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An irreducible representation of a simple Lie algebra can be a
direct summand of its own tensor square. In this case, the rep-
resentation admits a nonassociative algebra structure which is
invariant in the sense that the Lie algebra acts as derivations.
We study this situation for the Lie algebra sl(2).

1. INTRODUCTION

In Section 2 we review the basic representation theory
of sl(2). We illustrate our methods on the familiar ad-
joint representation in Section 3. To go further, we need
an explicit version of the classical Clebsch-Gordan The-
orem, which is proved in Section 4. This gives highest
weight vectors in the tensor square of an irreducible rep-
resentation. The representation with highest weight n

(and dimension n + 1) occurs as a summand of its sym-
metric square when n ≡ 0 (mod 4) and as a summand
of its exterior square when n ≡ 2 (mod 4). In the lat-
ter case we obtain a series of anticommutative algebras
beginning with sl(2) itself (n = 2, dimension 3, the ad-
joint representation). The next algebra in the sequence
is the simple non-Lie Malcev algebra (n = 6, dimension
7) which is discussed in Section 5.

In Section 6 we compute the structure constants for
the algebra arising in the case n = 10 (dimension 11); this
new anticommutative algebra is the focus of the present
paper. In Section 7 we review our computational meth-
ods, which involve linear algebra on large matrices and
the representation theory of the symmetric group. In
Section 8 we describe a computer search for polynomial
identities satisfied by the new 11-dimensional algebra.
We show that all its identities in degree 6 or less are triv-
ial consequences of anticommutativity. We show that it
satisfies nontrivial identities in degree 7, classify them,
and provide explicit examples. In Section 9 we consider
unital extensions of our anticommutative algebras, and
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relate this to the work of Dixmier on nonassociative alge-
bras defined by transvection of binary forms in classical
invariant theory.

In Section 10 we go beyond sl(2) and use the software
system LiE to determine all fundamental representations
of simple Lie algebras of rank less than or equal to 8 which
occur as summands of their own exterior squares. This
demonstrates the existence of a large number of new an-
ticommutative algebras, with simple Lie algebras in their
derivation algebras, which seem worthy of further study.
In closing we provide an interesting new characterization
of the Lie algebra E8.

2. REPRESENTATIONS OF THE LIE ALGEBRA sl(2)

We first recall some standard facts about sl(2) and its
representations. All vector spaces and tensor products
are over F, an algebraically closed field of characteristic
zero. Our basic reference is [Humphreys 72], especially
Section II.7.

2.1 The Lie Algebra sl(2)

As an abstract Lie algebra, sl(2) has basis {E,H,F} and
commutation relations

[H,E] = 2E, [H,F ] = −2F, and [E,F ] = H. (2–1)

All other relations between basis elements follow from
anticommutativity:

[E,H] = −2E, [F,H] = 2F, [F,E] = −H,

[E,E] = 0, [H,H] = 0, [F, F ] = 0.

Since the Lie bracket is bilinear, these relations determine
the product [X,Y ] for all X,Y ∈ sl(2). These relations
are satisfied by the commutator [X,Y ] = XY − Y X of
the 2 × 2 matrices

E =
(

0 1
0 0

)
, H =

(
1 0
0 −1

)
, F =

(
0 0
1 0

)
.

(2–2)
These three matrices form a basis of the vector space of
all 2 × 2 matrices of trace 0.

2.2 The Irreducible Representation V (n)

For any nonnegative integer n, there is an irreducible rep-
resentation of sl(2) containing a nonzero vector vn (called
the highest weight vector) satisfying the conditions

H.vn = nvn and E.vn = 0. (2–3)

This representation is unique up to isomorphism of sl(2)-
modules. It is denoted V (n) and is called the represen-
tation with highest weight n. Its dimension is n + 1; a
basis of V (n) consists of the n + 1 vectors vn−2i where,
by definition,

vn−2i =
1
i!

F i.vn, 0 ≤ i ≤ n. (2–4)

The action of sl(2) on V (n) is then as follows:

E.vn−2i = (n − i + 1)vn−2i+2, (2–5a)

H.vn−2i = (n − 2i)vn−2i, (2–5b)

F.vn−2i = (i + 1)vn−2i−2. (2–5c)

The basis vectors vn−2i are called weight vectors since
they are eigenvectors for H. It is easy to check that the
linear mapping r : sl(2) → EndV (n) defined by these re-
lations satisfies the defining property for representations
of Lie algebras:

r([X,Y ]) = r(X)r(Y ) − r(Y )r(X).

2.3 Invariant Bilinear Forms

Up to a scalar multiple there is a unique sl(2)-module
homomorphism

V (n) ⊗ V (n) → V (0).

Since V (0) is one-dimensional, we can identify V (0) with
the field F, and so this homomorphism can be expressed
as a bilinear form (x, y) satisfying the sl(2)-invariance
property

(D.x, y)+(x,D.y) = 0 for any D ∈ sl(2) and x, y ∈ V (n).

The next proposition gives the precise formula for this
bilinear form in terms of the weight vectors.

Proposition 2.1. Any sl(2)-invariant bilinear form on
V (n) is a scalar multiple of

(vn−2i, vn−2j) = δi+j,n(−1)i

(
n

i

)
, 0 ≤ i, j ≤ n.

This form is symmetric if n is even and alternating if n

is odd.

Proof: We first consider the action of H: we have

(H.x, y) + (x,H.y) = 0 for any x, y ∈ V (n).

Setting x = vn−2i and y = vn−2j gives

(H.vn−2i, vn−2j) + (vn−2i,H.vn−2j) = 0.
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Using the formula for the action of H on weight vectors
and collecting terms gives

(2n − 2(i + j))(vn−2i, vn−2j) = 0.

Therefore, (vn−2i, vn−2j) = 0 unless i + j = n; or equiva-
lently (n−2i)+(n−2j) = 0. Now assume that i+j = n,
so that n − 2j = 2i − n. We need to determine

(vn−2i, v2i−n).

We consider the action of E on the pairing of vn−2i and
vn−2j :

(E.vn−2i, vn−2j) + (vn−2i, E.vn−2j) = 0.

Using the formula for the action of E on weight vectors,
we obtain

(n−i+1)(vn−2i+2, vn−2j)+(n−j+1)(vn−2i, vn−2j+2) = 0.

Both terms will be zero unless 2n− 2(i+ j)+2 = 0; that
is, i + j = n + 1. In this case we get

(n − i + 1)(vn−2(i−1), v2(i−1)−n) + i(vn−2i, v2i−n) = 0.

This gives the recurrence relation

(vn−2i, v2i−n) = −n − i + 1
i

(vn−2(i−1), v2(i−1)−n)

for i ≥ 1. If we write f(i) = (vn−2i, v2i−n), then we can
write this relation more succinctly as

f(i) = −n − i + 1
i

f(i − 1) for i ≥ 1.

From this we obtain

f(1) = −nf(0),

f(2) =
n(n − 1)

2
f(0),

f(3) = −n(n − 1)(n − 2)
6

f(0), . . . .

The general solution is therefore

f(i) = (−1)i

(
n

i

)
f(0) for 0 ≤ i ≤ n,

which is easily proved by induction on i. Taking f(0) = 1,
this gives the formula stated in Proposition 1.1. Finally,
we can verify the symmetric or alternating property as
follows:

(vn−2j , vn−2i) = δj+i,n(−1)j

(
n

j

)
= δi+j,n(−1)n−i

(
n

n − i

)

= (−1)nδi+j,n(−1)i

(
n

i

)
= (−1)n(vn−2i, vn−2j).

This completes the proof.

2.4 The Clebsch-Gordan Theorem

The Clebsch-Gordan Theorem shows how the tensor
product of two irreducible representations of sl(2) can
be expressed as a direct sum of other irreducible repre-
sentations. See [Humphreys 72, Exercise 22.7].

Theorem 2.2. We have the isomorphism

V (n) ⊗ V (m) ∼=
m⊕

i=0

V (n + m − 2i),

for any nonnegative integers n ≥ m. In the special case
n = m, we obtain

V (n) ⊗ V (n) ∼=
n⊕

i=0

V (2n − 2i).

The examples of particular interest to us in this paper
will be

V (2) ⊗ V (2) ∼= V (4) ⊕ V (2) ⊕ V (0),

V (6) ⊗ V (6) ∼= V (12) ⊕ V (10) ⊕ V (8) ⊕ V (6)

⊕ V (4) ⊕ V (2) ⊕ V (0),

V (10) ⊗ V (10) ∼= V (20) ⊕ V (18) ⊕ V (16) ⊕ V (14)

⊕ V (12 ⊕ V (10) ⊕ V (8) ⊕ V (6)

⊕ V (4) ⊕ V (2) ⊕ V (0).

Recall the linear transposition map T on V (n) ⊗ V (n)
defined by T (v ⊗ v′) = v′ ⊗ v. Using T , we define the
symmetric and exterior squares of V (n):

S2V (n) = { t ∈ V (n) ⊗ V (n) | T (t) = t },
Λ2V (n) = { t ∈ V (n) ⊗ V (n) | T (t) = −t }.

It is easy to verify that

V (n) ⊗ V (n) = S2V (n) ⊕ Λ2V (n).

In our three examples, we have

S2V (2) ∼= V (4) ⊕ V (0),

Λ2V (2) ∼= V (2),

S2V (6) ∼= V (12) ⊕ V (8) ⊕ V (4) ⊕ V (0),

Λ2V (6) ∼= V (10) ⊕ V (6) ⊕ V (2),

S2V (10) ∼= V (20) ⊕ V (16) ⊕ V (12) ⊕ V (8)

⊕ V (4) ⊕ V (0),

Λ2V (10) ∼= V (18) ⊕ V (14) ⊕ V (10) ⊕ V (6) ⊕ V (2).

In Section 4 we will prove the Clebsch-Gordan Theorem
in the case m = n and give explicit formulas for the
highest weight vectors of the summands of V (n)⊗ V (n).



234 Experimental Mathematics, Vol. 13 (2004), No. 2

2.5 Action of sl(2) on Polynomials

Following [Humphreys 72, Exercise 7.4], we let {X,Y }
be a basis for the vector space F2, on which sl(2) acts by
the natural representation: the 2 × 2 matrices given in
Equations (2–2). This means that we have

E.X = 0, H.X = X, F.X = Y,

E.Y = X, H.Y = −Y, F.Y = 0,

and the action extends linearly to all of sl(2) and all
of F2. We write F[X,Y ] for the polynomial ring in the
variables X and Y with coefficients from F. Since X and
Y generate F[X,Y ], we can extend the action of sl(2) to
all of F[X,Y ] by the derivation rule:

D.pq = (D.p)q + p(D.q)

for any D ∈ sl(2) and any p, q ∈ F[X,Y ]. This makes
F[X,Y ] into a representation of sl(2). The subspace of
F[X,Y ] consisting of the homogeneous polynomials of de-
gree n has basis

{Xn,Xn−1Y, . . . ,XY n−1, Y n},
which is invariant under the action of sl(2) and forms a
representation of sl(2) isomorphic to V (n). The action of
sl(2) on the polynomial ring can be succinctly expressed
in terms of the differential operators

E = X
∂

∂Y
, H = X

∂

∂X
− Y

∂

∂Y
, F = Y

∂

∂X
.

Applying these operators to the basis monomials of the
polynomial ring, we obtain

E.Xn−iY i = iXn−i+1Y i−1,

H.Xn−iY i = (n − 2i)Xn−iY i,

F.Xn−iY i = (n − i)Xn−i−1Y i+1.

The exact correspondence between the monomials and
the abstract basis vectors of V (n) is given by

vn−2i =
(

n

i

)
Xn−iY i.

Using this basis of the space of homogeneous polynomials
of degree n, we get

E.

(
n

i

)
Xn−iY i = i

(
n

i

)
Xn−(i−1)Y i−1

= (n − i + 1)
(

n

i − 1

)
Xn−(i−1)Y i−1,

H.

(
n

i

)
Xn−iY i = (n − 2i)

(
n

i

)
Xn−iY i,

F.

(
n

i

)
Xn−iY i = (n − i)

(
n

i

)
Xn−(i+1)Y i+1

= (i + 1)
(

n

i + 1

)
Xn−(i+1)Y i+1.

Expressing the same relations in terms of the weight vec-
tor basis of V (n) we get Equations (2–5).

3. THE ADJOINT REPRESENTATION (n = 2)

We illustrate the results of Section 2 by recovering the
three-dimensional representation V (2) of sl(2). It has
basis {v2, v0, v−2} on which the Lie algebra acts as fol-
lows:

E.v2 = 0, E.v0 = 2v2, E.v−2 = v0,

H.v2 = 2v2, H.v0 = 0, H.v−2 = −2v−2,

F.v2 = v0, F.v0 = 2v−2, F.v−2 = 0.

By the Clebsch-Gordan Theorem we know that

V (2) ⊗ V (2) ∼= V (4) ⊕ V (2) ⊕ V (0).

We determine a basis for each of the three summands on
the right side of this isomorphism.

3.1 The Summand V (4)

Recall that for any Lie algebra L, and any two L-modules
V and W , the action of D ∈ L on V ⊗ W is given by

D.(v ⊗ w) = D.v ⊗ w + v ⊗ D.w.

