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A polynomial of the form xα − p(x), where the degree of p is
less than the total degree of xα, is said to be least deviation
from zero if it has the smallest uniform norm among all such
polynomials. We study polynomials of least deviation from zero
over the unit ball, the unit sphere, and the standard simplex.
For d = 3, extremal polynomial for (x1x2x3)

k on the ball and
the sphere is found for k = 2 and 4. For d ≥ 3, a family of
polynomials of the form (x1 · · ·xd)2 − p(x) is explicitly given
and proved to be the least deviation from zero for d = 3, 4, 5,
and it is conjectured to be the least deviation for all d.

1. INTRODUCTION

Let Πd
n denote the space of polynomials of degree at most

n in d variables and we write Πn = Π1
n. For d = 1, it

is well known that the 21−n multiple of the Chebyshev
polynomial of the first kind

Tn(x) = cos n(arccos x) = 2n−1xn + q(x), q ∈ Πn−1,

is the monic polynomial of least deviation from zero in
Πn in the space C[−1, 1]; that is,

inf
p∈Πn−1

‖xn − p(x)‖C[−1,1] = 21−n‖Tn‖C[−1,1] = 21−n.

Equivalently, we say that xn−21−nTn is the best approx-
imation to xn in C[−1, 1].

Let Ω be a region in R
d. For f ∈ C(Ω), the best

approximation of f from Πd
n in the uniform norm is the

quantity

En(f ; Ω) = inf
p∈Πd

n−1

‖f − p‖C(Ω), (1–1)

where ‖f‖C(Ω) = maxx∈Ω |f(x)|. We call p∗ an ex-
tremal polynomial for f if En(f ; Ω) = ‖f − p∗‖C(Ω). For
x = (x1, . . . , xd) ∈ R

d and α = (α1, . . . , αd) ∈ N
d
0, we

define the monomial xα = xα1
1 · · ·xαd

d . The degree of
the monomial xα is |α| = α1 + . . . + αd. If p∗(x) is
an extremal polynomial for the monomial xα, we call
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xα − p∗(x) the polynomial of least deviation from zero.
For Ω being a region in R

d, polynomials of least deviation
are known only in the case that Ω is a cube. We are in-
terested in the case of the unit ball Bd = {x : ‖x‖ ≤ 1},
where ‖x‖ is the usual Euclidean norm of x, the unit
sphere Sd−1 = {x : ‖x‖ = 1}, and the standard simplex
T d = {x : x1 ≥ 0, . . . , xd ≥ 0, 1 − x1 − . . . − xd ≥ 0}.

For d = 2, the least deviation of xnym from Π2
n+m−1 in

the space C(Ω) has been studied for B2 and T 2 (see, for
example, [Gearhart 73], [Reimer 77], [Newman and Xu
93], [Bojanov et al. 01]). For d > 2, the only case known
is x1 · · ·xd on Bd and Sd−1, which is a polynomial of least
deviation by itself. This is shown recently in [Andreev
and Yudin 01]:

inf
p∈Πd

d−1

‖x1 · · ·xd − p(x)‖C(Bd) =

inf
p∈Πd

d−1

‖x1 · · ·xd − p(x)‖C(Sd−1)

= ‖x1 · · ·xd‖C(Sd−1) = d−d/2. (1–2)

In other words, the best approximation of x1 · · ·xd from
Πd

d−1 is the zero polynomial. Finding polynomials of least
deviation on these regions appears to be a difficult prob-
lem. Only a handful of explicit nontrivial examples of
extremal polynomials for d ≥ 3 are known in the litera-
ture.

In the present paper, we study the least deviation from
zero for monomials of lower degrees. We found extremal
polynomials for (x1x2x3)2 and (x1x2x3)4 on B3 and S2

and a family of extremal polynomials for x2
1 · · ·x2

d on Bd

and Sd−1, which are derived from the extremal polyno-
mials for x1x2x3 and (x1x2x3)2 on T 3 and x1 · · ·xd on
T d, respectively. We give an explicit construction of this
family of polynomials and conjecture that they are the
least deviation polynomials. The conjecture is proved for
d = 3, 4, 5. The result provides, we believe, the first non-
trivial example of polynomials of least deviation on these
domains. For example, we have

inf
p∈Π3

5

‖x2
1x

2
2x

2
3 − p(x)‖C(B3) =

inf
p∈Π3

5

‖x2
1x

2
2x

2
3 − p(x)‖C(S3) = 72−1

and the minimum is attained by the extremal polynomial
R3(x, y) defined by

R3(x1, x2, x3) = 72x2
1x

2
2x

2
3 − 4(x2

1 + x2
2 + x2

3)

+ 4(x4
1 + x4

2 + x4
3)

2 + 1.

