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We propose a very precise conjecture on the asymptotics of the
counting function for extensions of number fields with fixed Ga-
lois group and bounded norm of the discriminant. This sharpens
a previous conjecture of the author. The conjecture is known to
hold for abelian groups and a few nonabelian ones. We give a
heuristic argument why the conjecture should be true. We also
present some computational data for the nonsolvable groups of
degree 5.

1. INTRODUCTION

We are interested in the distribution of number fields
with a given Galois group. We propose a very precise
conjecture on the density of fields having given Galois
group and bounded discriminant.

Let G be a finite transitive permutation group on n

points and let k be a number field. By abuse of notation,
we will write Gal(K/k) = G if K/k is a field extension
such that the Galois group of the Galois closure K̂/k,
viewed as a permutation group on the set of embeddings
of K into K̂, is permutation isomorphic to G. Our goal
is the description of the asymptotic behaviour of

Z(k,G;x) :=

|{K/k | Gal(K/k) = G, Nk/Q(dK/k) ≤ x
} |,

the number of field extensions of k (inside a fixed alge-
braic closure Q̄) of degree n with Galois group isomorphic
to G and with norm of the discriminant dK/k bounded
above by x.

We propose the following conjecture on the growth of
Z(k,G;x) as x goes to infinity, that is, on the density of
Galois groups:

Conjecture 1.1. Let G �= 1 be a transitive permutation
group and let k be a number field. Then there exists a
constant c(k,G) > 0 such that

Z(k,G;x) ∼ c(k,G)xa(G)(log x)b(k,G)−1,
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for certain explicit constants a(G) and b(k,G) (see (2–1)
and (2–2)).

Here, for functions f, g : R → R>0 we write f ∼ g if

lim
x→∞

f(x)
g(x)

= 1.

The conjecture that Z(k,G;x) has an asymptotic be-
haviour of the above form for some constants a(k,G) and
b(k,G) has been stated before (see [Cohen et al. 00, Con-
jecture 1], for example). The point here is that we pro-
pose explicit expressions for a(G) and b(k,G): for a finite
transitive permutation group G �= 1 we let a(G) be the
inverse of the minimal index of nontrivial elements of G.
We denote by b(k,G) the number of k-rational conju-
gacy classes of G with minimal index. (These terms will
be defined in the next section.)

Since we claim that c(k,G) > 0 for all k and G, the
truth of our conjecture would imply in particular that any
finite group occurs as a Galois group over any number
field. At present, even this latter problem is still wide
open.

Also, we will see in Corollary 2.3 that the validity of
Conjecture 1.1 implies that the total number of field ex-
tensions of degree n and absolute value of the discrim-
inant at most x should grow linearly with x. This last
conjecture has been put forward by several authors, see
for example Cohen [Cohen 00, Conjecture 9.3.5(1)].

The asymptotic behaviour of Z(k,G;x) has been the
object of several investigations and speculations. No-
tably, Wright proved that the conjecture is true for
abelian groups G (see Section 3). Cohen and his collabo-
rators have determined the asymptotics of Z(k,G;x) for
some small nonabelian groups. In collaboration with J.
Klüners [Klüners and Malle], we investigated the asymp-
totics of Z(k,G;x) for arbitrary nilpotent groups in reg-
ular representation, but the information obtained there
is weaker than Conjecture 1.1.

The above conjecture would imply the author’s con-
jecture stated in [Malle 02], where the value of a(G) was
already proposed.

Remark 1.2. We note that all available evidence suggests
that Conjecture 1.1 should remain true (with the same
exponents a(G) and b(k,G)) if we restrict ourselves to
counting G-extensions with prescribed loval behaviour at
a finite number of places of k, provided that there exists at
least one G-extension with this local behaviour. (There
are examples known for which this latter condition is not
satisfied.)

2. THE CONSTANTS a(G) AND b(k, G)

We now give precise definitions of the two exponents oc-
curring in Conjecture 1.1. The first one is purely group
theoretical. For a permutation σ on a finite set Ω, we
define its index as

ind(σ) := |Ω| − |Ω/〈σ〉|,

the order of Ω minus the number of orbits of σ on Ω.
Then, for a permutation group G �= 1 we let

a(G) :=
(
min{ind(σ) | 1 �= σ ∈ G})−1

, (2–1)

and we define a(1) := 0 for the trivial group. (More
precisely we should have written a(G ↪→ Sn), since a(G)
also depends on the chosen permutation representation
of G.)

