 66] If G is a subgroup of SL(2, R)
which is commensurable with Γ, then G is conjugate to a
subgroup of Γ0(f)+ for some squarefree f .

Thus the study of groups commensurable with Γ is es-
sentially the study of subgroups of the groups Γ0(f)+, f

a squarefree integer. Amongst these groups are the con-
gruence subgroups. In the case of SL(2, Z) a subgroup is
said to be a congruence subgroup if it contains a princi-
pal congruence subgroup, where a principal congruence
subgroup of level N is defined as

Γ(N)=
{(

a b
c d

)
∈ SL(2, Z)

∣∣∣∣
(

a b
c d

)
≡

(
1 0
0 1

)
mod N

}
.

The level of G is the smallest N such that Γ(N) ⊂ G. A
subgroup of Γ is said to be a congruence subgroup if it is
the image of a congruence subgroup of Γ.

It is possible, as we shall see shortly, to use the same
definition of a congruence subgroup for subgroups of
Γ0(f)+. However, it turns out to be more convenient
to first introduce, following Thompson, the appropriate
generalization of Γ(N):

Definition 2.3. G(n, f) = Γ0(nf) ∩ Γ(n).

Definition 2.4. Call a subgroup G of Γ0(f)+ a congruence
subgroup if G(n, f) ⊂ G for some n. If G is a congruence
subgroup of Γ0(f)+, then let n = n(G, f) be the smallest
positive integer such that G(n, f) ⊂ G. We call n(G, f)
the level of G.

It is possible that G lies in more than one Γ0(f)+ and
so the level will depend on a choice of f . We often work
in some fixed Γ0(f)+ and then just refer to the level
of G. The two definitions of congruence subgroup are
equivalent:

Lemma 2.5. Let G be a subgroup of Γ0(f)+. Then G con-
tains G(n, f) for some n iff G contains Γ(m) for some m.

Proof: Since Γ(nf) ⊂ G(n, f) ⊂ Γ(n), if G is a con-
gruence group with G(n, f) ⊂ G, then Γ(nf) ⊂ G and
conversely if Γ(n) ⊂ G, then G(n, f) ⊂ G and so G is a
congruence subgroup.

The reasons for introducing the groups G(n, f) are
firstly that they are normal in Γ0(f)+ so that the general-
izations of SL(2, Z/mZ) = SL(2, Z)/Γ(m) are the groups
Γ0(f)+/G(n, f). These groups will be discussed in more
detail later and their construction is a necessary step in
finding the list of all congruence subgroups of a given
genus. The second reason for introducing the G(n, f) is
that the level n(G, f) is usually not the same as the small-
est m such that Γ(m) is contained in G, although they
are related. This relationship will be used later when de-
riving a bound for n(G, f) in terms of the genus of G and
f . To make the distinction clear we make the following
definition:

Definition 2.6. If G is a congruence subgroup, then the
Γ-level, �, of G is the smallest positive integer � such that
Γ(�) ⊂ G.

Several properties of the groups G(n, f) will be
needed. We first introduce a somewhat larger collection
of subgroups of SL(2, Z):

Definition 2.7. Let p, q, and r be positive integers such
that p divides qr, then define:

H(p, q, r) =
{(

a b
c d

)
∈ Γ | a ≡ d ≡ 1 (mod p),

b ≡ 0 (mod q), c ≡ 0 (mod r)
}

. (2–1)

It is easy to verify that H(p, q, r) is a subgroup of
SL(2, Z). Many of the standard congruence groups arise
as special cases of these groups. For example Γ0(N) =
H(1, 1, N), Γ1(N) = H(N, 1, N), Γ(N) = H(N,N,N),
G(n, f) = H(n, n, nf). It is thus convenient to prove
results, such as index formulas, in the general setting of
the H(p, q, r) groups.

We first recall a standard isomorphism theorem:

Lemma 2.8. If A is a subgroup and B is a normal sub-
group of a group G, then AB/B ∼= A/(A ∩ B).
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Proposition 2.9. Let a, b, c, p, q, and r be positive integers.

1. If p|qr and ap|bcqr, then H(ap, bq, cr) is a subgroup
of H(p, q, r).

2. If a|bc and p|qr, then H(a, b, c) ∩ H(p, q, r) =
H([a, p], [b, q], [c, r]), where [x, y] = lcm(x, y).

3. If p|qr, then

I(p, q, r) := Index(SL(2, Z) : H(p, q, r)) =

pqr
∏
�|qr

� prime

(1 +
1
�
)

∏
�|p

� prime

(1 − 1
�
) = φ(p)ψ(qr).

Proof:

1. The congruence conditions which define
H(ap, bq, cr) imply those of H(p, q, r) and so
H(ap, bq, cr) is a subgroup of H(p, q, r).

2. First note that a|bc and p|qr implies that
[a, p]|[b, q][c, r], so that the group H([a, p], [b, q], [c, r])
exists. Since [a, p], [b, q], and [c, r] are multiples of
a, b, and c, respectively, by (1) H([a, p], [b, q], [c, r])
is a subgroup of H(a, b, c) and similarly it is a sub-
group of H(p, q, r) and hence of their intersection.
Conversely if(

u v
w x

)
∈ H(a, b, c) ∩ H(p, q, r),

then u ≡ 1 (mod a) and u ≡ 1 (mod p), so a ≡
1 (mod [a, p]) and similarly for the other congru-
ence conditions. Hence H(a, b, c) ∩ H(p, q, r) ⊂
H([a, p], [b, q], [c, r]) and the result follows.

3. By (1) Γ(qr) = H(qr, qr, qr) is a subgroup of
H(p, q, r). So to find the index of H(p, q, r) in
SL(2, Z) it is sufficient to find the order of the quo-
tient group G = H(p, q, r)/Γ(qr). However, every
element (

u v
w x

)
Γ(qr)

of G has a unique decomposition:(
u v
w x

)
Γ(qr) =

(
1 0

xw 1

)(
u 0
0 x

)(
1 xv
0 1

)
Γ(qr),

as can be easily verified by noting that ux ≡ 1
(mod qr) and vw ≡ 0 (mod qr). Counting these
elements shows that the order of G is
qrs1s2

∏
�|s2

(1 − 1
� ), � prime, where qr/p = s1s2

with s1|p∞ and (s2, p) = 1. The notation s|p∞

means that s divides some power of p. This follows
from the observation that #{x ∈ (Z/psZ)∗ | x ≡ 1
(mod p)} = s1φ(s2), where s = s1s2 with s1|p∞
and (s2, p) = 1. The order of G thus simplifies to
q2r2

p

∏
�|qr
��p

(1 − 1
� ), � prime. But the index of Γ(qr)

in SL(2, Z) is q3r3
∏

�|qr(1 − 1
�2 ), � prime, and then

dividing and simplifying gives the required result.

We now record some properties of G(n, f).

Lemma 2.10. Fix a positive squarefree integer f and let
G(n) = G(n, f).

1. G(n) is a normal subgroup of Γ0(f)+.

2. Index(SL(2, Z) : G(n)) =

n3f
∏
p|nf

p prime

(1 +
1
p
)

∏
p|n

p prime

(1 − 1
p
).

3. If n divides m, then G(m) is a subgroup of G(n).

4. G(m)∩G(n) = G([m,n]), where [m,n] = lcm(m,n).

5. If f is a positive squarefree integer, n is a posi-
tive integer, and a|bcf , then H(a, b, cf)G(n, f) =
H((a, n), (b, n), (c, n)f), where (a, n) = gcd(a, n).

6. G(m)G(n) = G((m,n)).

7. G(1)/G(n) ∼= G(1)/G(pe1
1 )×· · ·×G(1)/G(pek

k ), n =
pe1
1 pe2

2 . . . pek

k .

Proof:

1. If m ∈ G(n, f) = Γ0(nf) ∩ Γ(n), then

m =
(

α β
nfγ δ

)

for integers α, β, γ, and δ such that αδ − nfγβ = 1.
For any g ∈ Γ0(f)+ we have

g = e−1/2

(
ae b
fc de

)

for integers a, b, c, d, e where ade2 − bfc = e, and e

is an exact divisor of f . A direct computation of
g−1mg then shows that g−1mg ∈ Γ0(nf) ∩ Γ(n), so
G(n, f) is normal in Γ0(f)+.

2. This follows from Proposition 2.9 (3) since G(n, f) =
H(n, n, nf).
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3. Similarly this follows from Proposition 2.9 (1).

4. Similarly this follows from Proposition 2.9 (2).

5. First note that H(a, b, cf) and G(n, f) are both sub-
groups of Γ0(f)+ and by (1), G(n, f) is a normal
subgroup. Thus by Lemma 2.8,

H(a, b, cf)G(n, f)/G(n, f) ∼=
H(a, b, cf)/(H(a, b, cf) ∩ H(n, n, nf))

and by (2) of Proposition 2.9,

H(a, b, cf) ∩ H(n, n, nf) = H([a, n], [b, n], [c, n]f).

If a|bcf , then (a, n)|(b, n)(c, n)f , so that the group
H((a, n), (b, n), (c, n)f) exists. Then we have

H(a, b, cf) ⊂ H((a, n), (b, n), (c, n)f)

and

H(n, n, nf) ⊂ H((a, n), (b, n), (c, n)f)

so that

H(a, b, cf)G(n, f) ⊂ H((a, n), (b, n), (c, n)f)

and so

H(a, b, cf)G(n, f)
G(n, f)

⊂ H((a, n), (b, n), (c, n)f)
G(n, f)

.