The least deviation, 72−1, is surprisingly small in view of
the value 3−3/2 for x1x2x3.

Our proof is based on a general result for the Cheby-
shev approximation in [Rivlin and Shapiro 61], in which
the best approximation element is characterized in terms
of extremal signature. The most difficult part, however,
is to identify a correct extremal polynomial. There is no
general method for this purpose. We relied heavily on the
computer algebra system Mathematica to test and ver-
ify conjectures. In retrospect, the explicit construction is
natural and rather suggestive. For example, R3(x) agrees
with the Chebyshev polynomial T2(x) on the three edges
of the face of T 3 defined by x1 + x2 + x3 = 1. The result
allows first glimpse of what an extremal polynomial in
more than two variables may look like.

The paper is organized as follows. In the following sec-
tion, we recall the theoretic background needed to prove
our result. The results for d = 3 are discussed in Section
3 and those for d > 3 are in Section 4.

2. EXTREMAL SIGNATURE AND BEST
APPROXIMATION

We recall the characterization of the extremal polyno-
mials in terms of the extremal signature. The study in
[Rivlin and Shapiro 61] is given in the general setting
of approximation from a finite dimensional subspace of
C(Ω) on a compact Hausdorff space Ω. We shall restrict
the statement to our setting.

Let Ω be an infinite compact set in R
d. A signature

σ on the set Ω is a function with finite support, whose
nonzero values are either +1 or −1. A signature σ is
called extremal with respect to Πd

n if there exists a subset
S in the support of σ and positive numbers λv, v ∈ S,
such that

∑
v∈S

λvσ(v)p(v) = 0, for all p in Πd
n.

Let r > 0 be a fixed number. For each p ∈ Πd
n−1, we

denote by Sr(p; f) the set

Sr(p; f) = {x ∈ Ω : |f(x) − p(x)| = r}.

If r = ‖f − p‖C(Ω), Sr(p; f) is the set of extremal points
of f − p and we denote it by S(p; f).

The characterization of the best approximation of f

from Πd
n is given by the following theorem in [Rivlin and

Shapiro 61]:

Theorem 2.1. A polynomial p∗ in Πd
n satisfies ‖f −

p∗‖C(Ω) = En(f ; Ω) if and only if there exists an ex-
tremal signature σ with support in S(p∗; f) such that
σ(v) = sign(f − p∗)(v) for all v ∈ S(p∗; f).
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The sufficient part of the theorem provides a method
to verify if a polynomial p∗ is extremal. One needs, how-
ever, to know the extremal polynomial in advance, as
the extremal signature is supported on the set S(p∗; f)
which depends on p∗. The sufficient part of the theorem
can be extended to the signature support on Sr(p; f), in
which r is not necessarily ‖f − p‖C(Ω). We will use this
slightly extended version, which we state in the following.
A simple proof is included for completeness; see [Rivlin
and Shapiro 61] for more details.

Theorem 2.2. Suppose there exists a polynomial p∗ ∈
Πd

n and an extremal signature σ supported on Sr(p∗; f).
Then En(f ; Ω) ≥ r.

Proof: We can normalize the measure λµ for the extremal
signature so that it is a probability measure; that is,∑

v∈Sr(p∗;f) λv = 1. Let S(r) = Sr(p∗, f) in this proof.
Since

∑
λvp(v) = 0 for any polynomial p ∈ Πd

n, we have

‖f(x) − p(x)‖C(Ω) ≥
∑

v∈S(r)

λv|f(v) − p(v)|

≥
∣∣∣ ∑

v∈S(r)

λvσvf(v) −
∑

v∈S(r)

λvσvp(v)
∣∣∣

=
∣∣∣ ∑

v∈S(r)

λvσvf(v)
∣∣∣

=
∣∣∣ ∑

v∈S(r)

λvσv(f(v) − p∗(v))
∣∣∣

=
∑

v∈S(r)

λv|f(v) − p∗(v)|

= r
∑

v∈S(r)

λv

= r,

where we have used the fact that f(v) − p∗(v) = σvr for
v ∈ S(r).