The second constant not only depends on G but also
on the number field k. Let Γ := Gal(Q̄/Q) be the ab-
solute Galois group of Q and let c : Γ → Ẑ× be the
cyclotomic character, so that δ ∈ Γ acts on the primitive
roots of unity by

ζδ
n = ζc(δ)

n for ζn = exp(2πi/n) ∈ Q̄.

Then, c factors through the commutator factor group
Gal(Qab/Q), the Galois group of the maximal abelian ex-
tension of Q. Now, let G be a finite group and σ ∈ G. We
define σδ := σc(δ) for δ ∈ Γ. This defines an action of Γ
on the set of elements of G (factoring through (Z/|G|Z)×)
that commutes with inner automorphisms (conjugation).
Thus, we get an induced action of Γ on the set Cl(G)
of conjugacy classes of G. This action agrees with the
action of Γ on the (entries of the) columns (indexed by
Cl(G)) of the complex character table of G.

Assume, moreover, that G ≤ Sn. Since c(δ) ∈ Ẑ

is invertible, the elements σ and σδ are powers of one
another and thus have the same index, ind(σ) = ind(σδ).
So, the action of Γ respects indices.

For a number field k ≤ Q̄, let Γk := Gal(Q̄/k) be its
absolute Galois group. Let 1 �= G ≤ Sn be a transitive
permutation group. Then, we define b(k,G) to be the
number of orbits of Γk on the set of those conjugacy
classes of G with minimal index:

b(k,G) := |{C ∈ Cl(G) | ind(C) = a(G)−1}/Γk|. (2–2)

Observe that a(G) ∈ (0, 1] and b(k,G) ∈ N for all k and
all G �= 1.

Example 2.1. Let G = Cp, the cyclic group of prime or-
der p in its regular permutation representation. Then, all
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nontrivial elements have index p − 1, which is hence the
minimal index. We have b(Q, G) = 1, since all nontriv-
ial elements lie in the same Ẑ×-orbit, and b(Q(ζp), G) =
p − 1, since now each element remains fixed under
Gal(Q̄/Q(ζp)). More generally, for a number field k de-
note by l, the degree of k ∩Q(ζp) over Q, that is, the de-
gree of the maximal subfield of k contained in the field of
pth roots of unity. Then, the above definition shows that
b(k,G) = l, which is just the same as (p − 1)/[k(ζp) : k]
(see Section 3).

We determine possible values of b(k,G) for small
a(G)−1.

Lemma 2.2. Let G ≤ Sn be a transitive permutation
group with a(G) = 1. Then b(k,G) = 1 for all number
fields k.

Proof: First note that a(G) = 1 implies that G contains
transpositions. Moreover, these are the only permuta-
tions with index 1. Thus, we are done if we prove that
all transpositions in G are conjugate. Let σ, τ ∈ G be
two such transpositions. Since G acts transitively, we
may choose a conjugate τ ′ of τ whose support has (at
least) one point in common with the support of σ. If
τ ′ �= σ, then τ ′ and σ generate a symmetric group of de-
gree 3, but inside that all transpositions are conjugate.
Hence, τ and σ are conjugate.

Denote by

Z(k, n;x) := |{K/k | (K : k) = n, Nk/Q(dK/k) ≤ x
} |

the total number of field extensions of k of degree n with
bounded discriminant. Then we get the following:

Corollary 2.3. Assume Conjecture 1.1. Then, for any
n > 1 there exists c(k, n) > 0 with

Z(k, n;x) ∼ c(k, n)x.

Moreover, c(k, n) =
∑

a(G)=1 c(k,G), the sum running
over the transitive subgroups G of Sn with a(G) = 1, up
to conjugation.

Proof: Indeed, Z(k, n;x) is the sum of Z(k,G;x) over
all classes of transitive subgroups G of Sn. Now,
a(G) ≤ 1 for all G, and a(G) = 1 implies b(k,G) = 1
by Lemma 2.2. Since the symmetric group itself has
a(Sn) = 1, the statement follows from Conjecture 1.1.