The order of

H(a, b, cf)G(n, f)/G(n, f)

is the order of

H(a, b, cf)/H([a, n], [b, n], [c, n]f)

which is

I([a, n], [b, n], [c, n]f)/I(a, b, cf)

and the order of

H((a, n), (b, n), (c, n)f)/G(n, f)

is
I(n, n, nf)/I((a, n), (b, n), (c, n)f).

From the formula for I(p, q, r) in (3) of Proposition
2.9, we find that

I(a, b, cf)I(n, n, nf) =

I((a, n), (b, n), (c, n)f)I([a, n], [b, n], [c, n]f),

so that the orders of the groups

H(a, b, cf)G(n, f)/G(n, f)

and
H((a, n), (b, n), (c, n)f)/G(n, f)

are equal. Thus the index of H(a, b, cf)G(n, f) in
H((a, n), (b, n), (c, n)f) is 1, and the result follows.

6. This follows from (5).

7. Let ni = n/pei
i , = 1, . . . , k. Consider the homomor-

phism

α : G(n1)/G(n) × G(n2)/G(n) × . . .

× G(nk)/G(n) → G(1)/G(n)

defined by

α(a1G(n), a2G(n), . . . , akG(n)) = a1a2 . . . akG(n).

This is surjective since, by (6),

G(1) = G(n1)G(n2) . . . G(nk).

Suppose that a1a2 . . . an ∈ G(n). Then

ai ∈ G(n1)G(n2) . . . G(ni−1)G(i+1) . . . G(nk)G(n).

So, again by (6), we have ai ∈ G(pei
i ). But ai ∈

G(ni) and so by (4), ai ∈ G(n). Hence α is also
injective. By Lemma 2.8,

G(ni)/G(n) = G(ni)/G(ni) ∩ G(pei
i )

∼= G(ni)G(pei)/G(pei
i )

= G(1)/G(pei
i )

and so the result follows.

Before proving the main results of this section, we first
derive some basic properties of the level and Γ-level of
congruence subgroups. Let

Ff =
(

0 −1/
√

f√
f 0

)

be the Fricke involution. So Ff ∈ Γ0(f)+.

Lemma 2.11. G(n, f) = Γ(n) ∩ F−1
f Γ(n)Ff .

Proof: If

m =
(

a b
c d

)
∈ Γ(n) ∩ F−1

f Γ(n)Ff ,
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then a − 1 ≡ d − 1 ≡ b ≡ 0 (mod n) since m ∈ Γ(n) and
c ≡ 0 (mod nf) since m ∈ F−1

f Γ(n)Ff and so

Γ(n) ∩ F−1
f Γ(n)Ff ⊂ G(n, f).

Conversely

G(n, f) = Γ0(nf) ∩ Γ(n) ⊂ Γ(n)

and G(n, f) is normal in Γ0(f)+, so

G(n, f) = F−1
f G(n, f)Ff ⊂ F−1

f Γ(n)Ff

and so
G(n, f) ⊂ Γ(n) ∩ F−1

f Γ(n)Ff .

Hence
G(n, f) = Γ(n) ∩ F−1

f Γ(n)Ff

as required.

Lemma 2.12. If G has level n and G(n′, f) ⊂ G, then n

divides n′. Also if � is the Γ-level of G, then � divides
nf .

Proof: By Proposition 2.10 (6), G contains

G(n)G(n′) = G(gcd(n, n′)).

But from Definition 2.4 we must have gcd(n, n′) ≥ n, so
that n = gcd(n, n′) and so n divides n′. By Proposition
2.9 (1) we have

Γ(nf) = H(nf, nf, nf) ⊂ H(n, n, nf) = G(n, f) ⊂ G.

Also Γ(�) ⊂ G, and � is the smallest such �. By Proposi-
tion 2.9 (6), with f = 1, Γ(�)Γ(nf) = Γ(gcd(�, nf)) and
so, repeating the previous argument, � divides nf .

Proposition 2.13. Let G be a congruence subgroup of
Γ0(f)+ and let n = n(G, f) be the level of G and � = �(G)
be the Γ-level of G. Then n|�, �|nf (so in particular
n ≤ � ≤ nf) and f |�.

Proof: That � divides nf was shown in Lemma 2.12.
For any subgroup H of Γ0(f)+ we will use the notation
HF = H ∩ F−1

f HFf . So if Γ(�) ⊂ G, then, by Lemma
2.11, G(�, f) = Γ(�)F ⊂ GF . But G(n, f) = G(n, f)F

since G(n, f) is normal, hence G(n, f) ⊂ GF . So if n′ is
the level of GF , then n′ ≤ n. But G(n′, f) ⊂ GF ⊂ G,
so n ≤ n′ and hence n′ = n. As we have shown that
G(�, f) ⊂ GF this gives n|�. Finally if Γ(�) ⊂ Γ0(f)+,
then Γ(�) ⊂ Γ0(f)+ ∩ SL(2, Z) = Γ0(f), so f |�.

We now turn to the proof of the main result bounding
the level of a congruence subgroup. Let G be a discrete
subgroup of SL(2, R). We will assume that −1 ∈ G and
in the rest of this section we restrict to congruence sub-
groups containing −1 even if this condition is not explic-
itly stated. Let χ(G) and g(G) be the Euler characteristic
and genus of G. Recall that

χ(G) = 2(g(G) − 1) + m +
k∑

i=1

(1 − 1
ei

),

where m is the number of cusps of G, k is the number of
inequivalent elliptic points of G and ei, i = 1, . . . , k the
orders of these points. In particular χ(SL(2, Z)) = 1

6 .

Theorem 2.14. [Zograf 91]) For any congruence subgroup
K of G we have

g(K) + 1 >
3
64

χ(G) Index(G : K).

As a corollary to this result Zograf notes that it implies
Theorem 1.1 as follows: let G = K = Γ0(f)+, with f

squarefree. Recall Area(G) = 2πχ(G), so

χ(Γ0(f)+) =
1
6

∏
p|f

1 + p

2
, p prime.

Then, writing g for g(Γ0(f)+), we have

∏
p|f

p prime

1 + p

2
< 128(g + 1).

This bounds the possible f for a given genus. For
example, if k is the number of prime factors of f , then

2k−2 < f/2k <
∏
p|f

1 + p

2
< 128(g + 1), p prime,

which bounds k and hence f . Thus the set

H(g) = {Γ0(f)+ | f squarefree, genus(Γ0(f)+) ≤ g}

is finite. By Theorem 2.2 any congruence subgroup which
is commensurable with Γ and of genus g is conjugate to
a subgroup of at least one of the groups in H(g). But
by Proposition 2.14 there are only finitely many such
subgroups and hence Theorem 1.1 follows.

The bound on f , and the following formula of Helling
for the genus of Γ0(f)+, yield Table 1 which gives the
maximum f such that Γ0(f)+ has genus g for 0 ≤ g ≤
100.



Cummins: Congruence Subgroups of Groups Commensurable with PSL(2, Z) of Genus 0 and 1 367

Theorem 2.15. [Helling 70] Let f be a squarefree integer,
g+
0 (f) be the genus of Γ+

0 (f), and π(f) be the number of
prime factors of f . Then

g+
0 (f) = 2−π(f)(g0(f) − 1 − 1

2
W (f)) + 1,

where for p prime

g0(f) = 1 − 2π(f)−1 +
1
12

∏
p|f

(p + 1)

− 1
4

∏
p|f

(1 +
(−4

p

)
) − 1

3

∏
p|f

(1 +
(−3

p

)
)

is the genus of Γ0(f) and for f ≡ 1 (mod 2)

W (f) =
∑
D

h(D)
∏
p|f

p prime

(1 +
(

D

p

)
),

where the sum is over D < 0, D|4f , D ≡ 0 or
1 mod 4, D = −4. While for f ≡ 0 (mod 2), W (f) =
W0(f) + W1(f) with

W0(f) =
∑
D

h(D)
∏

p|(f/2)
p prime

(1 +
(

D

p

)
)

with D < 0, D|4f , D ≡ 0 mod 4, or D = −3.

W1(f) = 3
∑
D

h(D)
∏

p|(f/2)
p prime

(1 +
(

D

p

)
)

with D < 0, D|4f , D ≡ 1 mod 4, D = −3.

For a given genus g, Table 1 tells us which groups
Γ0(f)+ we have to consider to find all the congruence
subgroups of genus g. In principle it is then possible
to calculate all congruence subgroups of genus g, as Zo-
graf’s result bounds the index. However, in practice the
bound appears to be too large for practical computation.
Another approach is to construct permutation represen-
tations of the groups Γ0(f)+/G(n, f), but this requires
that we first bound the level of a congruence subgroup in
terms of g and f . Although the bound we find appears
not to be optimal, it leads to a feasible calculation, at
least for small genus.

Recall first the following results of Larcher concerning
the Γ-level of subgroups of SL(2, Z):

Theorem 2.16. [Larcher 82, Larcher 84] Let H be a con-
gruence subgroup of SL(2, Z) of level �, then

1. � ≤ Index(SL(2, Z) : H).

2. if � is squarefree, then the set of cusp widths of H

is the set of all multiples of the smallest cusp width
which divide �.

3. H has a cusp of width �.

Using Larcher’s Theorem and Zograf’s bound we can
find the required bound.2

Theorem 2.17. Let K be a congruence subgroup of
Γ0(f)+, with f squarefree. Let n(K, f) be the level of
K, g(K) be the genus of K, and π(f) be the number of
prime factors of f . Then

n < 2π(f)128(g + 1)
∏
p|f

p prime

(1 +
1
p
)−1.