The extension allows us to apply the result to the sit-
uation where a good candidate for p∗ is identified but the
norm of f −p∗ is hard to determine. This is precisely our
case in Section 4.

Our construction is motivated by the recent study in
[Andreev and Yudin 01], in which it is shown that if f is
invariant under a finite group G (that is, f(xg) = f(x)
for all g ∈ G), then the best approximation En(f ;Sd−1)
is attained at G invariant polynomials. (This result ap-
peared early in [Ganzburg and Pichugov 81], as pointed
out by a referee.) More precisely, we state the result in
[Andreev and Yudin 01] as follows:

Proposition 2.3. Let G be a subgroup of the rotation group
O(d) and let GΠd

n denote the polynomials in Πd
n that are

invariant under G. If f is invariant under G, then

inf
p∈Πd

n−1

‖f(x) − p(x)‖C(Sd−1) =

inf
p∈GΠd

n−1

‖f(x) − p(x)‖C(Sd−1).

Using this fact, the best approximation of several in-
variant functions are given in [Andreev and Yudin 01],
including the case x1 · · ·xd in (1–2) (invariant under the
symmetric group). The proof in [Andreev and Yudin 01]
can be applied to any region Ω and f that is invariant
under a finite group G. In particular, if f is invariant
under a subgroup G of the symmetric group Sd(T d) of
the simplex T d, then an extremal polynomial of f can be
taken as a G-invariant polynomial.

If f is even in each of its variables, then f is invariant
under the sign changes of each variable (invariant under
the group Z

d
2); the extremal polynomial can be taken as

a polynomial even in each of its variables. Furthermore,
instead of Bd or Sd−1, we can work with T d and T d−1

in this case. In fact, the following general proposition
holds:

Proposition 2.4. Let α ∈ N
d
0 and write 2α =

(2α1, . . . , 2αd) and |α| = n. If p∗(x) is an extremal poly-
nomial for En(xα;T d), then p∗(x2

1, . . . , x
2
d) is an extremal

polynomial for En(x2α;Bd); conversely, if q∗ is an ex-
tremal polynomial for En(x2α;Bd) in the form q∗(x) =
p∗(x2

1, . . . , x
2
d), then p∗(x) is an extremal polynomial

for En(xα;T d). Furthermore, let fα(x1, . . . , xd−1) =
xα1

1 · · ·xαd−1
d−1 (1− x1 − . . .− xd−1)αd ; then the above con-

clusion holds for En(fα;T d−1) and En(x2α;Sd−1).

We note that fα(x2
1, . . . , x

2
d−1) = x2α on Sd−1. The

proposition follows easily from the fact that x �→
(x2

1, . . . , x
2
d) is one-to-one from T d to Bd

+ = {x ∈ Bd :
xi ≥ 0}, and the map also induces a one-to-one mapping
from Πd

n to GΠd
2n with G = Z

d
2, that is, the subspace

of polynomials that are even in each of its variables.
For d = 2, the proposition has been used in [Bojanov
et al. 01]. The correspondence between polynomials on
these domains also works for other problems involving
polynomials, such as orthogonal polynomials and cuba-
ture formulae; see, for example, [Xu 98].

3. LEAST DEVIATION FROM ZERO FOR d = 3

We consider best approximation to the monomials
x1x2x3 and (x1x2x3)2 in this section. The main task
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is to identify an extremal polynomial. The results in
the previous section provide some guidance, but there is
no general method for this purpose. Our first example,
R3(x), given below, was found after many attempts. See
the comments after the proof.

Theorem 3.1. Define the polynomial R3(x) by

R3(x) = 72x1x2x3 − 4(x1 + x2 + x3)

+ 4(x1 + x2 + x3)2 − 8(x1x2 + x2x3 + x1x3) + 1.

Then 72−1R3(x) is a polynomial of least deviation from
zero and

E2(x1x2x3;T 3) = E2(x1x2(1 − x1 − x2);T 2)

= 72−1‖R3‖C(T 3)

= 72−1.

Furthermore, 72−1R3(x2
1, x

2
2, x

2
3) is a polynomial of least

deviation from zero and

E5(x2
1x

2
2x

2
3;B

3) = E5(x2
1x

2
2x

2
3;S

2)

= 72−1
∥∥R3(x2

1, x
2
2, x

2
3)

∥∥
C(B3)

= 72−1.