It is easy to check that

x4 = v2 ⊗ v2

is a highest weight vector of weight 4 in V (2)⊗V (2). Ap-
plying F repeatedly, using the action of sl(2) on V (4),
we obtain a basis for the summand of V (2) ⊗ V (2) iso-
morphic to V (4):

x2 = F.x4 = F.v2 ⊗ v2 + v2 ⊗ F.v2 = v0 ⊗ v2 + v2 ⊗ v0

= v2 ⊗ v0 + v0 ⊗ v2,

x0 =
1
2
F.x2

=
1
2
(F.v2 ⊗ v0 + v2 ⊗ F.v0 + F.v0 ⊗ v2 + v0 ⊗ F.v2)

=
1
2
(v0 ⊗ v0 + v2 ⊗ 2v−2 + 2v−2 ⊗ v2 + v0 ⊗ v0)

= v2 ⊗ v−2 + v0 ⊗ v0 + v−2 ⊗ v2,
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x−2 =
1
3
F.x0

=
1
3
(F.v2 ⊗ v−2 + v2 ⊗ F.v−2

+ F.v0 ⊗ v0 + v0 ⊗ F.v0 + F.v−2 ⊗ v2

+ v−2 ⊗ F.v2)

=
1
3
(v0 ⊗ v−2 + v2 ⊗ 0 + 2v−2 ⊗ v0 + v0 ⊗ 2v−2

+ 0 ⊗ v2 + v−2 ⊗ v0)

= v0 ⊗ v−2 + v−2 ⊗ v0,

x−4 =
1
4
F.x−2

=
1
4
(F.v0 ⊗ v−2 + v0 ⊗ F.v−2 + F.v−2 ⊗ v0

+ v−2 ⊗ F.v0)

=
1
4
(2v−2 ⊗ v−2 + v0 ⊗ 0 + 0 ⊗ v0 + v−2 ⊗ 2v−2)

= v−2 ⊗ v−2.

3.2 The Summand V (2)

We next find a highest weight vector y2 of weight 2 in
V (2)⊗V (2), and then we apply F twice to obtain vectors
y0 and y−2; together these three vectors form a basis of
a subspace of V (2) ⊗ V (2) that is isomorphic to V (2)
as a representation of sl(2). Any vector of weight 2 in
V (2) ⊗ V (2) must have the form

y2 = a v2 ⊗ v0 + b v0 ⊗ v2 for some a, b ∈ F.

Applying E to y2, we obtain

E.y2 = E.(a v2 ⊗ v0 + b v0 ⊗ v2)

= a(E.v2 ⊗ v0 + v2 ⊗ E.v0)

+ b(E.v0 ⊗ v2 + v0 ⊗ E.v2)

= a(0 + v2 ⊗ 2v2) + b(2v2 ⊗ v2 + 0)

= 2(a + b)v2 ⊗ v2.

For y2 to be a highest weight vector we must have E.y2 =
0, and therefore a+b = 0. Up to a nonzero scalar multiple
we can take

y2 = v2 ⊗ v0 − v0 ⊗ v2.

We have F.y2 = y0; therefore,

y0 = F.y2 = 2(v2 ⊗ v−2 − v−2 ⊗ v2).

Since F.y0 = 2y−2, we get

y−2 =
1
2
F.y0 = F.

(
1
2
y0

)
= v0 ⊗ v−2 − v−2 ⊗ v0.

3.3 The Summand V (0)

Next and last we find a highest weight vector z0 of weight
0 in V (2) ⊗ V (2). We have

z0 = a v2 ⊗ v−2 + b v0 ⊗ v0 + c v−2 ⊗ v2.

Applying E gives

E.z0 = a(E.v2 ⊗ v−2 + v2 ⊗ E.v−2)

+ b(E.v0 ⊗ v0 + v0 ⊗ E.v0)

+ c(E.v−2 ⊗ v2 + v−2 ⊗ E.v2)

= a(0 ⊗ v−2 + v2 ⊗ v0) + b(2v2 ⊗ v0 + v0 ⊗ 2v2)

+ c(v0 ⊗ v2 + v−2 ⊗ 0)

= (a + 2b)v2 ⊗ v0 + (2b + c)v0 ⊗ v2.

Since this must be 0, any highest weight vector of weight
0 must be a scalar multiple of

z0 = v2 ⊗ v−2 − 1
2
v0 ⊗ v0 + v−2 ⊗ v2.

3.4 The Nonassociative Product on V (2)

To determine the projection

V (2) ⊗ V (2) → V (2) = Λ2V (2),

we need to express each simple tensor vp ⊗ vq with p, q ∈
{2, 0,−2} as a linear combination of the weight vectors of
weight p+q in the irreducible summands of V (2)⊗V (2).
We consider two different ordered bases of V (2) ⊗ V (2).
We call the first the “tensor basis”:

v2⊗v2, v2⊗v0, v2⊗v−2, v0⊗v2, v0⊗v0, v0⊗v−2,

v−2⊗v2, v−2⊗v0, v−2⊗v−2;

we call the second the “module basis”:

x4, x2, x0, x−2, x−4, y2, y0, y−2, z0.

We use the module basis to label the columns of a 9 × 9
matrix A, and we use the tensor basis to label the rows;
then, we set entry i, j of A equal to the coefficient of the
ith tensor basis vector in the jth module basis vector:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 2 0 1
0 1 0 0 0 −1 0 0 0
0 0 1 0 0 0 0 0 − 1

2
0 0 0 1 0 0 0 1 0
0 0 1 0 0 0 −2 0 1
0 0 0 1 0 0 0 −1 0
0 0 0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The inverse matrix shows how to express the tensor basis
vectors as linear combinations of the module basis vec-
tors:

A−1 =

1
12

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12 0 0 0 0 0 0 0 0
0 6 0 6 0 0 0 0 0
0 0 2 0 8 0 2 0 0
0 0 0 0 0 6 0 6 0
0 0 0 0 0 0 0 0 12
0 6 0 -6 0 0 0 0 0
0 0 3 0 0 0 -3 0 0
0 0 0 0 0 6 0 -6 0
0 0 4 0 -8 0 4 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

From rows 6–8 of the inverse matrix, we can read off the
projection P from V (2) ⊗ V (2) onto the summand iso-
morphic to V (2) with basis y2, y0, y−2; this gives the
multiplication table for a three-dimensional anticommu-
tative algebra:

P (v2 ⊗ v2) = 0, P (v2 ⊗ v0) = 1
2 y2, P (v2 ⊗ v−2) = 1

4 y0,

P (v0 ⊗ v2) = − 1
2 y2, P (v0 ⊗ v0) = 0, P (v0 ⊗ v−2) = 1

2 y−2,

P (v−2 ⊗ v2) = − 1
4 y0, P (v−2 ⊗ v0) = − 1

2 y−2, P (v−2 ⊗ v−2) = 0.

We now identify vp with yp for p ∈ {2, 0,−2} by the
module isomorphism h, which sends vp to yp and extends
linearly to all of V (2). Then, h−1 ◦ P is a linear map
from V (2) ⊗ V (2) to V (2), which we can regard as a
multiplication on V (2):

v2 v0 v−2

v2 0 1
2

1
4

v0 − 1
2 0 1

2

v−2 − 1
4 − 1

2 0 .

Since vpvq = cpqvp+q for some scalar cpq, we have in-
cluded only cpq in this table. The map

E 
−→ 4v2, H 
−→ −4v0, F 
−→ −4v−2

induces an isomorphism of Lie algebras.

4. AN EXPLICIT VERSION OF THE
CLEBSCH-GORDAN THEOREM

In this section we work out a general formula for the
highest weight vector of weight n in the tensor product
V (n)⊗V (n). Then, we generalize this and find an explicit
formula for all the highest weight vectors in V (n)⊗V (n).
From this we recover the Clebsch-Gordan Theorem in
this special case, together with the additional result on

the structure of the symmetric and exterior squares. Re-
call that V (n) has dimension n + 1 and basis

vn, vn−2, . . . , v−n+2, v−n.

The action of the sl(2) basis elements E,H,F on V (n)
is given by Equations (2–5). In order for V (n) to occur
as a summand of V (n)⊗ V (n) we must assume that n is
even.

Theorem 4.1. Let n be an even nonnegative integer. Then
every highest weight vector of weight n in V (n) ⊗ V (n)
is a nonzero scalar multiple of

wn =
n/2∑
i=0

(−1)i

(n
2 +i

i

)(
n
i

) vn−2i ⊗ v2i.

Proof: Any vector of weight n in V (n)⊗V (n) must have
the form

wn =
n/2∑
i=0

ai vn−2i ⊗ v2i.

For this to be a highest weight vector, we must have
E.wn = 0. We have

E.wn =
n/2∑
i=0

ai(E.vn−2i ⊗ v2i + vn−2i ⊗ E.v2i)

=
n/2∑
i=0

ai

(
(n − i + 1)vn−2i+2 ⊗ v2i

+vn−2i ⊗
(n

2
+ i + 1

)
v2i+2

)

=
n/2∑
i=0

(n − i + 1)aivn−2(i−1) ⊗ v2i

+
n/2∑
i=0

(n

2
+ i + 1

)
aivn−2i ⊗ v2(i+1)

=
n/2∑
i=1

(n − i + 1)aivn−2(i−1) ⊗ v2i

+
n/2−1∑

i=0

(n

2
+ i + 1

)
aivn−2i ⊗ v2(i+1)

=
n/2−1∑

i=0

(n − i)ai+1vn−2i ⊗ v2(i+1)

+
n/2−1∑

i=0

(n

2
+ i + 1

)
aivn−2i ⊗ v2(i+1)
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=
n/2−1∑

i=0

((n − i)ai+1

+
(n

2
+ i + 1

)
ai

)
vn−2i ⊗ v2(i+1)

Since the simple tensors are linearly independent, every
coefficient must be zero, and so

ai+1 = −
n
2 + i + 1

n − i
ai, 0 ≤ i ≤ n

2
− 1.

Since we may choose a0 = 1 without loss of generality,
we get

ai = (−1)i
n
2 + i

n − (i − 1)
· · · · ·

n
2 + 2
n − 1

·
n
2 + 1

n
.

By induction on i, this simplifies to the compact formula
in the statement of Theorem 4.1.

We now generalize this computation to establish the
decomposition of V (n) ⊗ V (n) into a direct sum of irre-
ducible representations; we then identify the symmetric
and exterior squares.

Theorem 4.2. Let n be an even nonnegative integer. Then
V (n) ⊗ V (n) contains a highest weight vector of weight
m if and only if m = 2n − 2k where k is an integer and
0 ≤ k ≤ n. Every such highest weight vector is a nonzero
scalar multiple of

wm =
k∑

i=0

(−1)i

(
n−k+i

i

)(
n
i

) vn−2i ⊗ vn−2(k−i).

From this it follows that

V (n) ⊗ V (n) ∼=
n⊕

k=0

V (2n − 2k),

and further follows that we have

S2V (n) ∼=
n⊕

k=0, even

V (2n − 2k),

Λ2V (n) ∼=
n−1⊕

k=1, odd

V (2n − 2k).

Proof: Any vector in V (n) ⊗ V (n) has the form

n∑
i=0

n∑
j=0

aij vn−2i ⊗ vn−2j .

Since any highest weight vector must be a weight vector,
we first break up this sum into its weight components:

n−1∑
k=0

( k∑
i=0

ai,k−i vn−2i ⊗ vn−2(k−i)

)

(terms of positive weight)

+
n∑

i=0

ai,n−i vn−2i ⊗ v2i−n

(terms of weight zero)

+
2n∑

k=n+1

( n∑
i=k−n

ai,k−i vn−2i ⊗ vn−2(k−i)

)

(terms of negative weight)

Since a highest weight vector must have nonnegative
weight, we can ignore the terms of negative weight and in-
clude the weight zero case with the positive weight cases:

n∑
k=0

( k∑
i=0

ai,k−i vn−2i ⊗ vn−2(k−i)

)
.

The inner sum, call it w, is a weight vector of weight
2n − 2k. For w to be a highest weight vector, we must
have E.w = 0. The formulas for the action of sl(2) on
V (n) give

E.vn−2i = (n − (i − 1)) vn−2(i−1),

E.vn−2(k−i) = (n − (k − i − 1)) vn−2(k−i−1).

Therefore,

E.w =
k∑

i=0

ai,k−i

(
E.vn−2i ⊗ vn−2(k−i)

+vn−2i ⊗ E.vn−2(k−i)

)
=

k∑
i=0

ai,k−i

(
(n − (i − 1)) vn−2(i−1) ⊗ vn−2(k−i)

+ (n − (k − i − 1)) vn−2i ⊗ vn−2(k−i−1)

)

=
k∑

i=0

ai,k−i

(
(n − (i − 1)) vn−2(i−1) ⊗ vn−2(k−i)

)

+
k∑

i=0

ai,k−i ((n − (k − i − 1)) vn−2i

⊗ vn−2(k−i−1)

)
=

k∑
i=0

ai,k−i

(
(n − (i − 1)) vn−2(i−1) ⊗ vn−2(k−i)

)
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+
k+1∑
i=1

ai−1,k−(i−1)

(
(n − (k − i)) vn−2(i−1)

⊗ vn−2(k−i)

)
= a0,k (n + 1)vn+2 ⊗ vn−2k

+
k∑

i=1

((n − (i − 1)) ai,k−i

+ (n − (k − i)) ai−1,k−(i−1)

)
× vn−2(i−1) ⊗ vn−2(k−i)

+ ak,0 (n + 1)vn−2k ⊗ vn+2.