Proof: Consider the following diagram of subgroups:

SL(2, Z) Γ0(f)+

| |
Γ0(f) Γ0(f)K

| |
Γ0(f) ∩ K K.

Since Γ0(f) is normal in Γ0(f)+ we have

Γ0(f)K/Γ0(f) ∼= K/Γ0(f) ∩ K

by Lemma 2.8. Thus

Index(Γ0(f) : Γ0(f) ∩ K) = Index(Γ0(f)K : K)

≤ Index(Γ0(f)+ : K).

Using Zograf’s bound this yields

Index(Γ0(f) : Γ0(f) ∩ K) <
64

3χ(Γ0(f)+)
(g(K) + 1).

But, for p prime,

χ(Γ0(f)+) =
1

2π(f)6

∏
p|f

(1 + p).

This yields, for p prime,

Index(Γ0(f) : Γ0(f) ∩ K) <

2π(f)128(g(K) + 1)
∏
p|f

(1 + p)−1.

2After submitting this paper, I received a preprint from M. L.
Lang [Lang 03] which contains a bound on the Γ-level of a
group. The proof of his result is essentially the same as that of
Theorem 2.17.
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Now Γ0(f) = SL(2, Z) ∩ Γ0(f)+. So Γ(n) ⊂ K, iff
Γ(n) ⊂ Γ0(f)∩K. Thus if � is the Γ-level of K, then � is
also the Γ-level (and so the “usual” level) of Γ0(f) ∩ K.
So we can apply Proposition 2.16 (3) to conclude that
Γ0(f) ∩ K has a cusp c of width � inside SL(2, Z). In
other words we have the following inclusions of parabolic
subgroups fixing c:

P1 ⊂ SL(2, Z)
|

Pf ⊂ Γ0(f)
|

PK ⊂ Γ0(f) ∩ K .

By Proposition 2.16 (2) Index(P1 : Pf ) = d for some
divisor d of f and as already noted � = Index(P1 : PK).
Thus �/d = Index(Pf : PK) ≤ Index(Γ0(f) : Γ0(f) ∩ K).
Combining this with the inequality found earlier gives

� < d2π(f)128(g(K) + 1)
∏
p|f

p prime

(1 + p)−1

≤ 2π(f)128(g(K) + 1)
∏
p|f

p prime

(1 +
1
p
)−1,

using d ≤ f and the fact that f is squarefree. But n ≤ �,
by Proposition 2.13, and so the result follows.

As part of the proof of Theorem 2.17 we proved the
following generalization of Larcher’s first result:

Corollary 2.18. If K is a congruence subgroup of Γ0(f)+

with f squarefree and n is the level of K, then n ≤ f ×
Index(Γ0(f)+ : K).

For completeness we now prove a generalization of
Wohlfahrt’s Theorem [Wohlfart 64].

Definition 2.19. Let G be a subgroup of finite index in
Γ0(f)+ with f squarefree, −1 ∈ G, and K a subgroup of
G of finite index with −1 ∈ K. Then define C(G,K) to
be the set of cusp widths of K measured relative to G,
that is

C(G,K) = {Index(PG(x) : PK(x)) | x ∈ Q ∪ {∞}}
where PG(x) = {g ∈ G | g(x) = x}.

Note that this is well-defined, as G has only finitely
many cusps and the set of indices is finite since K has
finite index in G.

Lemma 2.20. With G and K as in the last definition and
Γ = SL(2, Z), we have C(G,K) = C(G ∩ Γ,K ∩ Γ).

Proof: By [Shimura 71, Proposition 1.17], the groups
PG(x) are cyclic and generated by parabolic elements.
But from the form of the elements of Γ0(f)+ given in
Definition 2.1, if

e−1/2

(
ae b
cf de

)

is parabolic, then e1/2(a + d) = ±2. This forces e = 1
and so every parabolic element of Γ0(f)+ lies in Γ. Thus
for all x ∈ Q ∪ {∞}, PG(x) = PG(x) ∩ Γ and PH(x) =
PH(x) ∩ Γ and so the result follows.

Remark 2.21. The argument to show that parabolic ele-
ments of Γ0(f)+ lie in Γ is taken from [Sebbar 01, The-
orem 4.1].

Wohlfahrt’s theorem is the case f = 1 of the following:

Theorem 2.22. Let K be a congruence subgroup of
Γ0(f)+ with f squarefree. Let n = n(K, f) be the
level of K. Then lcm(C(Γ0(f)+,K))|n and n|(f ×
lcm(C(Γ0(f)+,K))

)
.

Proof: We first show that lcm(C(Γ0(f)+,K)) divides n.
Consider the subgroups:

Γ0(f)+

|
K
|

±G(n, f) .

Then for any x ∈ Q ∪ {∞} we have the inclusions of
fixing groups:

Pf (x) ⊂ Γ0(f)+

|
PK(x) ⊂ K

|
Pn(x) ⊂ ±G(n, f) .

If we consider the fixing groups of ∞ we see that
±G(n, f) has cusp width n at ∞, and since it is nor-
mal in Γ0(f)+ every cusp width of ±G(n, f) is n. Thus
Index(Pf (x) : Pn(x)) = n and so Index(Pf (x) : PK(x))
divides n for all x and hence lcm(C(Γ0(f)+ : K)) di-
vides n.

To show that n divides f×lcm(C(Γ0(f)+,K)) we start
with the inclusions
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SL(2, Z)
|

Γ0(f)
|

Γ0(f) ∩ K ,

and for any x in Q∪{∞} the inclusions of fixing groups,

P1(x) ⊂ SL(2, Z)
|

Pf (x) ⊂ Γ0(f)
|

PK(x) ⊂ Γ0(f) ∩ K .

As noted previously Index(P1(x) : Pf (x)) = d(x) for
some divisor d(x) of f . Let Index(P1(x) : PK(x)) = i(x)
and Index(Pf (x) : PK(x)) = j(x). As in the proof of
Theorem 2.17, the Γ-level, �, of K is equal to the Γ-level
of K ∩ Γ0(f). So by Wohlfahrt’s Theorem,

� = lcm({i(x) | x ∈ Q ∪ {∞}}).

Also, by Lemma 2.20,

lcm(C(Γ0(f)+,K)) = lcm({j(x) | x ∈ Q ∪ {∞}}).

Now, for all x, i(x) = d(x)j(x) hence i(x) divides fj(x)
and so lcm({i(x) | x ∈ Q ∪ {∞}} divides f × lcm({j(x) |
x ∈ Q ∪ {∞}}). Hence � divides f lcm(C(Γ0(f)+,K))
and since from Proposition 2.13, n(K, f) divides � the
result follows.

3. MOONSHINE GROUPS

As described in the introduction, we define a moonshine
group to be a discrete subgroup G of PSL(2, R) such that

(i) G contains some Γ0(N).

(ii) G contains the translation z �→ z + k iff k is an
integer.

We call a subgroup G of SL(2, R) a moonshine group
if −1 ∈ G and G is a moonshine group. As noted in the
introduction it is easier computationally to consider sub-
groups of SL(2, R) rather than PSL(2, R). Thompson’s
proof that there are only finitely many moonshine groups
of a given genus uses the following two results:

Lemma 3.1.

gcd{a − d |
(

a b
cN d

)
∈ Γ0(N)} divides gcd(N, 24).

Proof: Let g be the gcd. Since(
1 + N 1

N 1

)
∈ Γ0(N),

g divides N . Then for all a such that gcd(a, g) = 1 we
can find a′ such that a ≡ a′ (mod g) with gcd(a′, N) = 1
and so we can find a matrix(

a′ b′

N d′

)
∈ Γ0(N).

Thus a′d′ ≡ 1 (mod g) and, by the definition of g,
a′ − d′ ≡ 0 (mod g) which implies a2 ≡ 1 (mod g) for
all a coprime to g. The only integers with this prop-
erty are the divisors of 24 and so g divides gcd(N, 24) as
required.

Proposition 3.2. Suppose G is a discrete subgroup of
SL(2, R) such that G contains Γ0(N) for some N and
the stabilizer of ∞ is generated by

±
(

1 1
0 1

)
.

Then there is a matrix

ρ =
(

p q
0 ph

)

p, q, h ∈ Z, such that gcd(p, q) = 1, h > 0, 0 ≤ q < p, p

divides gcd(N,24), p2h divides N , and

Gρ = ρ−1Gρ ⊂ Γ0(f)+

for some squarefree integer f . If the level of Gρ is n =
n(Gρ, f), then h divides n.

Proof: By Theorem 2.2, G is conjugate to a subgroup of
Γ0(f)+ for some squarefree integer f : σ−1Gσ ⊂ Γ0(f)+,
σ ∈ SL(2, R). Since G and Γ0(f)+ are commensurable
they have the same cusps and from this it follows that
σ : Q → Q, which implies λσ ∈ GL(2, Q)+ for some
nonzero λ ∈ R. After multiplying by a suitable scalar,
we can take

σ =
(

a b
c d

)
with c, d ∈ Z, and gcd(c, d) = 1. Then

L =
(

de β
−ce γe

)
∈ Γ0(f)+,

where e = f/gcd(f, c), so that gcd(e, c) = 1, and the
integers γ, β are chosen so that deγ + cβ = 1. Then

Gρ = ρ−1Gρ ⊂ Γ0(f)+,
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where

ρ = σL =
(

p q
0 r

)
.