In particular, we conjecture that no proper subgroup
G < Sn of Sn has a larger density than Sn itself.

Note, however, that for any composite n there exist
proper subgroups G < Sn with a(G) = 1, and by
[Malle 02, Proposition 6.1], for any composite n not rela-
tively prime to six, there exist proper subgroups G < Sn

with Z(k,G;x) ≥ c x for an unbounded set of values x.
The smallest such example is the dihedral group D4, for
which this statement was already shown by Baily, see
[Cohen 00, page 449]. This should be compared to the
Hilbert irreducibility theorem which states that the poly-
nomials of degree n with Galois group different from Sn

are rare.
Now, let G ≤ Sn be a transitive permutation group

with a(G) = 1/2. If G does not contain double transpo-
sitions, then b(k,G) ≤ 2. Indeed, in this case elements of
minimal index are 3-cycles. Given two 3-cycles σ1 and σ2

in G, we may assume by transitivity that (up to conjuga-
tion) their supports have at least one point in common.
Let H := 〈σ1, σ2〉 ≤ G and let Ω be the union of the
supports of σ1 and σ2. If the supports intersect in one
point, then |Ω| = 5. Thus, H is a transitive subgroup of
S5 of order divisible by three, hence equal to A5, so the
two elements are conjugate. If the supports intersect in
at least two points, H is equal to A|Ω| on Ω, so σ2 is con-
jugate to σ1 or its inverse in H, so the same holds in G.
In any case, G contains at most two classes of 3-cycles.

On the other hand, if G does contain double transpo-
sitions, there is no upper bound on b(k,G):

Lemma 2.4. For any number field k, the set

{b(k,G) | G ≤ Sn transitive, a(G) = 1/2, n ≥ 1}
is unbounded.

Proof: Let n = 2r ≥ 4, and consider the elementary
abelian 2-subgroup N of Sn generated by the double
transpositions (2i−1, 2i)(2j −1, 2j) for 1 ≤ i < j ≤ n/2.
This contains

(
2r−1

2

)
double transpositions. Let H be

any group of order 2r−1 embedded into Sn via its reg-
ular permutation representation on the set of 2r−1 pairs
(2i − 1, 2i) with 1 ≤ i ≤ 2r−1. The semidirect prod-
uct G := 〈N,H〉 is an even transitive 2-group of order
22r−1−1 · 2r−1 = 22r−1+r−2 containing double transposi-
tions, so a(G) = 1/2. Under the action of H, the double
transpositions in N fall into at least 2r−2 classes. Thus,
b(k,G) ≥ 2r−2.

For n = 4 the construction in the proof of Lemma 2.4
gives the Klein four group, for n = 8 we get the two
transitive groups 8T20 and 8T22, with b(k,G) = 2 and
b(k,G) = 3, respectively; and for n = 16 the construction
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leads to five groups, corresponding to the five groups of
order 8, with 4 ≤ b(k,G) ≤ 7. It is clear that similar
arguments apply for smaller values of a(G) as well.

If two transitive subgroups G1 and G2 of Sn have
a(G1) = a(G2) and b(Q, G1) = b(Q, G2), then Conjec-
ture 1.1 predicts that the asymptotics of their counting
functions should differ by a constant. The smallest de-
gree for which such a pair of nonisomorphic groups exists
is four, with the groups G1 = D4 and G2 = S4. The re-
sults of Cohen et al. and Bhargava cited in the next
section show that

c(Q,S4)/c(Q,D4) = 9.68838... .

The next smallest cases are G1 = D5 and G2 = F20 in
degree 5. For neither of these groups the asymptotics are
known, but computational results seem to indicate that
c(Q,D5)/c(Q, F20) ∼ 1.5 for totally real extensions with
these groups.

In degree 6, there are six groups with a(G) = 1/2 and
b(Q, G) = 1, four with a(G) = 1/2 and b(Q, G) = 2, four
with a(G) = 1 and b(Q, G) = 1, and two with a(G) = 1/3
and b(Q, G) = 1.