Since vn+2 = 0 and the simple tensors are linearly inde-
pendent, we get the relations

(n − (i − 1)) ai,k−i + (n − (k − i)) ai−1,k−(i−1) = 0,

1 ≤ i ≤ k.

Therefore,

ai,k−i = −n − (k − i)
n − (i − 1)

ai−1,k−(i−1), 1 ≤ i ≤ k.

Now induction on i shows that

ai,k−i = (−1)i

(
n−k+i

i

)(
n
i

) .

Thus, we have a unique (up to scalar multiples) highest
weight vector in V (n) ⊗ V (n) for each weight 2n − 2k

for 0 ≤ k ≤ n. Since a highest weight vector of weight
2n − 2k generates a summand V (2n − 2k) of dimension
2n − 2k + 1, the dimension check

(n + 1)2 =
n∑

k=0

(2n − 2k + 1)

shows that we have the direct sum decomposition as
claimed in the statement of Theorem 4.2. Furthermore,
the symmetry or antisymmetry of the coefficients of the
highest weight vectors,

ak−i,i = (−1)k ai,k−i,

shows that they lie either in the symmetric or exterior
square of V (n) depending on whether k is even or odd.

5. THE SIMPLE NON-LIE MALCEV ALGEBRA (n = 6)

The second well-understood example of an anticommuta-
tive algebra that can be obtained from a representation
of sl(2) is the seven-dimensional simple non-Lie Malcev

algebra M : the vector space of pure imaginary octonions
under the commutator product. The identity of lowest
degree satisfied by M , which does not follow from anti-
commutativity, was originally published in [Malcev 55].
It has degree 4 and is now called the Malcev identity:

[[x, y], [x, z]] = [[[x, y], z], x] + [[[y, z], x], x] + [[[z, x], x], y].
(5–1)

The linearized version of this identity has eight terms.
An equivalent identity which has only five terms is

[[w, y], [x, z]] = [[[w, x], y], z] + [[[x, y], z], w]

+ [[[y, z], w], x] + [[[z, w], x], y]. (5–2)

The variety of Malcev algebras is defined by anticommu-
tativity and the Malcev identity (or one of its equiva-
lents).

Since the product of distinct pure imaginary octonion
basis elements is anticommutative, the multiplication ta-
ble for the seven-dimensional simple non-Lie Malcev al-
gebra can be obtained from the octonion multiplication
table by replacing the diagonal entries by 0 and multi-
plying the other entries by 2.

Definition 5.1. The simple seven-dimensional non-Lie
Malcev algebra is the anticommutative algebra with “oc-
tonion” basis I, J,K,L,M,N, P and multiplication table

[,] I J K L M N P
I 0 2K −2J 2M −2L −2P 2N
J −2K 0 2I 2N 2P −2L −2M
K 2J −2I 0 2P −2N 2M −2L
L −2M −2N −2P 0 2I 2J 2K

M 2L −2P 2N −2I 0 −2K 2J
N 2P 2L −2M −2J 2K 0 −2I
P −2N 2M 2L −2K −2J 2I 0

We first determine the structure constants for the an-
ticommutative algebra coming from V (6), and then we
show that this algebra is isomorphic to M .

Theorem 5.2. The structure constants for the anticom-
mutative algebra resulting from the projection

V (6) ⊗ V (6) → V (6) ⊂ Λ2V (6)

are displayed in Table 1.
Since the product of vp and vq equals cpqvp+q for some

scalar cpq, we only record the scalars cpq in this table.

Proof: By the Clebsch-Gordan Theorem we know how
V (6) ⊗ V (6) decomposes as a direct sum of irreducible
representations:
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⊗ v6 v4 v2 v0 v−2 v−4 v−6

v6 0 0 0 1 2 2 1

v4 0 0 −1 −1 0 1 1

v2 0 1 0 −1 −1 0 1

v0 −1 1 1 0 −1 −1 1

v−2 −2 0 1 1 0 −2 0

v−4 −2 −1 0 1 2 0 0

v−6 −1 −1 −1 −1 0 0 0

TABLE 1.

V (6) ⊗ V (6) ∼= V (12) ⊕ V (10) ⊕ V (8) ⊕ V (6) ⊕ V (4)

⊕ V (2) ⊕ V (0).

We want to compute the projection P : V (6) ⊗ V (6) →
V (6); for this we follow the method used in the exam-
ple of the adjoint representation. We use the explicit
Clebsch-Gordan Theorem to determine a highest weight
vector in each irreducible summand of the tensor prod-
uct. We then apply F to determine a basis of weight vec-
tors for each irreducible summand. From this we form
the transition matrix from the module basis to the tensor
basis. Inverting this matrix gives the transition matrix
from the tensor basis to the module basis, and from this
we obtain the explicit projection map from the tensor
product onto the V (6) summand. These computations
were done by a Maple [Maple 04] program written by the
authors.

For the summand V (12), a highest weight vector is
v6 ⊗ v6, and the other weight vectors can be found by
applying F following Equation (2–5c):

s12 = v6 ⊗ v6,

s10 = v6 ⊗ v4 + v4 ⊗ v6,

s8 = v6 ⊗ v2 + v4 ⊗ v4 + v2 ⊗ v6,

s6 = v6 ⊗ v0 + v4 ⊗ v2 + v2 ⊗ v4 + v0 ⊗ v6,

s4 = v6 ⊗ v−2 + v4 ⊗ v0 + v2 ⊗ v2 + v0 ⊗ v4

+ v−2 ⊗ v6,

s2 = v6 ⊗ v−4 + v4 ⊗ v−2 + v2 ⊗ v0 + v0 ⊗ v2

+ v−2 ⊗ v4 + v−4 ⊗ v6,

s0 = v6 ⊗ v−6 + v4 ⊗ v−4 + v2 ⊗ v−2 + v0 ⊗ v0

+ v−2 ⊗ v2 + v−4 ⊗ v4 + v−6 ⊗ v6,

s−2 = v4 ⊗ v−6 + v2 ⊗ v−4 + v0 ⊗ v−2 + v−2 ⊗ v0

+ v−4 ⊗ v2 + v−6 ⊗ v4,

s−4 = v2 ⊗ v−6 + v0 ⊗ v−4 + v−2 ⊗ v−2 + v−4 ⊗ v0

+ v−6 ⊗ v2,

s−6 = v0 ⊗ v−6 + v−2 ⊗ v−4 + v−4 ⊗ v−2 + v−6 ⊗ v0,

s−8 = v−2 ⊗ v−6 + v−4 ⊗ v−4 + v−6 ⊗ v−2,

s−10 = v−4 ⊗ v−6 + v−6 ⊗ v−4,

s−12 = v−6 ⊗ v−6.

For the summand V (10) (and all the following sum-
mands), a highest weight vector is given by the explicit
Clebsch-Gordan Theorem, and the other weight vectors
are found by applying F :

t10 = v6 ⊗ v4 − v4 ⊗ v6,

t8 = 2v6 ⊗ v2 − 2v2 ⊗ v6,

t6 = 3v6 ⊗ v0 + v4 ⊗ v2 − v2 ⊗ v4 − 3v0 ⊗ v6,

t4 = 4v6 ⊗ v−2 + 2v4 ⊗ v0 − 2v0 ⊗ v4 − 4v−2 ⊗ v6,

t2 = 5v6 ⊗ v−4 + 3v4 ⊗ v−2 + v2 ⊗ v0 − v0 ⊗ v2

− 3v−2 ⊗ v4 − 5v−4 ⊗ v6,

t0 = 6v6 ⊗ v−6 + 4v4 ⊗ v−4 + 2v2 ⊗ v−2 − 2v−2 ⊗ v2

− 4v−4 ⊗ v4 − 6v−6 ⊗ v6,

t−2 = 5v4 ⊗ v−6 + 3v2 ⊗ v−4 + v0 ⊗ v−2 − v−2 ⊗ v0

− 3v−4 ⊗ v2 − 5v−6 ⊗ v4,

t−4 = 4v2 ⊗ v−6 + 2v0 ⊗ v−4 − 2v−4 ⊗ v0 − 4v−6 ⊗ v2,

t−6 = 3v0 ⊗ v−6 + v−2 ⊗ v−4 − v−4 ⊗ v−2 − 3v−6 ⊗ v0,

t−8 = 2v−2 ⊗ v−6 − 2v−6 ⊗ v−2,

t−10 = v−4 ⊗ v−6 − v−6 ⊗ v−4

.

For the summand V (8), we obtain this basis:

u8 = v6 ⊗ v2 − 5
6v4 ⊗ v4 + v2 ⊗ v6,

u6 = 3v6 ⊗ v0 − 2
3v4 ⊗ v2 − 2

3v2 ⊗ v4 + 3v0 ⊗ v6,

u4 = 6v6 ⊗ v−2 + 1
2v4 ⊗ v0 − 4

3v2 ⊗ v2 + 1
2v0 ⊗ v4

+ 6v−2 ⊗ v6,

u2 = 10v6 ⊗ v−4 + 8
3v4 ⊗ v−2 − v2 ⊗ v0 − v0 ⊗ v2

+ 8
3v−2 ⊗ v4 + 10v−4 ⊗ v6,

u0 = 15v6 ⊗ v−6 + 35
6 v4 ⊗ v−4 + 1

3v2 ⊗ v−2 − 3
2v0 ⊗ v0

+ 1
3v−2 ⊗ v2 + 35

6 v−4 ⊗ v4 + 15v−6 ⊗ v6,

u−2 = 10v4 ⊗ v−6 + 8
3v2 ⊗ v−4 − v0 ⊗ v−2 − v−2 ⊗ v0

+ 8
3v−4 ⊗ v2 + 10v−6 ⊗ v4,

u−4 = 6v2 ⊗ v−6 + 1
2v0 ⊗ v−4 − 4

3v−2 ⊗ v−2 + 1
2v−4 ⊗ v0

+ 6v−6 ⊗ v2,

u−6 = 3v0 ⊗ v−6 − 2
3v−2 ⊗ v−4 − 2

3v−4 ⊗ v−2

+ 3v−6 ⊗ v0,

u−8 = v−2 ⊗ v−6 − 5
6v−4 ⊗ v−4 + v−6 ⊗ v−2.
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For the summand V (6) (this is the summand onto which
we will project), we obtain this basis:

w6 = v6 ⊗ v0 − 2
3v4 ⊗ v2 + 2

3v2 ⊗ v4 − v0 ⊗ v6,

w4 = 4v6 ⊗ v−2 − v4 ⊗ v0 + v0 ⊗ v4 − 4v−2 ⊗ v6,

w2 = 10v6 ⊗ v−4 − v2 ⊗ v0 + v0 ⊗ v2 − 10v−4 ⊗ v6,

w0 = 20v6 ⊗ v−6 + 10
3 v4 ⊗ v−4 − 4

3v2 ⊗ v−2 + 4
3v−2 ⊗ v2

− 10
3 v−4 ⊗ v4 − 20v−6 ⊗ v6,

w−2 = 10v4 ⊗ v−6 − v0 ⊗ v−2 + v−2 ⊗ v0 − 10v−6 ⊗ v4,

w−4 = 4v2 ⊗ v−6 − v0 ⊗ v−4 + v−4 ⊗ v0 − 4v−6 ⊗ v2,

w−6 = v0 ⊗ v−6 − 2
3v−2 ⊗ v−4 + 2

3v−4 ⊗ v−2 − v−6 ⊗ v0.

For the summand V (4), we obtain this basis:

x4 = v6 ⊗ v−2 − 1
2v4 ⊗ v0 + 2

5v2 ⊗ v2 − 1
2v0 ⊗ v4

+ v−2 ⊗ v6,

x2 = 5v6 ⊗ v−4 − v4 ⊗ v−2 + 1
5v2 ⊗ v0 + 1

5v0 ⊗ v2

− v−2 ⊗ v4 + 5v−4 ⊗ v6,

x0 = 15v6 ⊗ v−6 − 3
5v2 ⊗ v−2 + 3

5v0 ⊗ v0 − 3
5v−2 ⊗ v2

+ 15v−6 ⊗ v6,

x−2 = 5v4 ⊗ v−6 − v2 ⊗ v−4 + 1
5v0 ⊗ v−2 + 1

5v−2 ⊗ v0

− v−4 ⊗ v2 + 5v−6 ⊗ v4,

x−4 = v2 ⊗ v−6 − 1
2v0 ⊗ v−4 + 2

5v−2 ⊗ v−2 − 1
2v−4 ⊗ v0

+ v−6 ⊗ v2.

For the summand V (2), we obtain this basis:

y2 = v6 ⊗ v−4 − 1
3v4 ⊗ v−2

+ 1
5v2 ⊗ v0 − 1

5v0 ⊗ v2 + 1
3v−2 ⊗ v4 − v−4 ⊗ v6,

y0 = 6v6 ⊗ v−6 − 2
3v4 ⊗ v−4 + 2

15v2 ⊗ v−2

− 2
15v−2 ⊗ v2 + 2

3v−4 ⊗ v4

− 6v−6 ⊗ v6,

y−2 = v4 ⊗ v−6 − 1
3v2 ⊗ v−4 + 1

5v0 ⊗ v−2 − 1
5v−2 ⊗ v0

+ 1
3v−4 ⊗ v2 − v−6 ⊗ v4.

For the summand V (0), we obtain this basis:

z0 = v6 ⊗ v−6 − 1
6v4 ⊗ v−4 + 1

15v2 ⊗ v−2 − 1
20v0 ⊗ v0

+ 1
15v−2 ⊗ v2 − 1

6v−4 ⊗ v4 + v−6 ⊗ v6.