Again multiplying by a suitable scalar if necessary, we
may assume that gcd(p, q, r) = 1, that p, r > 0, and,
since (

1 1
0 1

)
∈ Γ0(f)+,

after a suitable conjugation, that 0 ≤ q < p. We have(
1 r/p
0 1

)
= ρ−1

(
1 1
0 1

)
ρ ∈ Γ0(f)+

so that p divides r. Write r = hp. Then since
gcd(p, q, r) = 1, we must have gcd(p, q) = 1. Now,

ρ−1

(
1 0
N 1

)
ρ =

( ∗ −q2N/(p2h)
N/h ∗

)

and since gcd(p, q) = 1 this implies that h divides N and
p2h divides N .

Then for all
(

a b
cN d

)
∈ Γ0(N) we have

ρ−1

(
a b

cN d

)
ρ =

(∗ q(a − d)/p (mod Z)
∗ ∗

)

so that p divides a − d for all a and d such that(
a b

cN d

)
∈ Γ0(N).

By the previous lemma this implies that p is a divisor of
gcd(24, N).

If the level of Gρ is n, then(
1 n
0 1

)
∈ Gρ.

So

ρ

(
1 n
0 1

)
ρ−1 =

(
1 n/h
0 1

)
∈ G

and hence h divides n.

Remark 3.3.

(i) The proof of the last proposition shows that if w is
the smallest positive integer such that(

1 w
0 1

)
∈ Gρ

and the stabilizer of infinity in G is generated by

±
(

1 1
0 1

)
,

then h = w.

(ii) Thompson’s proof that there are only finitely many
moonshine groups of genus g is as follows: by The-
orem 1.1, for a fixed genus g, there are only finitely
many possibilities for Gρ and hence there is some
bound n0(g) for n. This bounds the possible values
of h and since 0 ≤ q < p ≤ 24 it follows that the
number of genus g moonshine groups is finite.

In our calculations of moonshine groups we will first
compute the congruence subgroups of Γ0(f)+ of genus g.
Then Proposition 3.2 tells us which conjugations of these
groups we have to consider, but we need a test to deter-
mine which conjugations are moonshine groups. This is
provided by the next three results.

Theorem 3.4. [Newman 55] If Γ0(N) ⊂ G ⊂ SL(2, Z),
then G = Γ0(M) for some divisor M of N .

Lemma 3.5. Suppose Γ0(N) ⊂ G for some N and that N

is minimal. Then N = � where � is the Γ-level of G.

Proof: We have Γ(�) ⊂ G and Γ0(N) ⊂ G. Then G

contains < Γ(�),Γ0(N) > which by Newman’s Theorem
and the minimality of N is equal to Γ0(N). Then Γ(�) ⊂
Γ0(N) so N divides �. But Γ(N) ⊂ G and so � divides N

since � is the Γ-level of G. Hence N = � as required.

Proposition 3.6. Suppose K is a congruence subgroup of
level n of Γ0(f)+ for some squarefree f and let

ρ =
(

p q
0 ph

)

for integers p, q, and h with gcd(p, q) = 1. Then ρKρ−1

contains Γ0(N) for some N , N minimal, iff ρKρ−1 con-
tains C, where C is a set of coset representatives for
Γ0(M) over Γ(M) where M = fnp2h.

Proof: First note that by a straightforward calculation,
Γ(M)ρ ⊂ G(n, f). Now suppose G = ρKρ−1 contains
Γ0(N) with N minimal. By Lemma 3.5, N is the Γ-level
of G. But Γ(M) ⊂ ρG(n, f)ρ−1 ⊂ ρKρ−1 = G. So M

is a multiple of N . Thus G contains Γ0(M) and hence it
contains C so that Cρ ⊂ K.

Conversely, if Cρ ⊂ K, then, since, Γ(M)ρ ⊂ K, we
have Γ0(M)ρ ⊂ K. So ρKρ−1 contains Γ0(M) and so
contains Γ0(N) where N is minimal.

Once we know that a conjugation is a moonshine group
we need to find its Γ-level. The following lemma provides
the necessary result:
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Lemma 3.7. Let

ρ =
(

p q
0 ph

)
,

where p, q, and h are integers such that gcd(p, q) = 1.
Then the smallest positive integer N such that

ρ−1

(
1 0
N 1

)
ρ ∈ Γ0(f)+,

where f is squarefree, is N = N0 = fhp2/gcd(p2, f).
Moreover, any other value of N such that

ρ−1

(
1 0
N 1

)
ρ ∈ Γ0(f)+

is a multiple of N0.

Proof: For any positive integer N we have

ρ−1

(
1 0
N 1

)
ρ =

(
1 − Nq

ph − q2N
p2h

N
h 1 + Nq

ph

)
.

For this matrix to be in Γ0(f)+ it must have integral
entries and the lower-left entry must be divisible by f .
Thus N = hfk for some integer k. Using the fact that
p is coprime to q this gives the condition p2|kf . Thus
k is a multiple of p2/gcd(p2, f). So N is a multiple of
N0 = hfp2/gcd(p2, f). Moreover substituting N = N0

in the above equation we find that

ρ−1

(
1 0

N0 1

)
ρ

is an element of Γ0(f). Thus the smallest value of N is
N0 as required.

Remark 3.8. Suppose G is a moonshine group with K =
Gρ as above. If

w =
(

1 0
N0 1

)ρ

and ws is the smallest power of w which lies in K, then
by Theorem 3.4, N = sN0 is the smallest N such that
Γ0(N)ρ is in K.

Once we know that Γ0(N)ρ ⊂ K the next step is to
construct the cosets of K over Γ0(N)ρ. If the level of K

is n, then we know the cosets of K over G(n, f). The
following lemma is useful since it provides a large known
subgroup of Γ0(N)ρ.

Lemma 3.9. Let

ρ =
(

p q
0 ph

)
with integers p, q, and h such that gcd(p, q) = 1 and p2h

divides N . Then H(ph, h,N) ⊂ Γ0(N)ρ.

Proof: If (
a b
c d

)
∈ H(ph, h,N),

then (
a b
c d

)
=

(
1 + uph vh

wN 1 + xph

)
,

for some integers u, v, w, and x. This gives

ρ

(
a b
c d

)
ρ−1 =(

a + qw(N/p) q(x − u) + v + q2(N/p2h)
hwN d − qw(N/p)

)
∈ Γ0(N)

since p2h|N . So ρH(ph, h,N)ρ−1 ⊂ Γ0(N) as required.

Remark 3.10. Thus G(n, f) ∩ H(ph, h,N) is a common
subgroup of K and Γ0(N)ρ. We can find cosets of G(n, f)
over G(n, f)∩H(ph, h,N) and hence of K over G(n, f)∩
H(ph, h,N). From these we can find a subset which are
the cosets of K over Γ0(N)ρ.

The following proposition is due to Norton:

Proposition 3.11. Let W be the set of all discrete sub-
groups G of SL(2, R) such that Γ0(N) ⊂ G for some N

and such that the stabilizer of infinity in G is generated
by

±
(

1 1
0 1

)
.

For x in Z/MZ, define t(x) ∈ SL(2, R) by

t(x) =
(

1 x/M
0 1

)

where 0 ≤ x < M and the class of x in Z/MZ is Mx.
Then there is a group action of Z/24Z on W given by
x : G �→ t(x)−1Gt(x).

Proof: If G ∈ W , then Γ0(N) ⊂ G for some N . Fix y,
0 ≤ y < 24, and set

t =
(

1 y/24
0 1

)
.

Then for any

g =
(

a b
242cN d

)
∈ Γ0(242N)

we have

tgt−1 =
(

a + 24yNc y
24 (d − a) + b − y2Nc

242Nc d − 24yNc

)
.
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However, since g ∈ Γ0(242N) we have ab − 242Ncb =
1, so ad ≡ 1 (mod 24). Hence a − d ≡ 0 (mod 24).
Thus tgt−1 ∈ Γ0(N) and hence t−1Gt contains Γ0(242N).
Moreover, the stabilizer of infinity in G commutes with t

and so the stabilizer of infinity in t−1Gt is also generated
by

±
(

1 1
0 1

)
.

Thus t−1Gt is in W and so each element of Z/24Z has a
well-defined action on W . Since(

1 1
0 1

)
∈ G

it follows that

t(y)−1t(x)−1Gt(x)t(y) = t(x + y)−1Gt(x + y)

and so the action is a group action.

Remark 3.12.

(i) Since conjugation preserves the genus, there is also
a group action of Z/24Z on

W (g) = {G ∈ W | genus(G) = g}.

(ii) This result is useful since it means that we need only
list one moonshine group from each Z/24Z orbit.

When computing moonshine groups it is necessary to
have a method to determine when two such groups are
identical. A necessary condition is that they have the
same Γ-level. If this is the case, then we have to verify
that they have the same cosets over Γ0(N). A conve-
nient way to do this is to find a canonical representa-
tive for each Γ0(N) coset and then to check that these
canonical coset representatives are identical. One possi-
ble canonical form is given in the next proposition. The
complicating factor is that the determinants of the coset
representatives may have prime factors which divide N .

Proposition 3.13. Let

A =
(

a b
c d

)
∈ M(2, Z)

with gcd(a, b, c, d) = 1 and let det(A) = D with D = 0.
Then in Γ0(N)A there is a unique element(

λα β
εα φ

)

with α = gcd(a, c), εα = gcd(aN, c), 0 ≤ λ < ε, and

φ = min{x ∈ Z>0 |
( ∗ ∗

gcd(aN, c) x

)
= yA,

for some y ∈ Γ0(N)}.