Proof: By Proposition 2.4, we only need to work with
the simplex. It is easy to verify that R3(0, 0, 0) = 1 and
R3(1/2, 1/2, 0) = −1. Solving the equations ∂iR3(x) = 0,
i = 1, 2, 3, shows that R3 has 4 critical points inside T3,
but none of them are maximum or minimum, since the
values of |R3(x)| at these points are less than 1. Thus,
|R3(x)| attains its maximum on the boundary of T 3. It
is easy to verify that the polynomial R3(x) satisfies

R3(x, y, 0) = R3(x, 0, y)

= R3(0, x, y)

= (1 − 2x)2 + (1 − 2y)2 − 1,

which is bounded by 1 in absolute value. Hence, we only
need to show that |R3(x)| is bounded by one on the face
of T 3 defined by x1+x2+x3 = 1; that is, we need to show
that U3(x1, x2) = R3(x1, x2, 1−x1 −x2) is bounded by 1
in absolute value on T 2. Taking derivatives of U3(x1, x2)
and solving for the critical points shows that it has 4 crit-
ical points inside T 2, of which only the point (1/3, 1/3)
is a maximal, U(1/3, 1/3) = 1. Furthermore, it is easy
to verify that

U3(x, 0) = U3(0, x) = U3(x, 1 − x) = T2(x);

that is, it agrees with Chebyshev polynomial of degree
2 on the boundary of the triangle. Hence, |U3(x)| ≤ 1.
Furthermore, the above analysis also shows that

S+ := {x : R3(x) = 1}
= {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1/3, 1/3, 1/3)}

S− := {x : R3(x) = −1}
= {(1/2, 1/2, 0), (1/2, 0, 1/2), (0, 1/2, 1/2)}.

Let σ(v) = 1 on S+ \ {(0, 0, 0)} and σ(v) = −1 on S−.
We show that σ is an extremal signature. Define L1f

and L2f by

L1f =
3
4
f

(
1
3
,
1
3
,
1
3

)
+

1
12

(f(1, 0, 0)+f(0, 1, 0)+f(0, 0, 1))

and

L2f =
1
3

(
f

(
1
2
,
1
2
, 0

)
+ f

(
1
2
, 0,

1
2

)
+ f

(
0,

1
2
,
1
2

))
.

Then Lf := L1f − L2f satisfies Lf = 0, f ∈ Π3
2. Thus,

σ is an extremal signature for x1x2x3 in C(T 3). Further-
more, the support sets S+ and S− of σ are on the face of
T 3, which is identified with T 2. This shows that σ is also
an extremal signature for x1x2(1− x1 − x2) in C(T 2).

Let us mention a connection between cubature formu-
lae and the extremal signature for R3(x). A cubature
formula is a linear combination of function evaluations
that gives an approximation to an integral ([Stroud 71]).
Let dµ be a positive measure on Ω ⊂ R

d. If
∫

Ω

f(x)dµ =
N∑

k=1

λkf(xk), f ∈ Πd
n,

and there is at least one f ∈ Πd
n+1 such that the equality

fails, then the cubature formula is said to be of degree
n. It is called positive if all λk are positive numbers. For
the extremal signature for R3(x), it is easy to verify that
both L1f and L2f are cubature formulae of degree 2 for
dx on the set Σ2 = {x ∈ T 3 : x1 + x2 + x3 = 1}; that is,∫

Σ2
f(x)dx = L1f = L2f, for all f in Π2

2.

Since we identify Σ2 with T 2, one can write L1 and L2 as
linear combinations of function evaluations for functions
of two variables. Thus, the extremal signature is given
by the difference of two positive cubature formulae.

During our search for R3(x), we found U3(x) first. In
retrospect, the formula of U3(x), which can be written as

U3(x1, x2) = 72x1x2(1 − x1 − x2)

− 3 + 4(x2
1 + x2

2 + (1 − x1 − x2)2),
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is quite natural since it agrees with the Chebyshev poly-
nomials of degree 2 on the boundary of T 2. This also sug-
gests the possibility that other monomials may also have
extremal polynomials that agree with Chebyshev polyno-
mials on the boundary of T 3. For example, for (x1x2x3)n,
one may look for a polynomial that agrees with Cheby-
shev polynomials of n-th degree on the boundary of the
simplex. One example of such a polynomial is Tn(R3(x)),
where Tn(t) denotes the Chebyshev polynomial of degree
n. Although this function is not a polynomial of least
deviation, it helps us find a solution for the monomial
(x1x2x3)2.