We consider two distinct ordered bases of the 49-
dimensional space V (6) ⊗ V (6). The first is the tensor
basis, consisting of all

vp ⊗ vq, p, q ∈ {6, 4, 2, 0,−2,−4,−6},

ordered by the rule that vp ⊗ vq precedes vp′ ⊗ vq′ if and
only if either p > p′, or p = p′ and q > q′. The second is
the module basis, consisting of all

rp, r ∈ {s, t, u, w, x, y, z},
with appropriate weights p depending on r, ordered by
the rule that rp precedes r′p′ if and only if r precedes r′

in the alphabet, or r = r′ and p > p′.
We now let A be the 49 × 49 matrix in which the

entry i, j is the coefficient of the ith tensor basis vec-
tor in the expression for the jth module basis vector (in
the linear combinations listed above). This is simply the
transition matrix from the module basis to the tensor
basis. The inverse matrix A−1 is the transition matrix
from the tensor basis to the module basis, and so its
columns describe the expressions of the tensor basis vec-
tors as linear combinations of the module basis vectors.
In particular, rows 34–40 of A−1 describe the projection
P : V (6) ⊗ V (6) → V (6). We present the results in the
following table; the scalar cpq in row vp and column vq

means that P (vp ⊗ vq) = cpqwp+q:

⊗ v6 v4 v2 v0 v−2 v−4 v−6

v6 0 0 0 1
6

1
12

1
30

1
120

v4 0 0 − 1
2 − 1

6 0 1
20

1
30

v2 0 1
2 0 − 1

6 − 1
8 0 1

12

v0 − 1
6

1
6

1
6 0 − 1

6 − 1
6

1
6

v−2 − 1
12 0 1

8
1
6 0 − 1

2 0

v−4 − 1
30 − 1

20 0 1
6

1
2 0 0

v−6 − 1
120 − 1

30 − 1
12 − 1

6 0 0 0

Now, we write h for the sl(2)-module isomorphism de-
fined by h(vp) = wp, which sends the original V (6) with
basis vp (p = 6, . . . ,−6) onto the V (6) summand of
V (6) ⊗ V (6) with basis wp (p = 6, . . . ,−6). The compo-
sition h−1 ◦P provides V (6) with the structure of an an-
ticommutative algebra for which the structure constants
appear in the last table:

[vp, vq] = cpqvp+q.

If we now introduce a scaled basis

v′
p = i!vp, i =

1
2
(6 − p),

then we obtain the structure constants in the statement
of Theorem 5.2.

We will show that the anticommutative algebra of
Theorem 5.2 is a simple non-Lie Malcev algebra by giv-
ing an explicit isomorphism between it and the simple
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non-Lie Malcev algebra obtained from the pure imagi-
nary octonions under the commutator product.

Theorem 5.3. The anticommutative algebra obtained from
the projection V (6) ⊗ V (6) → V (6) ⊂ Λ2V (6) is iso-
morphic to the simple seven-dimensional non-Lie Malcev
algebra. An explicit isomorphism is given by

v6 = 1
16bc

(I − iM), v4 = − 1
8b

(J + iN), v2 = 1
8c

(K + iP )

v0 = − 1
2
iL,

v−2 = c(K − iP ), v−4 = b(J − iN), v−6 = 2bc(I + iM),

where b, c are arbitrary nonzero scalars (and i =
√−1).

Proof: Let

X = aI + bJ + cK + dL + eM + fN + gP

be a general element of the Malcev algebra in the octo-
nion basis. Using the structure constants for this basis
given in Definition 5.1, we see that the matrix represent-
ing left multiplication by X in the octonion basis is⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −2c 2b −2e 2d 2g −2f
2c 0 −2a −2f −2g 2d 2e

−2b 2a 0 −2g 2f −2e 2d
2e 2f 2g 0 −2a −2b −2c

−2d 2g −2f 2a 0 2c −2b
−2g −2d 2e 2b −2c 0 2a

2f −2e −2d 2c 2b −2a 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The characteristic polynomial of this matrix is

t
(
t2 + 4(a2 + b2 + c2 + d2 + e2 + f2 + g2)

)3
.

We want to find an element X in the Malcev algebra
(octonion basis) that behaves like v0 in the V (6) alge-
bra in the sense that its left multiplication has the same
eigenvalues. The V (6) multiplication table from Theo-
rem 5.2 shows that these eigenvalues are 0, 1 (3 times),
and −1 (3 times). So we get a match of the characteristic
polynomials if

a2 + b2 + c2 + d2 + e2 + f2 + g2 = −1
4
.

For simplicity we take

d =
1
2
i, a = b = c = e = f = g = 0,

which gives the left multiplication matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 i 0 0
0 0 0 0 0 i 0
0 0 0 0 0 0 i
0 0 0 0 0 0 0

−i 0 0 0 0 0 0
0 −i 0 0 0 0 0
0 0 −i 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This is the matrix representing left multiplication by the
new basis element

x4 =
1
2
iL.

Any eigenvector for left multiplication by x4 correspond-
ing to the eigenvalue λ = 1 is a linear combination of

x1 = I − iM, x2 = J − iN, x3 = K − iP.

Likewise, any eigenvector for left multiplication by x4

corresponding to the eigenvalue λ = −1 is a linear com-
bination of

x5 = I + iM, x6 = J + iN, x7 = K + iP.

The multiplication table for these basis vectors is

[, ] x1 x2 x3 x4 x5 x6 x7

x1 0 4x7 −4x6 −x1 −8x4 0 0

x2 −4x7 0 4x5 −x2 0 −8x4 0

x3 4x6 −4x5 0 −x3 0 0 −8x4

x4 x1 x2 x3 0 −x5 −x6 −x7

x5 8x4 0 0 x5 0 4x3 −4x2

x6 0 8x4 0 x6 −4x3 0 4x1

x7 0 0 8x4 x7 4x2 −4x1 0

We now compare the locations of the zeroes in this table
and in the table of Theorem 5.2. We call two distinct
basis elements “related” if their product is zero; since
the product is anticommutative, this term is well-defined.
For the last table the related basis elements form the
cycle

x1, x6, x3, x5, x2, x7, x1;

for the table in Theorem 5.2, the related basis elements
form the cycle

v6, v4, v−2, v−6, v−4, v2, v6.

This suggests that we make the identifications

v6 = ax1, v4 = fx6, v2 = gx7, v0 = dx4,

v−2 = cx3, v−4 = bx2, v−6 = ex5,

for some suitable scalars a, b, c, d, e, f, g. This gives the
new table, Table 2.
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[, ] ax1 fx6 gx7 dx4 cx3 bx2 ex5

ax1 0 0 0 −ad
a ax1 −4ac

f fx6 4ab
g gx7 −8ae

d dx4

fx6 0 0 4 fg
a ax1

df
f fx6 0 8 bf

d dx4 −4 ef
c cx3

gx7 0 −4 fg
a ax1 0 dg

g gx7 8 cg
d dx4 0 4 eg

b bx2

dx4
ad
a ax1 −df

f fx6 −dg
g gx7 0 cd

c cx3
bd
b bx2 −de

e ex5

cx3 4ac
f fx6 0 −8 cg

d dx4 − cd
c cx3 0 −4 bc

e ex5 0

bx2 −4ab
g gx7 −8 bf

d dx4 0 − bd
b bx2 4 bc

e ex5 0 0

ex5 8ae
d dx4 4 ef

c cx3 −4 eg
b bx2

de
e ex5 0 0 0

TABLE 2.

⊗ v10 v8 v6 v4 v2 v0 v−2 v−4 v−6 v−8 v−10

v10 0 0 0 0 0 3 9 14 14 9 3
v8 0 0 0 0 −3 −6 −5 0 5 6 3
v6 0 0 0 3 3 −1 −5 −5 −1 3 3
v4 0 0 −3 0 4 4 0 −4 −4 0 3
v2 0 3 −3 −4 0 4 4 0 −4 −3 3
v0 −3 6 1 −4 −4 0 4 4 −1 −6 3
v−2 −9 5 5 0 −4 −4 0 5 5 −9 0
v−4 −14 0 5 4 0 −4 −5 0 14 0 0
v−6 −14 −5 1 4 4 1 −5 −14 0 0 0
v−8 −9 −6 −3 0 3 6 9 0 0 0 0
v−10 −3 −3 −3 −3 −3 −3 0 0 0 0 0

TABLE 3.

We set the entries of Table 2 equal to the corresponding
entries of the table of Theorem 5.2 and use Maple to
solve the resulting system of nonlinear equations in seven
unknowns. The result includes two free parameters b

and c:

a =
1

16bc
, b = free, c = free, d = −1,

e = 2bc, f = − 1
8b

, g =
1
8c

.

For any nonzero choices of b and c we get an isomorphism
between the V (6) algebra and the seven-dimensional sim-
ple non-Lie Malcev algebra. This completes the proof.

6. A NEW 11-DIMENSIONAL ANTICOMMUTATIVE
ALGEBRA (n = 10)

In this section we study the module V (10) and the pro-
jection

V (10) ⊗ V (10) → V (10) ⊂ Λ2V (10).

This gives the module V (10) an sl(2)-invariant anticom-
mutative algebra structure which, to the best of our
knowledge, has not been studied elsewhere.

Theorem 6.1. The structure constants for the anticom-
mutative algebra obtained from the projection

V (10) ⊗ V (10) → V (10) ⊂ Λ2V (10)

are displayed in Table 3.
Since the product of vp and vq equals cpqvp+q for some

scalar cpq, we only record the scalars cpq.

Proof: The explicit form of the Clebsch-Gordan Theo-
rem gives a formula for the highest weight vectors of the
irreducible summands in the decomposition

V (10) ⊗ V (10) ∼= V (20) ⊕ V (18) ⊕ V (16) ⊕ V (14)

⊕ V (12) ⊕ V (10) ⊕ V (8) ⊕ V (6)

⊕ V (4) ⊕ V (2) ⊕ V (0).

Since the computational methods in this case are the
same as those in the case of the adjoint representation
V (2) and the Malcev algebra V (6), we do not give com-
plete details. We present only the basis of weight vectors
for the summand of V (10)⊗ V (10) isomorphic to V (10):

t10 = v10 ⊗ v0 − 3
5v8 ⊗ v2 + 7

15v6 ⊗ v4 − 7
15v4 ⊗ v6

+ 3
5v2 ⊗ v8 − v0 ⊗ v10,
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0 0 0 0 0 3
52

3
104

1
78

1
208

1
728

1
4368

0 0 0 0 − 15
52 − 3

26 − 5
156 0 5

728
5

1092
1

728

0 0 0 15
26

15
104 − 1

52 − 5
104 − 5

182 − 5
1456

5
728

1
208

0 0 − 15
26 0 5

39
1
13 0 − 10

273 − 5
182 0 1

78

0 15
52 − 15

104 − 5
39 0 1

13
5
78 0 − 5

104 − 5
156

3
104

− 3
52

3
26

1
52 − 1

13 − 1
13 0 1

13
1
13 − 1

52 − 3
26

3
52

− 3
104

5
156

5
104 0 − 5

78 − 1
13 0 5

39
15
104 − 15

52 0
− 1

78 0 5
182

10
273 0 − 1

13 − 5
39 0 15

26 0 0
− 1

208 − 5
728

5
1456

5
182

5
104

1
52 − 15

104 − 15
26 0 0 0

− 1
728 − 5

1092 − 5
728 0 5

156
3
26

15
52 0 0 0 0

− 1
4368 − 1

728 − 1
208 − 1

78 − 3
104 − 3

52 0 0 0 0 0

TABLE 4.

t8 = 6v10 ⊗ v−2 − 2v8 ⊗ v0 + 2
3v6 ⊗ v2 − 2

3v2 ⊗ v6

+ 2v0 ⊗ v8 − 6v−2 ⊗ v10,

t6 = 21v10 ⊗ v−4 − 3v8 ⊗ v−2 − 1
3v6 ⊗ v0 + v4 ⊗ v2

− v2 ⊗ v4 + 1
3v0 ⊗ v6 + 3v−2 ⊗ v8 − 21v−4 ⊗ v10,

t4 = 56v10 ⊗ v−6 − 8
3v6 ⊗ v−2 + 4

3v4 ⊗ v0 − 4
3v0 ⊗ v4

+ 8
3v−2 ⊗ v6 − 56v−6 ⊗ v10,

t2 = 126v10 ⊗ v−8 + 14v8 ⊗ v−6 − 14
3 v6 ⊗ v−4

+ 4
3v2 ⊗ v0 − 4

3v0 ⊗ v2 + 14
3 v−4 ⊗ v6 − 14v−6 ⊗ v8

− 126v−8 ⊗ v10,

t0 = 252v10 ⊗ v−10 + 252
5 v8 ⊗ v−8 − 28

15v6 ⊗ v−6

− 14
5 v4 ⊗ v−4 + 8

5v2 ⊗ v−2 − 8
5v−2 ⊗ v2

+ 14
5 v−4 ⊗ v4 + 28

15v−6 ⊗ v6 − 252
5 v−8 ⊗ v8

− 252v−10 ⊗ v10,

t−2 = 126v8 ⊗ v−10 + 14v6 ⊗ v−8 − 14
3 v4 ⊗ v−6

+ 4
3v0 ⊗ v−2 − 4

3v−2 ⊗ v0 + 14
3 v−6 ⊗ v4

− 14v−8 ⊗ v6 − 126v−10 ⊗ v8,

t−4 = 56v6 ⊗ v−10 − 8
3v2 ⊗ v−6 + 4

3v0 ⊗ v−4 − 4
3v−4 ⊗ v0

+ 8
3v−6 ⊗ v2 − 56v−10 ⊗ v6,

t−6 = 21v4 ⊗ v−10 − 3v2 ⊗ v−8 − 1
3v0 ⊗ v−6 + v−2 ⊗ v−4

− v−4 ⊗ v−2 + 1
3v−6 ⊗ v0 + 3v−8 ⊗ v2

− 21v−10 ⊗ v4,

t−8 = 6v2 ⊗ v−10 − 2v0 ⊗ v−8 + 2
3v−2 ⊗ v−6

− 2
3v−6 ⊗ v−2 + 2v−8 ⊗ v0 − 6v−10 ⊗ v2,

t−10 = v0 ⊗ v−10 − 3
5v−2 ⊗ v−8 + 7

15v−4 ⊗ v−6

− 7
15v−6 ⊗ v−4 + 3

5v−8 ⊗ v−2 − v−10 ⊗ v0.