3. KNOWN RESULTS

In the case of abelian groups G, the asymptotic behav-
ior of Z(k,G;x) was completely determined by Wright
[Wright 89] using class field theory. He showed that, in
this case,

Z(k,G;x) ∼ c(k,G)xa(G)(log x)ν(k,G)−1

for some constant c(k,G) > 0, where ν(k,G) is defined as
follows: let p denote the smallest prime dividing the order
of G and let np denote the number of elements of order p

in G. Thus, np is of the form pr−1 for some r ≥ 1. Then
ν(k,G) := np/(k(ζp) : k), where ζp denotes a primitive
pth root of unity. By Example 2.1 it is clear that we have
ν(k,G) = b(k,G). Thus we have the following theorem:

Theorem 3.1. [Wright 89] Conjecture 1.1 holds for abelian
groups.

Example 3.2. Let G = A4 in its natural permutation rep-
resentation of degree 4. Then a(G) = 1/2 and b(k,G) = 3
if ζ3 := exp(2πi/3) ∈ k; otherwise, b(k,G) = 2. Cohen et
al. [Cohen et al. 02a, Section 2.7] conjecture on the basis
of extensive data and heuristical arguments that

Z(k,A4;x) ∼
{

c(k,A4)
√

x log x if ζ3 /∈ k

c(k,A4)
√

x log2 x if ζ3 ∈ k

for constants c(k,A4) > 0, in agreement with Conjec-
ture 1.1.

By a result of Davenport and Heilbronn (see [Co-
hen 00, page 449]), Conjecture 1.1 holds for the sym-
metric group S3, and by Cohen et al. [Cohen et al. 02b,
Section 2.6] it also holds for the dihedral group D4 of
order 8 in its degree 4 permutation representation.

Bhargava [Bhargava 01, Theorem 5.1] has shown that
the number of totally real quartic S4-fields over Q grows
asymptotically like cx, with an explicit constant c > 0.

4. A HEURISTIC ARGUMENT

Let K/Q be a number field of degree n. This induces
a transitive permutation representation G ≤ Sn of the
Galois group G of its Galois closure on the embeddings
of K into Q̄. Let p be a prime dividing the discriminant
dK/Q but not dividing |G|. Thus, p is tamely ramified in
K/Q. If pk is the precise power of p dividing dK/Q, then
the inertia group at p is generated by a permutation g ∈
G with ind(g) = k (see, for example, [Koch 00]). Hence,
we have in particular a(G) ≥ 1/k. Moreover, k = a(G)−1

does occur if the relevant inertia group is generated by
a nontrivial element of G with minimal possible index.
Thus, if a(G) = 1/k, then the possible discriminants of
G-extensions of Q are of the form

±
r∏

i=1

pai
i with pi ∈ P, ai ≥ k, and r ≥ 1.

In [Malle 02] we proposed a heuristic explanation for
the exponent a(G) in our conjecture based on the as-
sumption that all integers of this type are ‘equally likely’
to occur as discriminants of a G-extension of Q. Here,
we present a refinement which also takes into account
the number of conjugacy classes with minimal index and
then also explains the exponent b(Q, G).

The density of the integers of the above form is clearly
dominated by the density of those with ai = k, 1 ≤ i ≤ r.
Now, assume that d = dK/Q is an integer of this form.
Then, for each of the r ramified primes, the inertia group
generator could lie in one of the b := b(Q, G) classes with
minimal index. If all these cases arise (just once), then we
get br extensions with discriminant d. Then, the asymp-
totic behaviour of Z(Q, G;x) would be approximated by

xa(G)∑
n=1

bω(n),
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where ω(n) denotes the number of different prime divisors
of n. The asymptotic behaviour of the latter function is
well-known:

Lemma 4.1. We have

xa(G)∑
n=1

bω(n) ∼ c xa(G)(log x)b−1

for some constant c = c(G, b) > 0.

Proof: Let’s consider the Dirichlet series

f(s) :=
∑
n≥1

bω(n)

ns
.

For s with large enough real part �(s) this can be written
as an Euler product over all primes p as follows:

f(s) =
∏
p

(1 + bp−s + bp−2s + . . .)

=
∏
p

(
1 + (b − 1)p−s

) (
1 + p−s + p−2s + . . .