Theorem 3.2. Define polynomial R5(x) by

R5(x) =272b (x1x2x3)2 − 1 + 2(x1 + x2 + x3)

− 2(x1 + x2 + x3)2

+ 2
[
1 − 4(x1 + x2 + x3) + 4(x2

1 + x2
2 + x2

3)
]2

− 27x1x2x3

[
(32/9 − 2a + b)(x1 + x2 + x3)2

+ 6a(x1x2 + x1x3 + x2x3)
]
.

Then 27−2b−1R5(x) is a polynomial of least deviation
from zero,

E5(x2
1x

2
2x

2
3;T

3) = E5(x2
1x

2
2(1 − x1 − x2)2;T 2)

= 27−2b−1‖R5‖C(T 3)

= 27−2b−1,

where the constant a, b and the reciprocal of the least de-
viation is given by

a = 28.5926243, b = 21.8935834, 272b = 15960.4223.

Furthermore, 72−4b−2R3(x2
1, x

2
2, x

2
3) is a polynomial of

least deviation from zero:

E5(x2
1x

2
2x

2
3;B

3) = E5(x2
1x

2
2x

2
3;S

2)

= 72−4b−2
∥∥R5(x2

1, x
2
2, x

2
3)

∥∥
C(B3)

= 27−4b−2.

Just like the case of R3(x), the proof amounts to show-
ing that |R5(x)| ≤ 1 on T 3 and there exists an extremal
signature. It is not difficult once the formula of R5 is
identified. We first give an account on how R5 is discov-
ered.

Following the construction of R3(x), we look for a
polynomial in the form of

U5(x, y) = 27xy(1 − x − y)
[
27b xy(1 − x − y)

+ 3a(x2 + y2 + (1 − x − y)2) − c
]

+ 2
[−3 + 4(x2 + y2 + (1 − x − y)2)

]2 − 1

that will be a polynomial of least deviation on T 2 with
leading monomial x2y2(1−x−y)2. Note that the Cheby-
shev polynomial of degree 2 is T2(t) = 2t2 − 1 and
T2(2t − 1) = −3 + 4(t2 + (1 − t)2). The form of U5 is
chosen so that on the boundary of T 2 it satisfies

U5(x, 0) = U5(0, x)

= U5(x, 1 − x)

= T2(T2(2x − 1))

= T4(2x − 1).

We then choose c = 2/9+ a+ b so that U5(1/3, 1/3) = 1.
It follows that 1 − U5(x, x) can be factored as

1−U5(x, x) = x(1−2x)(1−3x)2(64−54ax+27bx+162bx2).

We need to choose a and b so that the last factor is pos-
itive for 0 ≤ x ≤ 1/2. One choice is to make this factor
2b(9x + d)2. This leads to a = 16(3 − 4d)/(3d2) and
b = 32/d2. At this point, it becomes apparent that there
need to be more points on which U5(x, y) = −1 inside
T 2. We therefore solve the equations U5(x, x) = −1 and
U ′

5(x, x) = 0. This leads to d = −1.208972894, which
gives the values for a and b in the theorem. It turns
out that this choice does work out and |U5(x, y)| ≤ 1
on T 2. The final step is to identify the formula of
R5(x1, x2, x3) from that of U5(x1, x2) with the require-
ment that R5(x1, x2, 1 − x1 − x2) = U5(x1, x2) and
|R5(x, y)| ≤ 1 on T 3. This step is not trivial since an
additional multiple of (x1 + x2 + x3)k to any term in
R5(x) does not change the value of the polynomial on
the face of T 3 defined by x3 = 1 − x1 − x2. The polyno-
mial U5(x1, x2) is an extremal polynomial on the triangle
T 2 that agrees with the Chebyshev polynomials of degree
4 on the three boundary lines of T 2; its graph is depicted
in Figure 1.

Let us point out that there does not seem to be a
closed form for the values of a and b. In fact, the value
of d in the above paragraph is one of the real roots of the
following polynomial:

− 612220032 − 1365527808 t − 835528041 t2

− 101556504 t3 + 23270976 t4 + 26037504 t5

+ 7670016 t6 + 929280 t7 + 41984 t8.

This polynomial has 4 real roots and 4 complex roots,
and it cannot be factored over the integers.

We now give a formal proof of Theorem 3.2.