We put this information, together with the coefficients
of the expressions for the other module basis vectors as
linear combinations of the tensor basis vectors, into a ma-

trix A of size 121 × 121. The inverse matrix A−1 shows
how to express the tensor basis vectors as linear combi-
nations of the module basis vectors and, in particular,
gives the projection P from V (10) ⊗ V (10) to the V (10)
summand. Table 4 gives this projection, in the sense that
the scalar cpq in row vp and column vq satisfies the equa-
tion P (vp ⊗ vq) = cpqtp+q; as above we use t to denote
a vector in the V (10) summand of the tensor product.
In this table the rows and columns are indexed by the
weights p, q = 10, 8, . . . ,−8,−10. If we now introduce a
scaled basis

v′
p =

13
30

i!vp, i =
1
2
(10 − p),

then we obtain the structure constants in the statement
of Theorem 6.1.

7. COMPUTATIONAL METHODS

Let A be any algebra (not necessarily associative) over
a field F. That is, let A be a vector space over F, to-
gether with a bilinear map A × A → A (equivalently, a
linear map A ⊗ A → A). We are interested in the poly-
nomial identities satisfied by the algebra A. To simplify
the discussion, we will assume initially that the base field
F has characteristic 0. This assumption implies that any
polynomial identity over F is equivalent to a family of
homogeneous multilinear identities.

7.1 Associative Polynomials

We fix a positive integer n and a set of n indeterminates

X = {a1, a2, . . . , an}.

We let Sn be the symmetric group on {1, 2, . . . , n}. We
will write elements of Sn as monomials of degree n in the
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set X. That is, the permutation σ ∈ Sn corresponds to
the monomial

pσ = aσ(1)aσ(2) · · · aσ(n).

Here we apply σ to the subscripts not the positions, so
we have to multiply permutations from right to left. This
convention assumes that we are dealing with multilinear
identities; we regard an identity with a variable repeated
k times as shorthand for the symmetric sum of k! terms
over all permutations of k new variables in the positions
of the original repeated variable.

An example will make this clear. Suppose we want to
look at

f(x1, x2, x3, x4, x5) = x5x1x3x2x4 + x1x5x3x2x4.

In terms of the action on subscripts, we would write this
identity as

(1542)(3) + (1)(254)(3) or (1542) + (254).

The left ideal generated by this element of the group ring
will include

(123)[(1542) + (254)] = (1543) + (12543)

= x5x2x1x3x4 + x2x5x1x3x4.

This is just what we want: those portions of the monomi-
als that do not move are substituted for the same element
in all terms. The parts which switch are switched into
new elements but the pattern of the movement will be the
same. But, we have to multiply from right to left because
the right-hand permutation hits the subscript first.

In terms of the action of permutations on positions,
we would write the same identity as I + (12). If I + (12)
acts on x5x1x3x2x4, we get

x5x1x3x2x4 + x1x5x3x2x4.

Here, we must multiply from left to right because we put
the permutation in first and then apply the identity:

(123)[I + (12)] = (123) + (1)(23),

and (123) + (23) acting on x5x1x3x2x4 is

x3x5x1x2x4 + x5x3x1x2x4.

This is also correct if we make the assumption that per-
mutations are acting on positions.

The action on subscripts gives a left ideal when we
multiply from right to left. The action on positions gives
a left ideal when we multiply from left to right. The first

method (action on subscripts) is easier to program and
corresponds directly to the representation theory given
in standard references such as [James and Kerber 81].

Let Pn be the linear span of all n! monomials pσ as
σ ranges over Sn. We regard Pn as a module over Sn

under the action induced by πpσ = pπσ. If A is an as-
sociative algebra, then the elements of Pn correspond to
the homogeneous multilinear identities of degree n that
could be satisfied by A. More precisely, let f ∈ Pn be
a homogeneous multilinear associative polynomial of de-
gree n. We say that f is an identity for A if it vanishes
identically on A, that is, if

f(x1, x2, . . . , xn) = 0 for every x1, x2, . . . xn ∈ A.

An identity can be identified with the submodule that it
generates: an algebra A satisfies the identity f if and only
if it satisfies all the identities in the submodule generated
by f .

The group ring FSn decomposes as the direct sum of
full matrix rings of size dλ × dλ, where dλ is the dimen-
sion of the irreducible FSn-module corresponding to λ

as λ ranges over all partitions of n. The module Pn de-
composes into the same direct sum. Any submodule is a
direct sum of irreducible modules. Since we can perform
computations one representation at a time, it is possible
to study an identity by breaking the problem down into
smaller pieces, each of which corresponds to a partition
of the degree n.

7.2 Nonassociative Polynomials

If A is a nonassociative algebra then we also have to keep
track of the possible association types that may occur in
a monomial of degree n. The number of distinct asso-
ciation types (that is, the number of distinct ways to
parenthesize n factors) is the Catalan number

tn =
1
n

(
2n − 2
n − 1

)
.

Here is a short table:

n 1 2 3 4 5 6 7 8
tn 1 1 2 5 14 42 132 429

The total number of homogeneous multilinear monomials
of degree n for a nonassociative algebra A is the Cata-
lan number tn (the number of association types) times
the factorial n! (the number of associative words, or un-
parenthesized monomials):

1
n

(
2n − 2
n − 1

)
n! =

(2n − 2)!
(n − 1)!

.
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This is the dimension of the vector space Qn of all possi-
ble multilinear homogeneous nonassociative identities of
degree n. We can think of Qn as the direct sum of tn
copies of Pn, one copy for each association type.

7.3 Random Vectors

Suppose we want to find the simplest identity satisfied by
a nonassociative algebra A of dimension s. We represent
elements of A as s-tuples with respect to some convenient
basis, and we assume that we have an explicit procedure
for computing the product in A with respect to this basis.
(Such a procedure can be obtained from the structure
constants for the algebra A.)

For each degree n and each partition n = n1 + · · · +
nk we list all the corresponding monomials involving k

variables x1, . . ., xk with xi occurring ni times in each
monomial. (We are no longer assuming multilinearity.)
Let c be the number of these monomials; we have

c =
1
n

(
2n − 2
n − 1

)(
n

n1, . . . , nk

)
=

(2n − 2)!
(n − 1)!

· 1
n1!n2! · · ·nk!

.

We set up a matrix M with c + s rows and c columns,
initialized to zero.

We now begin the following iterative procedure: we
generate k random elements of A. Each column of M

is labeled by one of the c monomials, and each mono-
mial involves k variables. We set the k variables equal to
the k random elements of A and evaluate each of the c

monomials using the product in A. For each column of
M , we obtain another element of A which we view as an
s × 1 column vector. In column j of M , in rows c + 1
to c + s (at the bottom of the matrix), we put the s × 1
column vector obtained by evaluating the jth monomial
on the k random elements of A. After the s × c bottom
segment of M is filled in this way, each of the last s rows
contains a linear relation which must be satisfied by the
coefficients of any identity satisfied by A. To see this, let
Ti (1 ≤ i ≤ c) be the monomials labeling the columns of
the matrix M . Let

c∑
i=1

aiTi

be the general linear combination of the monomials Ti

where the coefficients ai are indeterminates. When we
evaluate the Ti on the k random elements of A, each Ti

becomes an s × 1 column vector:

Ti = (ti1, ti2, . . . , tis)T .

Writing out the components of the general linear combi-
nation of the Ti, we get s linear relations that must be

satisfied by the ai:

c∑
i=1

tijai, 1 ≤ j ≤ s.

These are the relations that occupy the last s rows of
the matrix M . (Another way of viewing this process is
to say that we are generating random counterexamples
to the possible identities satisfied by A; we thank Don
Pigozzi for pointing this out.) We now compute the row
canonical form of M . Since M has size (c + s) × c, its
rank must be ≤ c, and so the bottom s × c submatrix
will now be zero.

We repeat this fill-and-reduce process; in our experi-
ence, each iteration tends to increase the rank of M by
s = dimA. The process is continued until the rank of M

stops increasing. We perform a few more iterations to be
sure that M has reached full rank. If the nullspace of M

at this point is nonzero, it contains candidates for non-
trivial identities satisfied by A. We now test the candi-
dates by seeing if they evaluate to zero on further choices
of random arguments. Finally, we attempt to prove them
directly.

7.4 The Symmetric Group Ring

Another technique we use to find identities is the repre-
sentation theory of the symmetric group. The process of
studying identities through group representations is indi-
rect and complicated. It does, however, have two tremen-
dous advantages. Because the process can be run sepa-
rately on each representation of the symmetric group, the
calculations can be broken up into smaller, more manage-
able portions. Also, the basic unit of the group algebra
approach is the identity, rather than all substitutions in
an identity. Since there are n! possible substitutions, one
can see that it is better to work with one object rather
than n! objects. Further details on this approach may be
found in a previous publication of the authors [Bremner
and Hentzel 04]).

To save space and time these computational methods
were implemented over the field with p elements where p

is a prime larger than the degree of the identities under
consideration. This guarantees that the the group ring
will be semisimple, and usually ensures that the results
will be equivalent to the characteristic 0 case; that is,
the dimension of a submodule of identities will be equal
to the dimension of the corresponding submodule over
Q, and the basis which is computed will be formally the
same in the two cases if the coefficients of the monomials
are expressed as small integers.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

83 30 30 94 66 92 37 4 1 45 4 50 36 25 41
40 90 86 53 17 22 94 74 25 73 4 40 15 0 73
32 86 45 2 87 98 49 67 83 97 7 83 64 19 30
25 36 47 63 3 1 76 92 37 7 12 15 92 25 85
93 81 46 8 59 62 71 43 95 57 66 53 36 42 26
67 78 38 10 34 18 23 21 88 33 98 69 87 51 76
59 44 29 36 44 76 13 33 67 8 43 9 88 91 81

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

TABLE 5. Evaluation of the 15 monomials.

7.5 A Detailed Example: The Malcev Identity

We show how these computational methods can be used
to discover the Malcev identity in degree 4 from the mul-
tiplication table for the seven-dimensional simple non-Lie
Malcev algebra obtained from the representation V (6) of
sl(2), which was presented in Theorem 5.2. It is impor-
tant to have an integral matrix of structure constants,
with no common factor in the entries, so that we can do
these calculations in any characteristic.

There are five association types for a product of four
variables:

((wx)y)z, (w(xy))z, (wx)(yz), w((xy)z), w(x(yz)).

For an anticommutative product, these five association
types reduce to two:

((wx)y)z, (wx)(yz).

Using all 24 permutations of the four variables, and ac-
counting for anticommutativity, we obtain a total of 15
inequivalent multilinear degree-4 monomials for an anti-
commutative product. There are 12 in the first associa-
tion type and three more in the second:

((wx)y)z, ((wx)z)y, ((wy)x)z,

((wy)z)x, ((wz)x)y, ((wz)y)x,

((xy)w)z, ((xy)z)w, ((xz)w)y,

((xz)y)w, ((yz)w)x, ((yz)x)w,

(wx)(yz), (wy)(xz), (wz)(xy).

We now construct a matrix A of size 22 × 15, initialized
to zero. We think of A as consisting of a 15 × 15 square
matrix on top of a 7 × 15 matrix.

We generate four pseudo-random vectors of length 7,
which we call w, x, y, z. The components of these vectors
can be regarded as either rational integers or elements
of a finite field. In the former case, the components will
be uniformly distributed single digits 0 through 9; in the
latter case, the components will be uniformly distributed
elements 0 through p−1 in the field with p elements. We

then evaluate each of the 15 monomials using the V (6)
structure constants in Theorem 5.2. This produces 15
vectors of length 7, which we regard as column vectors
and store in the bottom part of A. That is, the 7 compo-
nents of the evaluation of monomial j are put in column
j of A in rows 16 through 22.

We will use arithmetic modulo p = 101 and start with
these 4 pseudo-random vectors generated by the Maple
function r := rand(101):

w = (70, 76, 37, 82, 29, 56, 42),

x = (47, 21, 41, 85, 35, 15, 97),

y = (60, 39, 11, 14, 39, 61, 1),

z = (21, 58, 99, 89, 51, 6, 32).

Evaluating the 15 monomials on these 4 vectors gives the
7 × 15 matrix in Table 5.