Proof: First we show that there is some y ∈ Γ0(N) such
that yA has the given properties. Let g = gcd(aN, c).
Since det(A) = 0, either a = 0 or c = 0, so g is a positive
integer. Also there are integers p and q such that qaN +
pc = g. There is a unique decomposition N = rs where
gcd(r, p) = 1 and s|p∞ (i.e., every prime which divides
s also divides p). Set k = r(1 + gcd(aN, p)) and define
p1 = p − kaN/g and q1 = q + kc/g. Then we have
q1aN + p1c = g; note that this means that q1 and p1

are coprime. Moreover, we can show that gcd(N, p1) = 1
as follows: if a prime � divides N , but does not divide
p, then � divides r and hence k. So � does not divide
p − kaN/g. If a prime � divides N and also divides p,
then it divides gcd(aN, p) and so � does not divide k.
But � also does not divide aN/g, since gcd(aN/g, p) = 1.
So again � does not divide p − kaN/g. Thus none of the
primes dividing N divide p1 and so gcd(N, p1) = 1. As
already noted, q1 and p1 are coprime and so we can find
integers u1 and v1 such that u1p1 − v1q1N = 1. So

t1 =
(

u1 v1

q1N p1

)

is an element of Γ0(N) and

t1A =
(

a′ b′

g d′

)
.

We can show that the parameter φ is well-defined as
follows. For any integer r, the two integers rg2N and
1 − ra′gN are coprime and so there are integers u2 and
v2 such that

t2 =
(

u2 v2

rg2N 1 − ra′gN

)

is an element of Γ0(N). A calculation shows that

t2t1A =
(∗ ∗

g d′ + rgN(b′g − d′a′)

)
=

(∗ ∗
g d′ − rgND

)

and for a suitable choice of r, we have d′ − rgND > 0.
So the set

{x ∈ Z>0 |
( ∗ ∗

gcd(aN, c) x

)
= yA, for some y ∈ Γ0(N)}

is not empty and so φ is well-defined.
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Let α = gcd(a, c) and ε = g/α. Then we have shown
that there is some y in Γ0(N) such that

yA =
(

λα β
εα φ

)

where the condition that 0 ≤ λ < ε can be arranged by
multiplication by a matrix of the form(

1 t
0 1

)
.

To show that this element is unique, suppose

y′A =
(

λ′α′ β′

ε′α′ φ′

)
.

Then we immediately have α′ = gcd(a, c) = α and hence
also ε′ = g/α = ε. Also from the definition, φ′ = φ. Thus

y′A =
(

λ′α β′

εα φ

)
.

A computation shows that

yA(y′A)−1 =
(

1 ∗
0 ∗

)
.

But we also have yA(y′A)−1 ∈ Γ0(N) and so we must
have

yA =
(

1 z
0 1

)
y′A.

Finally the condition 0 ≤ λ, λ′ < ε forces z = 0 and so
y′A = yA as required.

Corollary 3.14. The parameters λα, εα, β, and φ

uniquely fix the coset Γ0(N)A.

Remark 3.15.

(i) The parameters ε and α can be found using the
method described in the proof of Proposition 3.13.
A slight refinement of the proof also yields a method
of finding φ, and hence λ, as follows. Given

t1A =
(

a′ b′

g d′

)
,

the most general matrix t2 ∈ Γ0(N) such that

t2t1A =
(∗ ∗

g ∗
)

has the form

t2 =
(

u v
−rN 1 + ra′N/g

)
.

So

t2t1A =
(∗ ∗c

g rND/g + d′

)
.

Thus φ is bounded below by d0 = d′ (mod ND/g).
This bound is not necessarily achieved as the corre-
sponding value r = r0 = (d0 − d′)g/(ND) may have
gcd(1 + r0a

′N/g,N) = 1. However, r is bounded
above, for example, by r1 = (d′2 + 1)g2 and so a
finite search gives the value of φ.

(ii) In practice, the index of Γ0(N) can be large so that
storing all the coset representatives becomes a sig-
nificant constraint on the calculation. This problem
can be avoided, at the cost of extra computation, by
finding a subset of “reduced canonical coset repre-
sentatives” which generate the full set (by right mul-
tiplication). As we shall see in the next section, given
two congruence subgroups G and H, it is straight-
forward to compute the “virtual index” of H in G,
which is the index if H is a subgroup of G. So, if
moonshine groups G and H have the same level, the
virtual index of H in G is 1, and the reduced canon-
ical coset representatives of H are contained in the
canonical coset representatives of G, then G = H.
The point here is that we do not have to compute the
reduced canonical coset representatives of G, which
would often involve significantly more computation.

4. MORE RESULTS NEEDED FOR
THE COMPUTATIONS

In this section we record other results needed in the com-
putations. In order to find the list of congruence sub-
groups we will need an explicit description of the quotient
groups Γ0(f)+/G(n, f).

If m is an element of SL(2, R) and m is such that
m = λm′ for some λ ∈ R, λ = 0,

m′ =
(

a b
c d

)
∈ M(2, Z),

gcd(a, b, c, d) = 1, then we write |m| = ad − bc. This is
well-defined since m′ is unique up to a sign if it exists.

Lemma 4.1. Let f be a squarefree integer. Define E =
{e ∈ Z>0 | e divides f} and a binary operation on E

by e1 · e2 = e1e2/gcd(e1, e2)2. Then with this operation
E is a group and if m1,m2 ∈ Γ0(f)+, then |m1m2| =
|m1| · |m2|.
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Proof: That the set E, together with the given binary op-
eration, forms a group is a straightforward exercise. To
show that |m1m2| = |m1|·|m2|, note that from Definition
2.1 we have mi = e

−1/2
i m′

i, i = 1, 2, where m′
i is an inte-

ger matrix of determinant ei, and so |mi| = ei, i = 1, 2.
Then using the form of m1 and m2 given in Definition
2.1, it is easy to verify that m3 = gcd(e1, e2)−1m′

1m
′
2

is a matrix with integer entries and determinant e1 · e2.
Since the determinant is squarefree, the entries of m3 are
coprime. Moreover, m3 is a multiple of m1m2, so that
|m1m2| = det(m3) = e1 · e2 = |m1| · |m2|.

Remark 4.2. We will use the notation m · e for |m| · e.

Proposition 4.3. Let f be a squarefree integer and n be a
positive integer. Let K be a set and ψ a homomorphism
of SL(2, Z) into Sym(K) (the group of permutations of
K) such that the kernel of ψ is Γ(n). For convenience we
write xm for (x)ψ(m), m ∈ SL(2, Z), x ∈ K (actions are
from the right, as this is the Magma convention). Define

σ : E × Γ0(n)+ → SL(2, Z)

by σ(e,m) =QmP , where

P = P (e,m) =
(√

e
√

e · m/f 0
0

√
e/
√

e · m
)

and

Q = Q(e) =
(

f/e 0
0 1

)
.

Define

φ(m) : E × K → E × K

by (e, x)φ(m) = (e · m,xσ(e,m)). Then φ : Γ0(n)+ →
Aut(E×K) is a group homomorphism with kernel G(n, f)
(where Aut(E × K) is the group of permutations of the
set E × K).

Proof: We have

(e, x)φ(m1)φ(m2) = (e · m1, xσ(e,m1))φ(m2)

= (e · m1 · m2, xσ(e,m1)σ(e · m1,m2)).

Thus to show that φ is a homomorphism it is sufficient
to show that σ(e,m1)σ(e · m1,m2) = σ(e,m1m2). From
the definition of σ we have

σ(e,m1)σ(e · m1,m2) =

Q(e)m1P (e,m1)Q(e · m1)m2P (e · m1,m2).

But P (e,m1)Q(e · m1) = (
√

e/
√

e · m1)12. So

σ(e,m1)σ(e · m1,m2) = (
√

e/
√

e · m1)Q(e)m1m2

× P (e · m1,m2)

= Q(e)m1m2P (e,m1m2)

= σ(e,m1m2)

as required.
Next we show that the kernel is G(n, f). If

m =
(

a b
fc d

)
∈ G(n, f),

then
a − 1 ≡ d − 1 ≡ b ≡ c ≡ 0 (mod n)

and |m| = 1. Hence for any e ∈ E we have

σ(e,m) =
(

a bf/e
ce d

)
∈ Γ(n).

So (e, x)φ(m) = (e · 1, xσ(e,m)) = (e, x) for all (e, x) ∈
E × K. Thus G(n, f) ⊂ kernel(φ). Conversely, if
(e, x)φ(m) = (e, x) for all (e, x) ∈ E×K, then |m| ·1 = 1
and so |m| = 1. Also (1, x)φ(m) = (1, x) implies(

a bf
c d

)
∈ Γ(n).

Hence a−1 ≡ d−1 ≡ c ≡ 0 (mod n). Also (f, x)φ(m) =
(f, x) implies (

a b
cf d

)
∈ Γ(n)

and hence b ≡ 0 (mod n) and so m ∈ G(n, f).

Remark 4.4.

(i) If m =∈ Γ0(f)+ with

m = |m|−1/2

(
a b
c d

)
,

a, b, c, d ∈ Z, then

σ(e,m) =
(

a/g bfg/(e|m|)
ce/fg dg/|m|

)
,

where g = gcd(e, |m|).
(ii) In particular if we take K = (Z/nZ)2, then the ac-

tion of m on (e, x) is given by

φ(m) : e �→ e · m
x1 �→ (a/g)x1 + (ce/fg)x2 (mod n)

x2 �→ (bfg/e|m|)x1 + (dg/|m|)x2 (mod n)

where g = gcd(e, |m|).
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(iii) In (ii), since σ(e,m) ∈ SL(2, Z), φ preserves
gcd(x1, x2, n) and so we can restrict the represen-
tation to {x = (x1, x2) | gcd(x1, x2, n) = 1}.