)
=

∏
p

(
1 + (b − 1)p−s

) (
1 − p−s

)−1
.

Now

(1 + (b − 1)p−s)(1 − p−s)b−1 =

1 −
(

b

2

)
p−2s + . . . − (b − 1)(−p)−bs.

Hence, f(s) equals

∏
p

(
1 − p−s

)−b
(

1 −
(

b

2

)
p−2s + . . .

− (b − 1)(−p)−bs

)
= ζ(s)b g(s)

for all s with �(s) > 1, where ζ is the Riemann ζ-function
and g(s) is a function holomorphic in �(s) ≥ 1 with
g(1) �= 0. For example, if b = 2 then f(s) = ζ(s)2/ζ(2s).
Thus, f(s) is holomorphic in �(s) ≥ 1, except for a pole
of order b at s = 1, so by a Tauberian theorem we deduce
that

xa(G)∑
n=1

bω(n) ∼ c′ xa(G)(log xa(G))b−1 = c xa(G)(log x)b−1

with constants c, c′ > 0, as claimed.

5. EXPERIMENTAL DATA

In this section, we present the results of computational
enumerations of totally real A5- and S5-extensions of Q

of bounded discriminant.

5.1 The Alternating Group A5

We have written a program in the number theory package
KANT [Daberkow et al. 97] to enumerate totally real
extensions of Q of degree 5 with Galois group A5. By
the theorem of Hunter [Cohen 00, Theorem 9.3.1], any
such extension K/Q with discriminant dK/Q ≤ D can be
generated by a root of a (totally real) polynomial of the
form

f(X) = X5 + a4X
4 − a3X

3 + a2X
2 + a1X + a0,

where a4 ∈ {0, 1, 2} and

0 ≤ a3 ≤ 4

√
D

20
− 2a2

4

5
.

We have used the following procedure to enumerate all
such polynomials. First, note that all of the derivatives
of f , f (i) for i = 1, 2, . . . , also have to be totally real.
To obtain bounds for the coefficient a2, we use the fact
that the second derivative f ′′ of f is totally real. Thus,
its discriminant, which is a quadratic polynomial in a2,
has to be positive. This yields bounds for a2, when a3

and a4 have been chosen:

∣∣25a2 + a4(15a3 + 4a2
4)

∣∣ ≤ √
2(5a3 + 2a2

4)3.

To bound a1 note that f ′ has to be totally real; thus,
its constant coefficient a1 has to be such that f ′ has four
real zeros. This happens precisely for values of a1 in a
(possibly empty) interval with bounds described by the
values of f ′ − a1 at zeros of f ′′ (the maxima and minima
of f ′).

Now the discriminant of f is a polynomial d(X) ∈
Q[a1, . . . , a4] of degree 4 where the coefficients are for-
mal expressions in a1, . . . , a4. These coefficients can
be computed explicitly at this stage already. We now
make use of the desired Galois group of the polyno-
mial: for a ∈ {0, . . . , m} we compute a table T indi-
cating whether the value d(a) is a square modulo m, for
m ∈ {11, 63, 64, 65}. (This is inspired by the square de-
tection algorithm described in Cohen [Cohen 93, 1.7.2].)
If there is no such a, then the present value of a1 can be
discarded. Otherwise, the values a0 such that f is totally
real lie in a finite (possibly empty) interval I. By guessing
(using information from a previous value for a1), or by
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computing a suitable zero of d(X)′ (that is, the position
of the maximum of d(X)), we find one integer b in this
interval I (if it is nonempty). Then, all possible a0 can
be reached successively by increasing (and decreasing)
b. For each value we first check whether the discrimi-
nant can be a square by table-lookup in table T for a0

mod m, m ∈ {11, 63, 64, 65}. (This dramatically reduces
the number of evaluations of d(X) and of integer-square-
tests, and thus reduces the running time.) If a0 passes
these tests, we check whether d(a0) is indeed the square
of an integer and whether f is irreducible; in the latter
case we output the polynomial f .

The polynomials obtained this way are then filtered
according to their Galois group (which at this point can
be one of A5, D5, or C5). Then, the A5-fields are tested
for isomorphism. (To speed up this step, it is sensible to
first find a reduced generating polynomial for each A5-

................................................................................................................................................................................................................................................................................................................................................................................................................................................................ .............................