At this point the 22 × 15 matrix A consists of that
matrix as its bottom part and a 15 × 15 zero matrix as
its top part. We now find the row canonical form of
the matrix A. This completes the first iteration of the
algorithm.

We now generate four more random vectors

w = (27, 65, 24, 30, 90, 84, 42),

x = (26, 51, 83, 96, 22, 23, 15),

y = (24, 58, 63, 21, 36, 84, 67),

z = (92, 60, 83, 2, 16, 75, 50),

and fill in the last seven rows again as before. At this
point, after the second fill but before the second row re-
duction, the matrix A is displayed in Table 6. The first
seven rows of this matrix contain the row canonical form
of the 7× 15 matrix in Table 5. The row canonical form
of the entire 22× 15 matrix is given in Table 7. Here the
last 12 rows have been omitted since they are zero.

Further iterations of the algorithm do not change the
row canonical form of the matrix A. Since the row canon-
ical form has rank 10, its nullspace has dimension 5. A
basis for the nullspace consists of the rows of the matrix
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 81 59 79 86 67 79 67 94
0 1 0 0 0 0 0 75 6 32 99 72 32 73 35
0 0 1 0 0 0 0 44 35 93 23 67 93 67 69
0 0 0 1 0 0 0 67 60 93 64 30 94 30 29
0 0 0 0 1 0 0 7 56 50 20 26 49 26 30
0 0 0 0 0 1 0 37 50 12 25 63 12 62 88
0 0 0 0 0 0 1 15 1 88 32 46 87 47 56
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

66 78 38 96 55 7 73 40 44 67 56 64 35 6 51
84 36 87 19 58 62 71 23 77 88 53 57 79 1 85
90 89 65 29 87 62 12 20 43 96 2 87 26 25 17
85 74 93 55 46 15 6 5 64 33 41 20 36 85 74
60 46 75 26 10 55 17 88 44 78 90 18 77 26 60
25 94 69 51 39 23 12 32 14 28 48 84 28 66 5
71 89 82 56 23 67 79 63 6 4 76 86 59 86 36

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

TABLE 6. First row reduction and second fill.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 0 0 0 0 100 0 0 1
0 0 1 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 1 0 0 0 0 0 100 0 0 0 0 100
0 0 0 0 1 0 0 0 0 1 0 100 0 100 1
0 0 0 0 0 1 0 0 0 100 0 1 100 0 100
0 0 0 0 0 0 1 0 0 1 0 100 0 0 1
0 0 0 0 0 0 0 1 0 100 0 1 100 1 100
0 0 0 0 0 0 0 0 1 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 1 100

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

TABLE 7. The final row canonical form.

⎛
⎜⎜⎜⎜⎝

1 0 0 0 −1 0 0 1 0 0 1 0 0 −1 0
0 1 0 0 0 −1 0 −1 1 1 −1 0 −1 0 −1
0 0 1 0 0 −1 0 −1 1 0 0 0 −1 0 0
0 0 0 1 −1 0 0 1 −1 0 1 1 0 −1 1
0 0 0 0 0 0 1 1 −1 −1 1 1 1 −1 1

⎞
⎟⎟⎟⎟⎠

TABLE 8. The matrix of identities.

in Table 8. Since 100 = −1 modulo 101, we replace each
100 by −1; this allows us to regard the identities as poly-
nomials over any field. Expressing the vectors as linear
combinations of the original 15 monomials, we obtain the
following five identities:

I1 = ((wx)y)z − ((wz)x)y + ((xy)z)w + ((yz)w)x

− (wy)(xz),

I2 = ((wx)z)y − ((wz)y)x − ((xy)z)w + ((xz)w)y

+ ((xz)y)w − ((yz)w)x − (wx)(yz) − (wz)(xy),

I3 = ((wy)x)z − ((wz)y)x − ((xy)z)w + ((xz)w)y

− (wx)(yz),

I4 = ((wy)z)x − ((wz)x)y + ((xy)z)w − ((xz)w)y

+ ((yz)w)x + ((yz)x)w − (wy)(xz) + (wz)(xy),
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I5 = ((xy)w)z + ((xy)z)w − ((xz)w)y − ((xz)y)w

+ ((yz)w)x + ((yz)x)w + (wx)(yz) − (wy)(xz)

+ (wz)(xy).

Identity I1 is the same as the 5-term Malcev identity
(5–2), after applying anticommutativity to one term.
Identity I2 is obtained by linearizing the 4-term Malcev
identity (5–1) by replacing x by w + x and then inter-
changing x and y. Identity I3 is obtained from identity
(5–2) by interchanging x and y. Identity I4 is the lin-
earized form of identity (5–1). The identity I5 is a con-
sequence of the Malcev identity, which is not equivalent
to the Malcev identity: I5 is the result of applying the
element π = 1 + (234) + (243) in the group ring of S4 to
the identity I1.

In the above calculations we have used characteristic
p = 101. If we use p = 2, we obtain a six-dimensional
space of identities. If we use p = 3, we obtain a nine-
dimensional space of identities. For any other positive
characteristic (that is, p > 4 where 4 is the degree of the
identities), we obtain a five-dimensional space of identi-
ties. If we use characteristic 0 (rational arithmetic) and
generate random single digits for the vector components,
then the components in the evaluated monomials typi-
cally have three to five digits, and the matrix entries of
the row canonical form typically have 20-digit numera-
tors and denominators. This gives a relatively small but
still impressive demonstration of “matrix entry blowup,”
when using rational arithmetic to compute a row canon-
ical form, and provides a convincing argument in favour
of using modular arithmetic to save computer memory
and CPU time.

8. IDENTITIES FOR THE 11-DIMENSIONAL ALGEBRA

In this section we classify all the identities of degree ≤ 7
for the 11-dimensional anticommutative algebra A ob-
tained from the projection V (10) ⊗ V (10) → V (10) de-
scribed in Section 6 (Theorem 6.1).

Theorem 8.1. Every identity of degree ≤ 6 satisfied by
the algebra A is a consequence of anticommutativity.

Proof: (By computer, following the methods and the ex-
ample presented in Section 7.) There are six inequivalent
anticommutative association types in degree 6:

[[[[[a, b], c], d], e], f ], [[[[a, b], [c, d]], e], f ],

[[[[a, b], c], [d, e]], f ], [[[[a, b], c], d], [e, f ]],

[[[a, b], [c, d]], [e, f ]], [[[a, b], c], [[d, e], f ]].

There are altogether 945 multilinear anticommutative
monomials; counting the number in each association type
(dividing 6! by the number of antisymmetries which fol-
low from anticommutativity), we have

1
2
6! +

1
8
6! +

1
4
6! +

1
4
6! +

1
16

6! +
1
8
6!

= 360 + 90 + 180 + 180 + 45 + 90 = 945.

To determine the identities for the 11-dimensional alge-
bra, we therefore need a matrix of size 956 × 945: the
upper part is a 945 × 945 square matrix, and the lower
part is a 11 × 945 matrix into which we place the re-
sults of evaluating the anticommutative monomials. We
repeatedly generate six random vectors of length 11 with
components from the field with p = 101 elements. For
each list of six random vectors, we evaluate all 945 mono-
mials. For each monomial we put the result of the evalu-
ation into the lower part of the matrix as a column vector
in the column corresponding to the monomial. When the
lower part of the matrix is filled in this way, we compute
the row canonical form of the matrix. After each iter-
ation of this process, the rank of the matrix increases
by 11. After 86 iterations the matrix reaches full rank
(945). This implies that the nullspace is zero and that
there are no identities in degree 6, at least for character-
istic p = 101.

Since an identity in degree < 6 would imply the exis-
tence of an identity of degree 6 (for example, replacing
a variable by a product of variables, or by multiplying
the identity by other variables), we have also shown that
there are no identities of degree ≤ 6 in characteristic
p = 101.

To complete the proof we need to argue that the
nonexistence of identities in characteristic p for some p

implies the nonexistence of identities in characteristic 0.
We will show the contrapositive, that the existence of
an identity in characteristic 0 implies the existence of
a nonzero identity in characteristic p for every p. Let
c = 945, let Ti for 1 ≤ i ≤ c be the multilinear anticom-
mutative monomials of degree 6, and let ai for 1 ≤ i ≤ c

be rational numbers. Assume that
c∑

i=1

aiTi

is an identity in characteristic 0 satisfied by the algebra
A. Let m be the least common multiple of the denomi-
nators of the ai for 1 ≤ i ≤ c, and write a′

i = mai. Then,
the a′

i for 1 ≤ i ≤ c are integers, and so
c∑

i=1

a′
iTi
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is an identity for A with integer coefficients. Now let d be
the greatest common divisor of the integers a′

i for 1 ≤ i ≤
c, and write a′′

i = a′
i/d. Then, the a′′

i for 1 ≤ i ≤ c are
integers with no common prime factor, which shows that
for every prime p at least one of the a′′

i remains nonzero
when reduced modulo p. Let a′′

i,p for 1 ≤ i ≤ c be the
residue class of a′′

i modulo p; then

c∑
i=1

a′′
i,pTi

is a nonzero identity for A in characteristic p. This com-
pletes the proof.

We now consider identities of degree 7. Here are the
11 inequivalent anticommutative association types in de-
gree 7:

1 : [[[[[[a, b], c], d], e], f ], g], 2: [[[[[a, b], [c, d]], e], f ], g],

3: [[[[[a, b], c], [d, e]], f ], g], 4: [[[[[a, b], c], d], [e, f ]], g],

5: [[[[a, b], [c, d]], [e, f ]], g], 6: [[[[a, b], c], [[d, e], f ]], g],

7: [[[[[a, b], c], d], e], [f, g]], 8: [[[[a, b], [c, d]], e], [f, g]],

9: [[[[a, b], c], [d, e]], [f, g]], 10: [[[[a, b], c], d], [[e, f ], g]],

11: [[[a, b], [c, d]], [[e, f ], g]].

Theorem 8.2. The algebra A satisfies identities in de-
gree 7 which are not consequences of anticommutativ-
ity. These identities exist only in the S7-representations
labeled by the partitions 22111, 211111, and 1111111 (the
last 3 representations). That is, the identities involve the
variables aabbcde, aabcdef , and abcdefg.

Proof: (By computer.) To determine which partitions
of 7 correspond to nontrivial identities we use the Sn-
module methods described in Section 7. Table 9 shows
the 15 partitions that label the distinct irreducible rep-
resentations of the symmetric group S7. Column 2 gives
a partition λ, and column 3 gives the dimension dλ of the
corresponding representation. Column 4 gives the prod-
uct of 11 (the number of inequivalent anticommutative
association types in degree 7) and the dimension of the
representation; this is the dimension of the space of all
possible identities in this representation in this degree.
Column 5 gives the rank of the matrix of counterexam-
ples, which was generated by the random procedure de-
scribed in Section 7. Column 4 minus column 5 is the
dimension of the space of identities satisfied by the 11-
dimensional algebra, but this includes identities which
are trivial consequences of anticommutativity. Column
6 gives the dimension of the space of identities which

i λ = λi dλ 11dλ Rank Skew New
1 7 1 11 0 11 0
2 61 6 66 1 65 0
3 52 14 154 8 146 0
4 511 15 165 11 154 0
5 43 14 154 15 139 0
6 421 35 385 50 335 0
7 4111 20 220 35 185 0
8 331 21 231 41 190 0
9 322 21 231 49 182 0

10 3211 35 385 91 294 0
11 31111 15 165 48 117 0
12 2221 14 154 49 105 0
13 22111 14 154 55 98 1
14 211111 6 66 25 36 5
15 1111111 1 11 2 4 5

TABLE 9. Degree 7 identities for A.

are trivial consequences of anticommutativity. Column 7
gives column 4 minus the sum of columns 5 and 6: this
number is always nonnegative, and if it is positive, it tells
us there are new nontrivial identities satisfied by the 11-
dimensional algebra in that representation. These new
identities occur only in the last three representations.

We will now discuss the last 3 representations sepa-
rately, starting with the last representation.

Theorem 8.3. The space of multilinear identities of degree
7 (partition 1111111) for the algebra A has dimension 5.
A basis for this space consists of these five identities:

I1 =
∑
alt

[[[[[ab]c]d][ef ]]g] −
∑
alt

[[[[[ab]c]d]e][fg]]

+
∑
alt

[[[[ab]c]d][[ef ]g]],

I2 =
∑
alt

[[[[[[ab]c]d]e]f ]g] − 2
∑
alt

[[[[[ab]c]d][ef ]]g]

+
∑
alt

[[[[ab]c]d][[ef ]g]],

I3 = 2
∑
alt

[[[[[ab]c][de]]f ]g] − 3
∑
alt

[[[[ab]c][[de]f ]]g]

−
∑
alt

[[[[ab]c][de]][fg]],

I4 = 5
∑
alt

[[[[ab]c][de]]f ]g]] + 11
∑
alt

[[[[[ab]c]d][ef ]]g]

+ 5
∑
alt

[[[[ab]c][de]][fg]],
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I5 = 111
∑
alt

[[[[[[ab]c]d]e]f ]g] − 119
∑
alt

[[[[ab]c][[de]f ]]g]

− 185
∑
alt

[[[[ab]c]d][[ef ]g]].

Here the sums are alternating sums over the seven vari-
ables a, b, c, d, e, f, g.