Proof: First of all, we need to show that |R5(x)| ≤ 1 for
x ∈ T 3. Solving ∂iR5(x) = 0, i = 1, 2, 3 numerically for
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FIGURE 1. The polynomial U3.

critical points shows that |R5(x)| attains its maximum
on the boundary of T 3. Furthermore,

R5(x, y, 0) = R5(x, 0, y)

= R5(0, x, y)

= −1 + 2(x + y) − 2(x + y)2

+ 2(1 − 4(x + y) + 4(x2 + y2))2,

and the polynomial has no critical point inside T 2. Con-
sequently, the maximum of |R5(x)| is attained on the
face of T 3 defined by x1 + x2 + x3 = 1. In other
words, we only need to show that |U5(x1, x2)| ≤ 1 on T 2.
Again this can be proved by solving ∂iU5(x1, x2) = 0,
i = 1, 2, and the maximum is attained on the bound-
ary. This proves that |R5(x)| ≤ 1 on T 3 and it also
gives the set S+ = {x : |R5(x)| = 1} and the set
S− = {x : |R5(x)| = −1}. Let S3 be the symmetric group
of three elements. For a = (a1, a2, a3) ∈ R

3, we define
aτ := (aτ1 , aτ2 , aτ3), τ ∈ S3 and (a)G := {aτ : τ ∈ S3}.
Then

S+ = {(1/3, 1/3, 1/3), (0, 0, 0), (1, 0, 0)G,

(1/2, 1/2, 0)G, (t1, t1, 1 − 2t1)G}
S− = {((2 −

√
2)/4, (2 +

√
2)/4, 0)G,

(t2, t2, 1 − 2t2)G},

where t1 = 0.4588164122 and t2 = 0.1343303216. We
consider the signature σ defined by σ(v) = 1, v ∈ S+ \
{(0, 0, 0)} and σ(v) = −1, v ∈ S−. To show that σ is an

extremal signature, we define Lf by

Lf =c0f(1/3, 1/3, 1/3) + c1

∑
τ

f((1, 0, 0)τ)

+ c2

∑
τ

f((1/2, 1/2, 0)τ)

+ c3

∑
τ

f((t1, t1, 1 − 2t1)τ)

− c4

∑
τ

f(((2 −
√

2)/4, (2 +
√

2)/4, 0)τ)

− c5

∑
τ

f((t2, t2, 1 − 2t2)τ),

where the sum is taken over all distinct permutations of
the base point and the coefficients are given by

c0 = 0.0997251873, c1 = 0.0097228135,

c2 = 0.0621246411, c3 = 0.0243979796,

c4 = 0.0615774830, c5 = 0.1178707075.

Then Lf = 0 for all f ∈ Π3
4, which shows that σ is an

extremal signature. This completes the proof of Theo-
rem 3.2.

The linear functional Lf given above is evidently a
sum of two linear functionals with positive coefficients.
Unlike the case of R3, however, the two linear functionals
are not cubature formulas of degree 5 with respect to the
Lebesgue measure.

The two cases solved in this section appear to indicate
a surprisingly complicated picture for the best approxi-
mation of monomials in three variables, and the picture is
remarkably different from that of one and two variables.
We make two remarks in this regard.

Remark 3.3. One surprising fact of Theorem 3.2 is that
the least deviation is not given by a reciprocal of an in-
teger. This indicates a major difference between the case
of three variables and that of one and two variables. In
the case of one variable, the polynomial of least devia-
tion from zero is the classical Chebyshev polynomial, for
which the least deviation of xn to Πn−1 in C[−1, 1] is
21−n. In the case of two variables, we know, for example,

En(xkyn−k;B2) = inf
p∈Π2

n−1

‖xkyn−k − p(x)‖C(B2) = 21−n.

For three variables, however, we do not know if the least
deviation of xα to Πd

|α|−1 could be represented by a sim-
ple formula that depends only on the total degree of the
monomial. The result in this section seems to indicate
that such a formula does not exist.
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Remark 3.4. The values of the least deviation in Theo-
rems 3.1 and 3.2 are surprisingly small. Let us examine
the case of the unit ball. We know

En(xk
1xn−k

2 ;B3) = En(xk
1xn−k

3 ;B3)

= En(xk
2xn−k

3 ;B3)

= 21−n.