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.........................

.....................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
............................
.....................

.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.

. . . . . .

6 7 8 9 10 11 log D

.

.

.

.

1

2

3

4

log Z

D Z(Q,A5;D)
222 1
223 7
224 16
225 30
226 57
227 104
228 159
229 251
230 421
231 681
232 1095
233 1685
234 2612
235 4094
236 6371
237 9933

TABLE 1. First 9,933 totally real A5-extensions.

field, using the polredabs command in Pari, for example,
and to discard doubles.) Note that fields with the solv-
able groups D5 and C5 can be enumerated much more
efficiently using methods from class field theory, see for
example [Cohen 00, Section 9] or [Cohen et al. 00].

We give the results of these computations in the form
of a diagram in doubly logarithmic scale, showing num-
bers of field extensions with group A5. We also print a
line with slope a(A5) = 1/2. Since b(Q,A5) = 2, our
conjecture predicts that the number of extensions should
grow proportionally to

√
x log x.

Table 1 gives the distribution of all totally real A5-
fields of discriminant dK ≤ 237 = 1.37..1011.

5.2 The Symmetric Group S5

For the symmetric group S5, a KANT-program was used
to compute all totally real degree 5 extensions of Q with
symmetric Galois group up to discriminant 109. The re-
sults are displayed in Table 2. Here, Conjecture 1.1 pre-
dicts a linear growth of Z(Q,S5;x) with x.

In [Malle 02, Section 7], we gave a heuristical expla-
nation of the exponent a(G) in the conjecture. For that,
we postulated that the set of integers, which occur as
discriminants of field extensions with a given group G

with a(G) = 1, has positive density among all integers.
In particular, one might expect that the multiplicative
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1
2
3
4
5
6

log Z

D Z(Q,S5;D)
222 3 035
223 7 488
224 18 211
225 43 112
226 100 077
227 229 657
228 518 546
229 1 153 555
230 2 537 415

TABLE 2. First 2,537,415 totally real S5-extensions.
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structure of discriminants (in a range) resembles that of
all integers (in a range).

We used the data of the first 106 totally real S5-
extensions to test this assumption. More precisely, we
checked the divisibility of the discriminants by the first
100 primes. A proportion of 1/p of all integers (in a
range) is divisible by a prime p. It turns out that, in our
range for all relatively small primes except 2, the actual
proportion is less than the expected one, slightly increas-
ing with p. But, the deviation is at most by 17% (for
the prime p = 17) and quite a bit smaller for most other
primes.

5.3 Regular Groups in Degree 8

There are two nonabelian regular permutation groups of
degree 8: the dihedral group and the quaternion group
of order 8. Both of them have a(G) = 1/4, and elements
with minimal index are precisely the involutions. But,
while the quaternion group Q8 has just one involution,
the central one, the dihedral group D4 has three con-
jugacy classes of involutions. Thus, b(k,Q8) = 1 and
b(k,D4) = 3 for any number field k. Computations in
KANT by J. Klüners indicate that indeed the number of
Q8-extensions grows linearly with x1/4, while the num-
ber of D4-extensions of degree 8 grows proportionally to
x1/4(log x)2, as would be expected by Conjecture 1.1.

ACKNOWLEDGMENTS

I would like to thank Jürgen Klüners for computing large
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[Klüners and Malle] J. Klüners and G. Malle. “Counting
Nilpotent Galois Extensions.” To appear in Journal reine
angew. Math.

[Koch 00] H. Koch. Number Theory—Algebraic Numbers and
Functions, Providence, RI: American Mathematical So-
ciety, 2000.

[Malle 02] G. Malle. “On the Distribution of Galois Groups.”
J. Number Theory 92 (2002), 315–329.

[Wright 89] D. Wright. “Distribution of Discriminants of
Abelian Extensions.” Proc. London Math. Soc 58 (1989),
17–50.

Gunter Malle, FB Mathematik/Informatik, Universität Kassel, Heinrich-Plett-Str. 40, D–34132 Kassel, Germany.
(malle@mathematik.uni-kassel.de)

Received November 3, 2002; accepted October 16, 2003.