When computing the congruence subgroups of Γ0(f)+

it is possible that the same group may appear for more
than one value of f . Given a congruence subgroup G

of Γ0(f)+, the following proposition tells us which other
Γ0(F )+ contain G as a subgroup. This proposition was
used in Table 2 to calculate the groups in the “Equal”
column.

Proposition 4.5. Let G be a level n congruence subgroup
of Γ0(f)+ where f is squarefree. Let G = ∪I

i=1G(n, f)γi

be a coset decomposition of G over G(n, f), where

γi = e
−1/2
i

(
eiai bi

fci eidi

)
,

ai, bi, ci, di ∈ Z, ei is an exact divisor of f , det(γi) =
ei, and gcd(eiai, bi, fci, eidi) = 1, 1 ≤ i ≤ I. Define
fmin = lcm(e1, e2, . . . , eI) and C = gcd(n, c1, c2, . . . , cI).
Then G is a subgroup of Γ0(F )+ for F squarefree iff fmin

divides F and F divides Cf . Also if {γi1 , . . . , γis
} is

a subset of coset representatives which generate G over
G(n, f), then C = gcd(n, ci1 , . . . , cis

).

Proof: First note that since all the elements of G(n, f)
have determinant 1, the value of fmin is independent
of the choice of coset representatives. The value of
gcd(c1, . . . , cI) depends of the choice of cosets, but dif-
ferent values are congruent modulo n so that C is inde-
pendent of the choice of cosets.

Suppose G has level n = n(G, f) and is a subgroup
of Γ0(f)+ with invariants fmin and Cf and suppose also
that G is a subgroup of Γ0(F )+; we show that fmin di-
vides F and F divides Cf . Fix a coset decomposition of
G, G = ∪I

i=1G(n, f)γi. Then γi ∈ Γ0(F )+, i = 1, . . . I.
Since the possible determinants of elements of Γ0(F )+

(when scaled to be integral with no common factor) are
the divisors of F , we have ei|F , i = 1, . . . I, so fmin|F .
Since G(n, f) ⊂ G ⊂ Γ0(F )+ we have(

1 0
nf 1

)
∈ Γ0(F )+,

so F |nf . Also γi ∈ Γ0(F )+ implies that F |fci, i =
1, . . . , I, and hence F |Cf .

Conversely, suppose G is a level n subgroup of Γ0(f)+

and that F is a squarefree integer such that fmin divides
F and F divides Cf . Then we have to show that G is a

subgroup of Γ0(F )+. As before, let G = ∪I
i=1G(n, f)γi,

i = 1, . . . , I be a coset decomposition of G over G(n, f).
We will show that G(n, f) and all the coset representa-
tives are in Γ0(F )+. An element m of G(n, f) has the
form

m =
( ∗ ∗
∗nf ∗

)

and since F divides Cf it also divides nf and hence m ∈
Γ0(F ) ⊂ Γ0(F )+. Let

γi = e
−1/2
i

(
eiai bi

fci eidi

)

be a coset representative of G over G(n, f). Then ei

divides F , since ei divides fmin. Also F divides Cf which
divides cif . Let cif = c′iF . Thus

γi = e
−1/2
i

(
eiai bi

c′iF eidi

)
,

where eiai, bi, c
′
iF, eidi ∈ Z, gcd(eiai, bi, F c′i, eidi) = 1,

and ei divides F . So γi ∈ Γ0(F )+. Thus G ⊂ Γ0(F )+ as
required.

For the last part of the proposition, let

γ = e−1/2

(
ea b
fc ed

)

and

γ′ = e′−1/2

(
e′a′ b
f ′c′ e′d′

)

be two coset representatives. Then we observe that

γγ′ = (ee′)1/2g

( ∗ ∗
(a′

g c + d
g c′)f ∗

)
= (e · e′)−1/2γ′′,

where g = gcd(e, e′) and γ′′ is a matrix with coprime
entries and with determinant e · e′ = ee′/g2. Similarly
pre- or post-multiplying γ by an element of G(n, f) gives
a matrix with coprime entries and determinant e of the
form

e−1/2

( ∗ ∗
(rc + sn)f ∗

)
.

Thus every element ( ∗ ∗
cf ∗

)
∈ G

has c divisible by C ′ = gcd(n, ci1 , . . . , cis
). So C ′ di-

vides C. But the cosets {γ1, . . . , γI} also generate G over
G(n, f), so applying the same argument we have that C

divides C ′ and so C = C ′.
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Remark 4.6.

(i) Note that groups which are conjugate in Γ0(f)+ may
give rise to subgroups of Γ0(F )+ which are not con-
jugate. For example, the groups Γ0(4) and Γ(2) are
conjugate in Γ0(2)+, but are not conjugate in Γ(1).
Thus in Table 2 we list the subgroups G of Γ0(f)+

up to conjugacy in Γ0(f)+ and in the “Equal” col-
umn give a list of subgroups G′ of Γ0(F )+ up to
conjugacy in Γ0(F )+, F = f , such that at least one
conjugate of G in Γ0(f)+ is equal to at least one
conjugate of G′ in Γ0(F )+.

(ii) Although fmin is invariant under conjugation in
Γ0(f)+ (since the corresponding determinants are
invariant), it is not true that C is invariant under
conjugation. For example, Γ1(3) is a level 3 congru-
ence subgroup of Γ(1) and possible coset represen-
tatives over Γ(3) are(

1 0
0 1

)
,

(
1 1
0 1

)
, and

(
1 2
0 1

)
.

This gives fmin = 1, C = 3, and Cf = 3. So the
proposition says that Γ1(3) is a congruence subgroup
of Γ(1) and Γ0(3)+, as expected. The conjugate
Γ1(3), which is Γ1(3) conjugated by(

0 −1
1 0

)
,

is also a level 3 congruence subgroup of Γ(1) and
possible coset representatives are(

1 0
0 1

)
,

(
1 0
1 1

)
, and

(
1 0
2 1

)
.

So in this case fmin = 1 (as before), but now C = 1
and Cf = 1. Hence the proposition states that Γ1(3)
is a congruence subgroup only of Γ(1). This is, of
course, a consequence of the fact that in Theorem 2.2
we have selected particular conjugates of the Γ0(f)+.
For example, taking Γ0(f)+, the conjugate of Γ0(f)+

by (
0 −1
1 0

)
,

we exchange the roles of Γ1(3) and Γ1(3) in this ex-
ample.

We now give some results which provide a formula for
the “virtual index” of one congruence group in another.
Recall (see, for example, [Shimura 71, Chapter 3]) that

subgroups A and B of a group G are said to be commen-
surable iff there is a subgroup H which has finite index
in both A and B. If A and B are commensurable, then
we write A ∼ B. Commensurability is an equivalence
relation, and the equivalence class of A is written Cl(A).
The set Com(A) = {g ∈ G | Ag ∼ A} is a subgroup of G

and Com(A) = Com(B) if A ∼ B. Com(A) is called the
commensurator of A. Also if A ∼ B, then Ag ∼ Bg for
any g ∈ G, where Ag = g−1Ag.

Definition 4.7. Let G be a group and A be a subgroup
of G. For any group B in Cl(A) and for any common
subgroup H of finite index in A and B define

V I(A,B;H) =
Index(A : H)
Index(B : H)

.

Lemma 4.8. Suppose A, B, and C are in the same com-
mensurability class, then

1. V I(A,B : H) is independent of the choice of H.
Denote this common value by V I(A,B).

2. V I(A,B)V I(B,C) = V I(A,C). In particular,
V I(A,B) = 1/V I(B,A).

3. if A and B are subgroups of PSL(2, R) which
are commensurable with SL(2, Z) and g ∈
Com(SL(2, Z)), then V I(Ag, B) = V I(A,B).

Proof:

1. Suppose H and H ′ are two subgroups of finite index
in both A and B. Then H ∼ A and A ∼ H ′, so
H ∼ H ′ so there is a subgroup H ′′ of finite index in
both H and H ′. Then

V I(A,B;H ′) =
Index(A : H ′)Index(H ′ : H ′′)
Index(B : H ′)Index(H ′ : H ′′)

=
Index(A : H)Index(H : H ′′)
Index(B : H)Index(H : H ′′)

=
Index(A : H)
Index(B : H)

= V I(A,B;H).

2. There is a subgroup H1 of finite index in both A and
B and a subgroup H2 of finite index in both B and
C. H1 is commensurable with H2 since H1 ∼ B and
B ∼ H2. So there is a subgroup H3 which has fi-
nite index in A, B, and C. Then from Defintion 4.7
we find V I(A,B;H3)V I(B,C;H3) = V I(A,B,H3)



Cummins: Congruence Subgroups of Groups Commensurable with PSL(2, Z) of Genus 0 and 1 377

and so the result follows from (1). The second
part follows by setting A = C and noting that
V I(A,B) > 0, so the inverse is defined.

3. For groups which are commensurable with SL(2, Z)
we have V I(A,B) = Area(B)/Area(A). Since Ag is
commensurable with SL(2, Z), V I(Ag, B) is defined.
Then

V I(Ag, B) = Area(B)/Area(Ag)

= Area(B)/Area(A) = V I(A,B).

Remark 4.9. (3) is not true in general. For example, take
G = SL(2, R) and

A = 〈
(

1 1
0 1

)
〉.