(3–1)

This follows from the fact that an extremal polynomial
p∗ for xm

1 xn
2 must be even in x3 since xm

1 xn
2 is invariant

under the group Z2 applied on the third variable. Let p∗

be so chosen; then

‖xn−m
1 xm

2 − p∗(x1, x2, x3)‖C(B3)

≥ ‖xn−m
1 xm

2 − p∗(x1, x2,
√

1 − x2
1 − x2

2)‖C(B2)

≥ inf
p∈Π2

n

‖xn−m
1 xm

2 − p(x1, x2)‖C(B2) = 21−n.

Furthermore, the equality holds since an extremal poly-
nomial for xn−m

1 xm
2 on B2 can also serve as an extremal

polynomial on B3. Below is a list of other cases that we
know on the unit ball:

En(x1x2x3;B3) = 3−3/2,

En(x2
1x

2
2x

2
3;B

3) = 2−6 · 3−2,

En(x4
1x

4
2x

4
3;B

3) = 0.5340799374 · 2−12 · 3−12,

where we rewrite the value of the third one, which is
given in Theorem 3.2, for easier comparision. The value
of En(x2

1x
2
2x

2
3;B

3) appears to be strikingly small. For
other degree 6 monomials given in (3–1), the value of
the best approximation is only 2−5. Also note the fast
decrease shown in these three values.

4. LEAST DEVIATION FROM ZERO FOR d > 3

We consider the best approximation to (x1 · · ·xd)2 on Bd

or Sd−1, and the best approximation to x1 · · ·xd on T d

or T d−1 in this section. The extremal polynomial can be
taken as symmetric polynomials by Proposition 2.3. It
is well known that every symmetric polynomial can be
written in terms of elementary symmetric polynomials
([Macdonald 95]).

The elementary symmetric polynomials of degree k in
variables x1, x2, . . . , xN are defined by

ek(x) =
∑

1≤i1<...<ik≤N

xi1xi2 · · ·xik
, 1 ≤ k ≤ N.

In particular, e1(x1, . . . , xN ) = x1 + · · · + xN and
eN (x1, . . . , xN ) = x1 · · ·xN . As it is often the case

with the symmetric functions, we assume that N is suf-
ficiently large and do not write the dependence of ek

on the number of variables. We will use the notation
1k = (1, 1, . . . , 1) ∈ R

k.

Definition 4.1. Using elementary symmetric functions,
define T3(x) by

T3(x) = 72e3(x) − 4e1(x) + 4e2
1(x) − 8e2(x) + 1

and Tk(x) for k > 3 by the recursive formula

Tk(x) = rkek(x) − Tk−1(x),

where the constant rk is determined by rk =
kk[Tk−1(k−11k) + 1].

Note that k−11k = (k−1, . . . , k−1) ∈ R
k; we use the

evaluation of Tk−1, as a function of R
k, at this point in

the definition of rk. Clearly rk is uniquely determined.
For x ∈ R

d, the function Td(x) will serve as extremal
polynomials. In particular, the polynomial T3(x) for x ∈
R

3 is the same as R3(x) in the previous section. For
x ∈ R

4, the explicit formula of T4 is given by

T4(x) = 896x1x2x3x4

− 72(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)

+ 4(x1 + x2 + x3 + x4) − 4(x1 + x2 + x3 + x4)2

+ 8(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4)

− 1.

The value of rd is of particular importance. It can be
computed using the following formula.

Lemma 4.2. For d ≥ 3,

rd = d
d∑

k=4

kd−3

(
d

k

)[
(−1)k(9k2 − 32k + 24) + k2

]
.

In particular, r3 = 72, r4 = 896, r5 = 14400, and r6 =
283392.

We defer the proof to the end of the section and con-
tinue to state our main result of this section.

Theorem 4.3. For d ≥ 3, on the d-dimensional simplex,

Ed−1(x1 · · ·xd;T d) =

Ed−1(x1 · · ·xd−1(1 − x1 − · · · − xd−1);T d−1) ≥ r−1
d ,

and the equality holds for d = 3, 4, 5 with r−1
d Td(x) as a

polynomial of least deviation from zero. Furthermore, on
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Bd and Sd−1,

E2d−1(x2
1 · · ·x2

d;B
d) = E2d−1(x2

1 · · ·x2
d;S

d−1) ≥ r−1
d ,

and the equality holds for d = 3, 4, 5 with r−2
d Td(x2

1, . . . ,

x2
d) as a polynomial of least deviation from zero.