Proof: We wrote a Maple program to evaluate, in char-
acteristic 0, the alternating sum over each of the 11 as-
sociation types in degree 7 for any seven vectors in the
algebra A. We ran this program over all

(
11
7

)
= 330

choices of seven distinct vectors from the 11 basis vec-
tors v10, . . ., v−10. Remarkably, the 330 resulting vectors
span a subspace of dimension 2. A basis for this subspace
consists of the two rows of this matrix:( −75 0 44 −60 0 0 −105 0 88 −45 0

42 0 −299 105 0 −222 273 0 68 168 0

)

In this matrix columns 2, 5, 8, and 11 are zero; it is easy
to check that for the corresponding association types the
alternating sum collapses to the zero polynomial as a re-
sult of anticommutativity. The seven nonzero columns
are 1, 3, 4, 6, 7, 9, and 10. There are

(
7
3

)
= 35 sub-

sets of three columns from among these seven columns.
This gives 35 matrices of size 2× 3, for each of which we
compute the row canonical form. We sort the resulting
35 reduced matrices, starting with the matrices with the
simplest entries (in terms of the number of digits). We
compute the one-dimensional nullspace of each of these
35 matrices, and obtain 35 identities, again ordered by
the complexity of the coefficients. From among these 35
identities, we choose the simplest five that span the five-
dimensional space of all identities. These five simplest
identities are displayed above. Note that five is the num-
ber of independent new identities for this representation
predicted by Table 9.

We now consider the representation labeled by par-
tition 211111. The corresponding identities will involve
the variables aabcdef . Accounting for anticommutativ-
ity, there are altogether 87 monomials in these six vari-
ables with one repetition, in which the letters bcdef

occur in alphabetical order from left to right. We regard
each of the 87 monomials as representing the alternating
sum over the five variables bcdef ; thus, each monomial
actually represents a sum of 120 terms. The number of
monomials in each of the 11 association types is given in
this table:

association type 1 2 3 4 5 6 7 8 9 10 11
# of monomials 15 7 10 10 4 7 10 4 6 10 4

1: [abacdef ] (1), 2: [abcadef ] (1), 3: [abcdaef ] (1),
4: [abcdeaf ] (1), 5: [abcdefa] (1), 6: [bcaadef ] (1),
7: [bcadaef ] (1), 8: [bcadeaf ] (1), 9: [bcadefa] (1),

10: [bcdaaef ] (1), 11: [bcdaeaf ] (1), 12: [bcdaefa] (1),
13: [bcdeaaf ] (1), 14: [bcdeafa] (1), 15: [bcdefaa] (1),
16: [abacdef ] (2), 17: [abcdaef ] (2), 18: [abcdeaf ] (2),
19: [abcdefa] (2), 20: [bcdeaaf ] (2), 21: [bcdeafa] (2),
22: [bcdefaa] (2), 23: [abacdef ] (3), 24: [abcadef ] (3),
25: [abcdeaf ] (3), 26: [abcdefa] (3), 27: [bcaadef ] (3),
28: [bcadeaf ] (3), 29: [bcadefa] (3), 30: [bcdaeaf ] (3),
31: [bcdaefa] (3), 32: [bcdefaa] (3), 33: [abacdef ] (4),
34: [abcadef ] (4), 35: [abcdaef ] (4), 36: [abcdefa] (4),
37: [bcaadef ] (4), 38: [bcadaef ] (4), 39: [bcadefa] (4),
40: [bcdaaef ] (4), 41: [bcdaefa] (4), 42: [bcdeafa] (4),
43: [abacdef ] (5), 44: [abcdaef ] (5), 45: [abcdefa] (5),
46: [bcdeafa] (5), 47: [abacdef ] (6), 48: [abcadef ] (6),
49: [abcdeaf ] (6), 50: [abcdefa] (6), 51: [bcadeaf ] (6),
52: [bcadefa] (6), 53: [bcdefaa] (6), 54: [abacdef ] (7),
55: [abcadef ] (7), 56: [abcdaef ] (7), 57: [abcdeaf ] (7),
58: [bcaadef ] (7), 59: [bcadaef ] (7), 60: [bcadeaf ] (7),
61: [bcdaaef ] (7), 62: [bcdaeaf ] (7), 63: [bcdeaaf ] (7),
64: [abacdef ] (8), 65: [abcdaef ] (8), 66: [abcdeaf ] (8),
67: [bcdeaaf ] (8), 68: [abacdef ] (9), 69: [abcadef ] (9),
70: [abcdeaf ] (9), 71: [bcaadef ] (9), 72: [bcadeaf ] (9),
73: [bcdaeaf ] (9), 74: [abacdef ] (10), 75: [abcadef ] (10),
76: [abcdaef ] (10), 77: [abcdefa] (10), 78: [bcaadef ] (10),
79: [bcadaef ] (10), 80: [bcadefa] (10), 81: [bcdaaef ] (10),
82: [bcdaefa] (10), 83: [bcdeafa] (10), 84: [abacdef ] (11),
85: [abcdaef ] (11), 86: [abcdefa] (11), 87: [bcdeafa] (11).

TABLE 10. The 87 monomials in representation 211111.

The complete list of all 87 monomials is given in Table
10, where we omit the brackets and give instead the per-
mutation of the seven symbols and the association type
(in parentheses). In what follows we will refer to these
monomials by number.

Theorem 8.4. The space of identities for the algebra A

in variables aabcdef (partition 211111) has dimension
5. A basis for this space consists of these four identities
where the monomials (alternating sums) are indicated by
numbers in square brackets:

J1 = 4[24] + 2[27] + 2[30] − 2[31] − 2[50] + 1[53] − 2[69]

− 1[71] − 2[73],

J2 = −88[1] + 88[2] − 88[3] + 88[4] + 44[9] − 44[12]

+ 44[14] − 44[15] − 150[23] + 300[24] + 150[25]

+ 75[29] − 150[31] − 75[32] − 150[47] + 150[49]

− 150[50] + 44[54] − 44[55] + 44[56] + 44[60] − 44[62]
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+ 44[63] + 75[68] − 150[69] + 75[72] − 150[73] + 44[74]

− 44[75] + 44[77] − 44[79] + 44[81] + 44[83],

J3 = −176[2] + 176[3] − 88[6] + 88[7] − 88[11] + 88[12]

+ 88[13] − 88[14] + 90[23] − 180[24] − 90[25] − 45[29]

+ 90[31] + 45[32] + 90[47] − 90[49] + 90[50] + 88[55]

− 88[56] + 44[58] − 44[59] + 88[62] − 88[63] − 45[68]

+ 90[69] − 45[72] + 90[73] + 88[75] + 44[78] − 88[81]

− 44[82],

J4 = −44[16] − 22[17] + 22[18] − 22[19] − 30[23] + 60[24]

+ 30[25] + 15[29] − 30[31] − 15[32] − 44[35] + 22[36]

− 22[38] + 11[39] + 22[40] − 11[41] + 44[42] − 30[47]

+ 30[49] − 30[50] + 22[64] + 11[65] − 22[66] + 15[68]

− 30[69] + 15[72] − 30[73] + 22[84] + 22[85] + 11[86],

together with a fifth identity that is displayed in Table 11.

Proof: (By computer.) We did the following computa-
tions first in characteristic p = 101 and then repeated
them in characteristic 0. We wrote a Maple program to
evaluate the alternating sum over each of the 87 monomi-
als for any seven vectors from the algebra A. We created
a matrix of size 98 × 87 and initialized it to zero. We
generated six random vectors and assigned these to the
variables abcdef . The results of evaluating the monomi-
als (alternating sums) were stored in the bottom 11× 87
submatrix. We then computed the row canonical form of
the matrix. After each repetition of this fill and reduce
process, the rank of the matrix increased by 11, until
the seventh iteration, at which point the rank reached
73. Another 10 iterations did not increase the rank. The
nullspace of the resulting matrix has dimension 14 and
consists of the identities satisfied by A in representation
211111. Of these 14 identities, eight are trivial in the
sense that they consist of a single monomial (alternating
sum) which collapses to zero as a result of anticommu-
tativity. These are monomials 20, 21, 22, 46, 48, 51, 67,
and 87 in Table 10. Of the remaining six identities, two
differ only by another trivial identity: the two-term iden-
tity which says that the sum of monomials (alternating
sums) 52 and 53 is always 0 (this is another consequence
of anticommutativity). This leaves five independent non-
trivial identities (as predicted by Table 9). In character-
istic 0, for each identity we cleared the denominators of
the coefficients and then divided by the gcd of the coeffi-
cients. Four of the five resulting integral identities have
coefficients with no more than three digits; these four are
stated in Theorem 8.4. The fifth identity has coefficients

3950368961407440 [1] − 1913428424733144 [2]
+ 2773300851713040 [3] − 4077469423453800 [4]
+ 456996975114944 [5] + 1018470268337148 [6]
− 588534054847200 [7] − 63550231023180 [8]
− 1746685993146248 [9] − 429936213489948 [10]
+ 1082020499360328 [11] + 728215724809100 [12]
− 652084285870380 [13] − 1158151938299048 [14]
+ 1810236224169428 [15] + 1471606883931976 [16]
+ 735803441965988 [17] − 735803441965988 [18]
+ 735803441965988 [19] + 5861177270946330 [23]
− 9579445919392388 [24] − 5258835958813110 [25]
+ 1149923171952060 [26] + 1071454311250136 [27]
+ 301170656066610 [28] − 2355627049497135 [29]
+ 469112999116916 [30] + 3639799787744134 [31]
+ 2054456393430525 [32] + 130877446257360 [33]
− 75788640567948 [34] + 1471606883931976 [35]
+ 130877446257360 [36] + 27544402844706 [37]
+ 604925995708628 [38] − 660014801398040 [40]
− 27544402844706 [41] − 604925995708628 [42]
+ 39381560807160 [43] + 39381560807160 [44]
+ 19690780403580 [45] + 5021454786062850 [47]
− 5021454786062850 [49] + 5021454786062850 [50]
− 1202761859999040 [56] + 127100462046360 [57]
− 601380929999520 [59] + 63550231023180 [60]
+ 601380929999520 [61] − 63550231023180 [62]
− 1139211628975860 [63] − 604925995708628 [64]
− 302462997854314 [65] + 604925995708628 [66]
− 1748892612436845 [68] + 3950000474812714 [69]
− 602341312133220 [70] + 226107624969512 [71]
− 2050063268503455 [72] + 4552341786945934 [73]
− 1018470268337148 [74] + 55628434846908 [75]
− 859872426979896 [76] − 2221232128336188 [77]
− 481420916745120 [78] + 588534054847200 [79]
− 601380929999520 [80] + 374307778643040 [81]
+ 1082801846744640 [82] − 1791295914846240 [83]
− 660014801398040 [84] − 660014801398040 [85]
− 330007400699020 [86]

TABLE 11. The fifth identity in representation 211111.

with up to 16 digits, which contain large prime factors;
it is displayed in Table 11.

Finally, we consider the representation labeled by par-
tition 22111. Here the variables are aabbcde. There are
altogether 460 monomials over all 11 association types,
accounting for anticommutativity and requiring that cde

occur in alphabetical order from left to right. We re-
gard each monomial as representing the alternating sum
over cde, so each monomial is actually a sum of six terms.
Here is the number of monomials in each association type:

association type 1 2 3 4 5 6 7 8 9 10 11
# of monomials 110 30 55 55 14 31 55 14 27 55 14
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1 7 66 14 100 94 35 87 5 0 94 96 0 7 72
44 29 57 64 37 93 36 86 73 7 21 97 100 8 12
66 7 22 64 6 30 2 78 5 89 7 67 49 29 64
64 30 86 8 7 12 66 7 97 100 8 6 30 22 64
78 2 93 36 86 73 7 21 29 64 67 49 30 64 5
89 7 7 8 86 39 48 14 1 17 61 36 90 98 83
51 68 61 36 1 17 98 90 39 48 14 68 51 83 4
2 95 95 2 4 74 89 79 27 12 22 29 13 72 88

53 48 31 53 17 70 48 70 48 84 84 59 77 66 31
53 17 66 77 59 4 21 22 97 80 79 70 30 23 71
78 45 56 63 53 58 35 67 82 72 67 77 67 100 54
48 19 34 66 72 67 67 82 67 77 63 53 58 1 47
34 19 48 69 51 82 84 36 32 50 36 84 82 33 68
0 17 42 0 84 59 53 24 48 77 79 0 0 84 59

67 48 77 70 66 5 17 17 96 26 53 53 22 70 66
48 77 96 17 17 84 59 67 75 53 53 96 79 31 72
35 35 95 29 35 35 31 6 37 64 65 18 36 83 18
0 0 36 0 65 65 83 36 18 57 21 99 44 80 2

23 11 23 90 78 86 15 15 48 82 67 0 53 19 36
84 67 82 53 67 0 84 36 82 67 50 47 14 51 54
87 48 94 53 7 44 57 51 4 86 7 2 8 95 7
64 30 64 89 49 64 44 94 95 7 2 8 30 64 37
4 86 7 64 49 57 89 7 48 17 36 65 0 36 17

36 48 0 48 53 64 79 37 22 13 88 90 53 48 48
0 24 53 77 99 22 2 79 66 23 78 78 53 33 82

67 45 54 78 68 67 82 56 53 47 23 51 15 50 86
66 50 87 33 51 14 68 7 0 94 0 51 64 37 15
18 80 93 50 94 33 64 23 99 94 44 71 37 87 94
33 93 50 37 99 23 15 18 80 57 37 71 94 14 87
65 3 11 33 36 11 3 87 68 54 47 22 95 79 6
90 53 48 84 0 17 17 59 84 42

TABLE 12. The identity K in representation 22111 (p = 101).