Then A is conjugate in G to

B = 〈
(

1 2
0 1

)
〉,

but V I(A,B) = 2. It is an easy exercise to show for
g ∈ Com(A) that V I(Bg, C) = V I(B,C) for all B,C ∈
Cl(A) iff V I(Dg,D) = 1 for some D ∈ Cl(A).

Corollary 4.10. If Ki is a subgroup of Γ0(fi)+ of level ni

and Index(Ki, G(ni, fi)) = ki, i = 1, 2. Then

V I(K1,K2) =

k1n
3
2

∏
�|n2f2

� prime

(1 +
1
�
)

∏
�|n2

� prime

(1 − 1
�
)

k2n3
1

∏
�|n1f1

� prime

(1 +
1
�
)

∏
�|n1

� prime

(1 − 1
�
)
.

Proof: We have

V I(K1,K2) = V I
(
G1, G(n1, f1)

)
V I

(
G(n1, f1),

G(n2, f2)
)
V I

(
G(n2, f2), G2

)
=

k1

k2
V I

(
H(n1, n1, n1f1),H(n2, n2, n2f2)

)
=

k1

k2

V I
(
H(1, 1, 1),H(n2, n2, n2f2)

)
V I

(
H(1, 1, 1),H(n1, n1, n1f1)

) .

Applying Proposition 2.9 (3) gives the result.

Remark 4.11.

(i) A particular case of Corollary 4.10 is the following:
if K is a subgroup of Γ0(f)+ of level n and Index(K :

G(n, f)) = i, then

V I(K,Γ0(N)) =

iN
∏
�|N

� prime

(1 +
1
�
)

n3f
∏
�|nf

� prime

(1 +
1
�
)

∏
�|n

� prime

(1 − 1
�
)
.

(ii) Corollary 4.10 together with Lemma 4.8 (3) gives
a useful necessary condition for H to be a sub-
group of some conjugate of G, namely that V I(G,H)
has to be an integer. In particular, (i) was used
in the search for moonshine groups to check that
V I(K,Γ0(N)) was an integer before any of the de-
tailed computations were performed.

The following three propositions provide a method for
identifying GL(2, Q)+ conjugates inside Γ0(f)+. This
information was not included in the tables.

Proposition 4.12. Suppose G and H are congruence sub-
groups of Γ0(f)+, with f squarefree, which are conjugate
in SL(2, R). Then H is conjugate in Γ0(f)+ to m−1Gm

where

m =
(

p q
0 r

)
with p, r > 0, 0 ≤ q < p, gcd(p, q, r) = 1, p|n,
r|(n/p)gcd(f, p) where n is the level of G. Also, the level
of H divides gcd(pr, n)n.

Proof: By assumption H = m′−1Gm′ with m′ ∈
SL(2, R). As in Proposition 3.2, we can conjugate by a
suitable element of Γ0(f)+ and multiply m by a suitable
scalar so that H ′ = m−1Gm with

m =
(

p q
0 r

)
,

p, q, r ∈ Z, p, r > 0, gcd(p, q, r) = 1, and H ′ is conjugate
to H in Γ0(f)+. By conjugating by a suitable power of(

1 1
0 1

)

we can also arrange that 0 ≤ q < p. If G has level n,
then (

1 n
0 1

)
and

(
1 0

nf 1

)
are elements of G. Using the fact that the conjugates
of these two elements by m have squarefree determinant,
and hence must be contained in Γ0(f), we find that

p|nr, pr|nfq2, r|nfq and r|np.



378 Experimental Mathematics, Vol. 13 (2004), No. 3

Let p = p1p2 where p1 = gcd(p, n). So p1|n and

gcd(p2, n/p1) = 1.

Then p1p2|nr gives p2|(n/p1)r, so p2|r. So let r = hp2.
Since gcd(p, q, r) = 1 this implies gcd(p2, q) = 1. Then
pr|nfq2 gives p1p

2
2h|nfq2, so in particular p1p

2
2|nfq2 and

hence p2
2|(n/p1)q2f . But p2 is coprime to (n/p1)q2 and so

p2
2|f . Since f is squarefree this is only possible if p2 = 1.

Hence p = p1 and so p|n.
To show that

r|(n/p)gcd(n, f),

note that since p|n we have

r|(n/p)fq2.

Also r|(n/p)p2. Thus

r|(n/p)gcd(fq2, p2).

But

gcd(fq2, p2)|gcd(f, p2)gcd(q2, p2)

so that

r|(n/p)gcd(f, p2)gcd(q2, p2).

But f is squarefree so gcd(f, p2) = gcd(f, p) and
gcd(p, r, q) = 1 so r is coprime to gcd(q2, p2). Thus
r|(n/p)gcd(f, p) as required. (Note that this implies that
r|n and pr|nf .)

To show the condition on the level, a direct compu-
tation shows that mG(prn, f)m−1 ⊂ G(n, f) and since
G(n, f) ⊂ G this gives G(prn, f) ⊂ m−1Gm and so, by
Lemma 2.12, the level of m−1Gm divides prn. A sim-
ilar calculation, using p|n, r|n, and pr|nf , shows that
G(n2, f) ⊂ m−1Gm and so that level also divides n2.
Hence the level of m−1Gm divides gcd(pr, n)n. Now
H is conjugate in Γ0(f)+ to m−1Gm and conjugacy in
Γ0(f)+ preserves the level. Hence the level of H divides
gcd(pr, n)n as required.

Corollary 4.13. If G and H are related as in the last
proposition, then for all primes p, p divides the level of
G if and only if p divides the level of H.

Proof: Let nG be the level of G and nH be the level of H.
By the last proposition nH divides n2

G. So if p divides
nH , then p also divides the nG. Similarly, nG|n2

H and so
if p divides nG it also divides nH as required.

Remark 4.14. Using Proposition 4.12 we can identify
SL(2, R) conjugates as follows. Given G ⊂ Γ0(f)+, sup-
pose γ1, . . . , γk generate G. Then for each

m =
(

p q
0 r

)

satisfying the constraints given in Proposition 4.12, and
for each level nH which divides gcd(pr, n)n, we test

W (G,m, nH) = 〈γm
1 G(nH , f), . . . , γm

k G(nH , f)〉

in Γ0(f)+/G(nH , f) for equality with the images in
Γ0(f)+/G(n, f) of all the conjugates of all the subgroups
of Γ0(f)+ of level nH and the same genus as G. It is pos-
sible that the pre-image, H, of W (G,m, nH) in Γ0(f)+ is
strictly larger than Gm, but these cases can be identified
by computing the virtual index of G in H.

5. OUTLINE OF THE ALGORITHMS

Implementing the algorithms given in the previous sec-
tions is a nontrivial task. The resulting Magma code is
several thousand lines long and a detailed listing would
not be practical. Thus this section gives only an outline
of how the previous results are used in the computation
of the tables.

Step 1: To use Proposition 4.3 to construct faith-
ful permutation representations we first need to con-
struct faithful permutation representations of the groups
SL(2, Z/pnZ) ∼= SL(2, Z)/Γ(pn) for primes p and then ap-
ply the standard decomposition Lemma 2.10 (7) to con-
struct SL(2, Z)/Γ(N). This calculation was done for all
primes p and positive integers n such that pn < 213 us-
ing ad hoc methods. The aim is to find representations
of small degree. The only difficult case is when p = 2,
since the centre of the group is enlarged.

Step 2: Next, generators and representatives of the tor-
sion classes of Γ0(f)+ were computed for all squarefree
f such that f ≤ 3000 and for all f such that the genus
of Γ0(f)+ is less than or equal to 24. This was done
by constructing a fundamental domain for these groups
bounded by principal circles, as described for example
by Ford [F]. The details of this computation will appear
elsewhere [Cummins and Pauli 03].

Step 3: For each fixed genus g (in this paper g=0 or 1)
the list of all Γ0(f)+ with genus less than or equal to g

was found, as described in Section 2. Then the list of pos-
sible levels was computed using Theorem 2.17. From this
list the maximal levels, i.e., levels which are not divisors
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of other possible levels, were found. For each maximal
level, n, the group Γ0(f)+/G(n, f) was constructed us-
ing Proposition 4.3 and the generators found in Step 2.
The subgroup tree was then searched using the Magma
routine MaximalSubgroups, starting with the full group.
The genus of each subgroup was computed using the tor-
sion classes found in Step 2 and the Riemann-Hurwitz
formula. The stopping criteria applied were: Theorem
2.14, the fact that the genus is nondecreasing on each
chain of subgroups, and the restriction that we require
each subgroup to contain −1. Groups were identified up
to conjugacy in Γ0(f)+. The results of this calculation for
genus 0 and 1 are in Table 2. The notation is described
in the next section.

Step 4: To find the list of moonshine groups, Propo-
sition 3.6 was applied to each conjugate of each group
found in Step 3 (note: before applying this test we first
compute the virtual index of Γ0(fnp2h) which, by Propo-
sition 3.6, must be an integer). The level was then found
using Lemma 3.7. Finally the cosets over Γ0(N) were
computed as described in Section 3 (see Lemma 3.9).
Identical groups were found using the methods described
in Section 3 (see comments after Corollary 3.14). The
results are in Tables 3 and 4.

Additional data was then computed which is described
in the next section.

6. THE TABLES

The tables are described in this section. Again,
all tables can be found at http://www.expmath
.org/expmath/volumes/13/13.3/cumminstables.pdf.

6.1 Table 1

The maximum squarefree f such that Γ0(f)+ has genus
g for 0 ≤ g ≤ 100. The calculation of this table was
explained in Section 2.