For these computations the matrix will have size
471 × 460. Because the matrix is so large, we did this
representation in characteristic p = 101 only.

Theorem 8.5. Over a field of characteristic p = 101,
the algebra A satisfies a single identity in the variables
aabbcde (partition 22111). It has 443 nonzero coeffi-
cients, which are displayed in Table 12. The entry in row
i and column j is the coefficient of monomial 15(i−1)+j

in the lexicographically ordered list of 460 monomials.

Proof: This proof is very similar to the computational
proofs of the previous two theorems. The matrix has
460 columns, and the rank eventually stabilizes at 457.
Of the three identities in the nullspace, two are trivial:
one states that monomials 282 and 287 sum to 0, and
the other states that monomials 291 and 295 sum to 0.
The coefficients of the third identity K are presented in
Table 12.

9. UNITAL EXTENSIONS

The description in Section 2 of the action of sl(2) on
V (n) in terms of differential operators provides a con-
nection with the notion from classical invariant theory
of transvection of homogeneous polynomials, which was
used in [Dixmier 84] to express nonassociative algebra
structures closely related to ours in terms of partial dif-
ferentiation of polynomials.

Let f ∈ V (m) and g ∈ V (n). Then, we can regard f

and g as homogeneous polynomials in X and Y , where
f has degree m and g has degree n. (In the terminology
of classical invariant theory, f and g are binary forms of
degrees m and n.) Let f (i,j) denote the derivative of f

taken i times with respect to X and j times with respect
to Y :

f (i,j) =
(

∂

∂X

)i (
∂

∂Y

)j

f.



Bremner and Hentzel: Invariant Nonassociative Algebra Structures on Irreducible Representations of Simple Lie Algebras 253

We define the kth transvectant of f and g as follows:

(f, g)k =
(m − k)!

m!
(n − k)!

n!

k∑
i=0

(−1)i

(
k

i

)
f (k−i,i)g(i,k−i).

It is clear that (f, g)k ∈ V (m+n−2k). This definition is
from [Dixmier 84], but we have simplified the notation.
In the special case m = n we have f, g ∈ V (n) and the
transvectant

(f, g)k =
(

(n − k)!
n!

)2 k∑
i=0

(−1)i

(
k

i

)
f (k−i,i)g(i,k−i),

which is nontrivial for 0 ≤ k ≤ n. When n is even and
k = n/2, we get a bilinear sl(2)-invariant mapping from
V (n) × V (n) to V (n):

(f, g)n/2 =

((
n
2

)
!

n!

)2 n/2∑
i=0

(−1)i

(
n/2
i

)
f (n/2−i,i)g(i,n/2−i).

This defines a nonassociative algebra structure on the
vector space V (n), which contains sl(2) in its deriva-
tion algebra; it is commutative when n ≡ 0 (mod 4)
and anticommutative when n ≡ 2 (mod 4). Since V (n)
occurs only once as a direct summand of V (n) ⊗ V (n),
this nonassociative algebra structure on V (n) must co-
incide (up to a scalar multiple) with the projection
P : V (n) ⊗ V (n) → V (n).

In [Dixmier 84], the author considers unital nonasso-
ciative algebras that are obtained from these commuta-
tive or anticommutative algebras by forming the direct
sum with a one-dimensional vector space spanned by a
new unit element. Thus, we have ordered pairs (a, f),
where a ∈ F and f ∈ V (n), and a product depending on
arbitrary scalars λ, µ ∈ F, defined by

(a, f)(b, g) = (λ(f, g) + ab, µ(f, g)n/2 + bf + ag ), (9–1)

where (f, g) is the bilinear form V (n) ⊗ V (n) → V (0) of
Section 2. Similarly, our nonassociative algebra structure
on V (n) can be extended to obtain a unital nonassocia-
tive algebra of dimension n + 2 using Dixmier’s formula
(9–1):

(a, f)(b, g) = (λ(f, g) + ab, µ[f, g] + bf + ag ).

Here, a, b ∈ F, f, g ∈ V (n), and [f, g] is the sl(2)-
invariant algebra structure on V (n).

Now assume that n ≡ 2 (mod 4) so that the algebra
structure on V (n) is anticommutative. Except for trivial
choices of λ and µ, the unitally extended algebras will
not be anticommutative, and so we consider identities of

degree 3. For n ≥ 10 we do not expect the unital algebras
to be associative or even alternative.

We write A(λ, µ) for the 12-dimensional unital algebra
obtained from the anticommutative algebra V (10) by the
above formula. From Proposition 2.1 the symmetric bi-
linear form on V (10) is given by

(v10−2i, v10−2j) = δi+j,10(−1)i

(
10
i

)
.

In terms of the rescaled basis introduced at the end of
the proof of Theorem 6.1, namely

v′
p =

13
30

i!vp, i =
1
2
(10 − p),

the symmetric bilinear form becomes

(v10−2i, v10−2j) = δi+j,10(−1)i

(
13
30

)2

10!

= δi+j,10(−1)i681408.

In Dixmier’s formula (9–1) the constant 681408 can be
absorbed into the parameter λ, and so (for our current
purposes at least) we may make the simplifying assump-
tion that the bilinear form is given by

(v10−2i, v10−2j) = δi+j,10(−1)i.

Using this, the bilinear multiplication for the unitally
extended algebra A(λ, µ) is defined on basis elements as
follows:

(1, 0)(1, 0) = (1, 0),

(1, 0)(0, v10−2j) = (0, v10−2j),

(0, v10−2i)(1, 0) = (0, v10−2i),

(0, v10−2i)(0, v10−2j) = (δi+j,10(−1)iλ, µ[v10−2i, v10−2j ]),

where the square brackets refer to the nonassociative
structure of Theorem 5.2.

Definition 9.1. An algebra A (over a field F) is called a
noncommutative Jordan algebra if it satisfies the flexible
identity

(x, y, x) = 0

and the Jordan identity

(x2, y, x) = 0.

Both these identities are written in terms of the associa-
tor (x, y, z) = (xy)z − x(yz). We say that A is quadratic
if every element x ∈ A is the root of some quadratic
polynomial depending on x with coefficients in F.

Theorem 9.2. The nonassociative algebra A(λ, µ) is a
noncommutative Jordan algebra for every λ, µ ∈ F.
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Proof: It is easy to check that A(λ, µ) is flexible and
quadratic, and these together imply the Jordan identity.

10. OTHER SIMPLE LIE ALGEBRAS

10.1 Tensor Products

Let L be a simple (finite-dimensional) Lie algebra over
an algebraically closed field F of characteristic 0. Let
V and W be two irreducible (finite-dimensional) repre-
sentations of L. By Weyl’s Theorem we know that any
finite-dimensional representation of L is completely re-
ducible; that is, it decomposes as the direct sum of irre-
ducible representations. In particular, this holds for the
tensor product V ⊗ W . An important problem in repre-
sentation theory is to find an explicit decomposition of
V ⊗ W into a direct sum of irreducible representations.
In the simplest case L = sl(2), this problem is solved by
the Clebsch-Gordan Theorem.

In the special case V = W , we can ask more specifi-
cally how many times V occurs as a direct summand of
V ⊗ V . If this multiplicity is nonzero, then there exist
nonzero homomorphisms P : V ⊗ V → V that give V a
nonassociative algebra structure, which is L-invariant in
the sense that L is contained in the derivation algebra.
This structure is commutative when V occurs as a sum-
mand of S2(V ) and anticommutative when V occurs as
a summand of Λ2(V ).

Up to isomorphism, the (finite-dimensional) simple Lie
algebras, over an algebraically closed field F of character-
istic 0, are characterized by their Dynkin diagrams. For
the numbering of the vertices of the Dynkin diagrams we
follow [Humphreys 72].

10.2 Exterior Squares

A simple Lie algebra of rank � has � fundamental repre-
sentations, which we will denote by Ωi for 1 ≤ i ≤ �. On
the following pages we list, for each simple Lie algebra
of rank 2 ≤ � ≤ 8 and each fundamental representation,
the multiplicity

dim HomL(Λ2Ωi,Ωi)

of Ωi as a direct summand of its exterior square. This
multiplicity is the number of parameters that occur in
the classification of L-invariant anticommutative alge-
bra structures on Ωi. To perform these calculations we
used the software package LiE, which at the time of
writing was available online at http://young.sp2mi.univ-
poitiers.fr/˜marc/LiE/.

For detailed information about LiE, see the articles
[Cohen et al. 84] and [van Leeuwen 94], which are also
available at the given URL.

10.3 Special Linear

For the special linear type A� none of the fundamental
representations occurs as a summand of its own exterior
square.

10.4 Orthogonal

For the orthogonal type B� we have the following results;
all other multiplicities are zero. (Neither of the funda-
mental representations of B2 occurs in its own exterior
square.) The nonadjoint representations are starred:

dim B3 = 21 dim Ω2 = 21 dim HomL(Λ2Ω2, Ω2) = 1

dim B4 = 36 dim Ω2 = 36 dim HomL(Λ2Ω2, Ω2) = 1

∗dim Ω3 = 84 dim HomL(Λ2Ω3, Ω3) = 1

dim B5 = 55 dim Ω2 = 55 dim HomL(Λ2Ω2, Ω2) = 1

dim B6 = 78 dim Ω2 = 78 dim HomL(Λ2Ω2, Ω2) = 1

dim B7 = 105 dim Ω2 = 105 dim HomL(Λ2Ω2, Ω2) = 1

∗dim Ω5 = 3003 dim HomL(Λ2Ω5, Ω5) = 1

∗dim Ω6 = 5005 dim HomL(Λ2Ω6, Ω6) = 1

dim B8 = 136 dim Ω2 = 136 dim HomL(Λ2Ω2, Ω2) = 1

∗dim Ω6 = 12376 dim HomL(Λ2Ω6, Ω6) = 1

∗dim Ω7 = 19448 dim HomL(Λ2Ω7, Ω7) = 1

10.5 Symplectic

For the symplectic type C� none of the fundamental rep-
resentations occurs as a summand of its own exterior
square.

10.6 Orthogonal

For the orthogonal type D� we have the following results;
all other multiplicities are zero. The nonadjoint represen-
tation is starred:

dim D4 = 28 dim Ω2 = 28 dim HomL(Λ2Ω2, Ω2) = 1

dim D5 = 45 dim Ω2 = 45 dim HomL(Λ2Ω2, Ω2) = 1

dim D6 = 66 dim Ω2 = 66 dim HomL(Λ2Ω2, Ω2) = 1

dim D7 = 91 dim Ω2 = 91 dim HomL(Λ2Ω2, Ω2) = 1

dim D8 = 120 dim Ω2 = 120 dim HomL(Λ2Ω2, Ω2) = 1

∗ dim Ω6 = 8008 dim HomL(Λ2Ω6, Ω6) = 2
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dim E6 = 78 dim Ω2 = 78 dim HomL(Λ2Ω2,Ω2) = 1

∗ dim Ω4 = 2925 dim HomL(Λ2Ω4,Ω4) = 2

dim E7 = 133 dim Ω1 = 133 dim HomL(Λ2Ω1,Ω1) = 1

∗ dim Ω3 = 8645 dim HomL(Λ2Ω3,Ω3) = 2

∗ dim Ω4 = 365750 dim HomL(Λ2Ω4,Ω4) = 1

dim E8 = 248 ∗ dim Ω3 = 6696000 dim HomL(Λ2Ω3,Ω3) = 5

∗ dim Ω4 = 6899079264 dim HomL(Λ2Ω4,Ω4) = 46

∗ dim Ω5 = 146325270 dim HomL(Λ2Ω5,Ω5) = 6

∗ dim Ω6 = 2450240 dim HomL(Λ2Ω6,Ω6) = 1

∗ dim Ω7 = 30380 dim HomL(Λ2Ω7,Ω7) = 2

dim Ω8 = 248 dim HomL(Λ2Ω8,Ω8) = 1

dim F4 = 52 dim Ω1 = 52 dim HomL(Λ2Ω1,Ω1) = 1

∗ dim Ω2 = 1274 dim HomL(Λ2Ω2,Ω2) = 2

∗ dim Ω3 = 273 dim HomL(Λ2Ω3,Ω3) = 2

dim G2 = 14 ∗ dim Ω1 = 7 dim HomL(Λ2Ω1,Ω1) = 1

dim Ω2 = 14 dim HomL(Λ2Ω2,Ω2) = 2

TABLE 13.

10.7 Exceptional

For the exceptional types E, F and G, the results are
shown in Table 13; all other multiplicities are zero. The
nonadjoint representations are starred.

We can summarize the information in these lists in the
following result.

Theorem 10.1. The multiplicities dimHomL(Λ2Ωi,Ωi)
are nonzero only in the orthogonal and exceptional types.
The multiplicity of the adjoint representation is always
exactly 1.

We also observe the following fact which distin-
guishes E8:

Theorem 10.2. The only simple Lie algebra of rank � ≤
8 which has a fundamental representation which occurs
more than twice as a summand in its own exterior square
is E8.

It seems to be a natural conjecture that the restriction
on the rank in this last result is not necessary.

The only well-understood algebra structure in the
above lists (apart from the adjoint representations which
recover the original Lie algebras) is the seven-dimensional

representation of G2, which gives the simple non-Lie Mal-
cev algebra discussed in Section 5.
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