6.2 Table 2

This is the main table. It contains the list of congru-
ence subgroups of genus 0 and 1. The first column is a
label for (the conjugacy class of) the group G. It has
the form n(Label)g

f where n = n(G, f) is the level of G,
g is the genus of G, f is a squarefree integer such that
G is a subgroup of Γ0(f)+, and Label is a label used to
distinguish groups with the same values of n, g, and f .
The next column identifies the group, where appropriate,
as a subgroup of the involutive normalizer of Γ0(m) for
some m (not always the level). The notation is that of

Conway and Norton [Conway and Norton 79]. So m− is
Γ0(m) and m+ is Γ0(m)+. The notation m + a1, a2, . . .

identifies subgroups between m+ and m− as described
in [Conway and Norton 79] (see also [Atkin and Lehner
70]). Column I is the index of G in Γ0(f)+. Column N

is the normalizer of G in Γ0(f)+ (which is not always the
full normalizer in SL(2, R)). Column L is the number of
conjugates of G in Γ0(f)+. Column E identifies the con-
jugacy class of subgroups G′ of Γ0(F ) with F = f such
that at least one group in the conjugacy class of G in
Γ0(f)+ is equal to at least one of the conjugates of G′ in
Γ0(F )+. This column was calculated using the method
described in Proposition 4.5. Note that the restriction
that the conjugations be in Γ0(f)+ and Γ0(F )+ means
that this relation need not be transitive. For example,
one of the conjugates of 4G0

1 in Γ is equal to one of the
conjugates of 4J0

2 in Γ0(2)+. Also one of the conjugates
of 8H0

1 in Γ is equal to one of the conjugates of 4J0
2 in

Γ0(2)+. This means that 4G0
1 is conjugate to 8H0

1 in
SL(2, R), but they are not conjugate in Γ. Column T de-
scribes the structure of the conjugacy classes of torsion
elements of G = G/{±1} written in partition notation.
So, for example, 3122 means that G contains one con-
jugacy class of elements of order 3 and two conjugacy
classes of elements of order 2. Column S gives a list of
the conjugacy classes of minimal super-groups H of G in
Γ0(f)+, in other words, G is conjugate to a subgroup K

of H such that there is no group L with K ⊂ L ⊂ H,
with the inclusions being proper and all groups contained
in Γ0(f)+.

6.3 Table 3

This is the list of moonshine groups of genus 0. As de-
scribed in Proposition 3.11, there is an action of Z/24Z

on these groups. We call the elements of the Z/24Z or-
bit the translations of G. Also, for any group G which
contains Γ(N) there is an action of the Galois group
(Z/NZ)∗ [Shimura 71, Chapter 6] (see also, for exam-
ple, [Norton 93] and [Cummins and Gannon 97, Section
6]). In particular, if G contains Γ0(N), then the Galois
group has exponent 2 and so its fixed field has the form
Q(

√±p1,
√±p2, . . . ,

√±pk) where pi, i = 1, . . . k, is ei-
ther 1 or a prime and p1 < p2 < · · · < pk. The Galois
action can be calculated once the cosets over Γ(N) (or
Γ0(N)) are known. If f is an automorphic function of G

all of whose q coefficients lie in Q(ζN ), then there is a q

expansion of f such that the Galois action corresponds
to Galois conjugation of the coefficients of f . To reduce
the size of this table only one representative is given for
each orbit under the group generated by translations by



380 Experimental Mathematics, Vol. 13 (2004), No. 3

1/24 and Galois automorphisms. The representative is
selected to:

1. minimize the degree of the fixed field of the Galois
group.

2. then minimize the cyclotomic level of the fixed field
of the Galois group. (The cyclotomic level of a field
K with abelian Galois group over Q is the smallest
m such that K is contained in Q(ζm).)

3. then maximize the intersection of the Galois and
translation subgroups.

4. then minimize the Γ-level of the group.

If these are equal, then the groups are sorted using
the ordering of the groups in Table 2 to which they are
conjugate. The Γ-level and fixed field listed in the table
are for this minimal representative and will not necessar-
ily be the same for other groups in the equivalence class.
In fact although it turns out to be possible to find a
representative which simultaneously minimizes both the
degree and cyclotomic level of the Galois groups, this
representative does not, in general, maximize the size of
the intersection of the Galois and translation subgroups,
nor minimize the Γ-level.

The first column in Table 3 has the form N(Label)g

where N is the Γ-level of G (which by Lemma 3.5 is the
smallest N such that Γ0(N) is a subgroup of G) and
g is the genus of G. Where appropriate, the columns
labeled L give the labels given to the groups in [Conway
and Norton 79] and [Norton 97]. All the groups with
entries in the L column are genus 0 and rational (fixed by
all Galois automorphisms); at most two groups in each
equivalence class can be rational. Column P gives the
period p which is defined to be p = 24/s where s is the
number of orbits of G under translations by 1/24. If G

has normalized Hauptmodul f , then f has a q expansion
of the form 1/q +

∑
n>0 apn−1q

pn−1. Column G lists the
number of Galois conjugates of G. Column GT lists the
number of Galois conjugates which are also translations
of G. Column Irr lists the minimal pi, i = 1, . . . , k as
described above. The notation is that x, y, i, . . . , a, b is
the field Q(

√−x,
√−y, i, . . . ,

√
a,
√

b). So, for example,
15 is the field Q(

√−15) and i 2 is Q(i,
√

2). Column
C lists the conjugacy classes of groups G′ from Table 2
such that at least one of the elements of the equivalence
class of G is conjugate in SL(2, R) to at least one of the
elements of the conjugacy class of G′ in Γ0(f)+.

6.4 Table 4

This is a list of moonshine groups of genus 1. The nota-
tion is the same as that in Table 3.

6.5 Table 5

A summary of the number of genus 0 moonshine groups
by coefficient field. Each column is the minimal coeffi-
cient field as described above. The first column lists the
number of rational groups. The number of groups is up
to Galois conjugations and translations.

6.6 Table 6

The summary of the number of genus 1 moonshine groups
by coefficient field. The notation is the same as Table 5.

6.7 Table 7

Summary of the total number of moonshine groups of
genus 0 by Γ-level. The first entry gives the number of
groups of each Γ-level N , where N = mh2 with h the
largest divisor of 24 such that h2 divides N . The second
entry is the number of groups which contain Γ0(N) nor-
mally and the last is the number of groups which contain
some Γ0(N) normally, but for which N is not necessarily
the Γ-level (see Section 7 for a discussion of this point).

6.8 Table 8

Summary of the total number of moonshine groups of
genus 1 by Γ-level. The notation is as in Table 7.

7. COMMENTS ON OTHER RESULTS

This section has been added to comment on the relation-
ship between this paper and that of Chua and Lang [Chua
and Lang 03]. In their paper, Chua and Lang compute
all the groups of genus 0 between some Γ0(M) and its
normalizer. Thus there is some overlap with the genus 0
moonshine groups computed here in Table 3. The main
differences are that Chua and Lang do not impose the
restriction that G contains z �→ z + k iff k is an inte-
ger (the “cusp width one at infinity” condition), while
in this paper the restriction that G contain some Γ0(N)
normally is not imposed. The strategy of the calcula-
tions is also different. Chua and Lang work directly in
the quotient Normalizer(Γ0(N))/Γ0(N), while in this pa-
per the moonshine groups are found as conjugates of the
congruence subgroups of Γ0(f)+, f a squarefree integer.

Thus to compare our results, the groups of Chua and
Lang must be restricted to have width one at infinity and
the groups found here must be restricted to contain some
Γ0(N ′) normally. It is possible that Γ0(N ′) ⊂ Γ0(N) ⊂



Cummins: Congruence Subgroups of Groups Commensurable with PSL(2, Z) of Genus 0 and 1 381

G, where N is the Γ-level of G, Γ0(N ′) is normal in G,
and Γ0(N) is not normal in G. However, in this case,
Γ0(N ′) is normal in Γ0(N) and so the following propo-
sition gives a finite list of possibilities for N ′ given the
Γ-level N .

Proposition 7.1. Suppose Γ0(N ′) ⊂ Γ0(N). Then the
inclusion is normal iff N ′/N divides gcd(N, 24).

Proof: Note first if Γ0(N ′) ⊂ Γ0(N), then by Proposi-
tion 2.9 (2) N divides N ′. By Theorem 3.4, Γ0(N) is
generated by

Γ0(N ′) and
(

1 0
N 1

)
.

So Γ0(N ′) is normal in Γ0(N) iff

(
1 0
N 1

)

normalizes Γ0(N ′). From the description of the normal-
izer of Γ0(N ′) in [CN] it follows that

(
1 0
N 1

)

normalizes Γ0(N ′) iff N ′
h divides N , where h is the largest

divisor of 24 such that h2 divides N ′. So we have to
show that N ′

h divides N iff N ′/N divides gcd(N, 24). Let
N ′ = kN . Suppose first that N = cN ′

h , then h = ck so k

divides 24. Also N ′ = mh2 and so N = c2mk and hence k

divides N and so divides gcd(N, 24). Conversely, suppose
k divides gcd(N, 24). Then N = kN ′′ and so k2N ′′ = N ′.
Hence k2 divides N ′ and k divides 24 so that k divides h.
Writing h = ck gives hN = ckN = cN ′ so that N = cN ′

h

as required.

Thus if G contains Γ0(N) then to test if G contains
some Γ0(N ′) normally it suffices to check for each k di-
viding gcd(N, 24) that each of the generators of G over
Γ0(N) normalizes Γ0(kN). The results of this calculation
for genus 0 are contained in Table 7 and are in agreement
with the results of Chua and Lang [Chua and Lang 03].
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