We believe that the equality still holds for d ≥ 6. In
fact, all that is missing is to prove that |Td(x)| ≤ 1 for
x ∈ T d. We state it as a conjecture.

Conjecture 4.4. For d ≥ 6, the inequality ‖Td(x)‖C(T d) ≤
1 holds. In particular, the equality in the above two the-
orems holds for d ≥ 6.

Let us point out that there does not appear to exist
a closed formula for rd. Below is a list of the first few
values of rd and their prime factorization:

r3 = 72 = 23 · 32,

r4 = 896 = 27 · 7,

r5 = 14400 = 26 · 32 · 52,

r6 = 283392 = 28 · 33 · 41,

r7 = 6598144 = 29 · 72 · 263,

r8 = 177373184 = 215 · 5413,

r9 = 5406289920 = 212 · 5 · 34 · 3259,

r10 = 184223744000 = 214 · 53 · 23 · 3911,

r11 = 6939874934784 = 214 · 33 · 112 · 137 · 409.

A closed formula will have to catch the pattern of the
prime numbers presented in these formulae, which seems
unlikely. We also note that the values of rd appear to
indicate that the best approximation to monomials be-
comes increasingly more complicated as d increases. See
also Remark 3.1.

The proof of Theorem 4.3 is split into several propo-
sitions. As before, we only need to prove the case of
polynomials on the simplex. We start with the point set
at which Td(x) = ±1.

We will work with sets of points that are invariant
under the symmetric group Sd. For a ∈ R

d, we use the
notation (a)G to denote the set of points that consist of
all distinct permutations of x; that is,

(a1, . . . , ad)G = {(aτ1 , . . . , aτd
) : τ = (τ1, . . . , τd) ∈ Sd};

we sometimes write aτ = (aτ1 , . . . , aτd
) for τ ∈ Sd.

Proposition 4.5. Let S+(T d) and S−(T d) be the subsets
of T d on which Td(x) = 1 and Td(x) = −1, respectively.
For odd d,

S+ =
{(1

d
, . . . ,

1
d

)
G

,
( 1

d − 2
, . . . ,

1
d − 2

, 0, 0
)

G
,

. . . ,
(1

3
,
1
3
,
1
3
, 0, . . . , 0

)
G

, (1, 0, . . . , 0)G

}

is a subset of S+(T d) and

S− =
{( 1

d − 1
, . . . ,

1
d − 1

, 0
)

G
,

( 1
d − 3

, . . . ,
1

d − 3
, 0, 0, 0

)
G

, · · · ,
(1

2
,
1
2
, 0, . . . , 0

)
G

}

is a subset of S−(T d). For even d,

S+ =
{(1

d
, . . . ,

1
d

)
G

,

( 1
d − 2

, . . . ,
1

d − 2
, 0, 0

)
G

, · · · ,
(1

2
,
1
2
, 0, . . . , 0

)
G

}

is a subset of S+(T d) and

S− =
{( 1

d − 1
, . . . ,

1
d − 1

, 0
)

G
,

( 1
d − 3

, . . . ,
1

d − 3
, 0, 0, 0

)
G

, . . . , (1, 0, . . . , 0)G

}

is a subset of S−(T d). Furthermore, all these points are
on the face of T d defined by the equation x1+. . .+xd = 1.

Proof: In the definition of Td, the value of rd is chosen so
that Td( 1

d+1 , . . . , 1
d+1 ) = 1. All other points in the given

set contain at least one zero component. This allows
us to use induction. For T3(x), it is easy to verify that
T3(x) = 1 if x = (1, 0, 0)G and x = (1/3, 1/3, 1/3), and
T3(x) = −1 if x = (1/2, 1/2, 0)G. The induction is based
on the formula

Td(x1, . . . , xd−1, 0) = −Td−1(x1, . . . , xd−1)

and similar formulae obtained by a permutation of
(x1, . . . , xd−1), which follow from the definition of Td and
the fact that ed(x1, . . . , xd−1, 0) = 0.

Proposition 4.6. The signature σ, defined by σ(v) = 1 if
v ∈ S+ and σ(v) = −1 if v ∈ S−, is an extremal signature
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of Td. More precisely, define

Lg = dd−1g

(
1
d
, . . . ,

1
d

)

− (d − 1)d−1
∑

τ

g

((
1

d − 1
, . . . ,

1
d − 1

, 0
)

τ

)

+ . . . + (−1)d−22d−1
∑

τ

g

((
1
2
,
1
2
, 0, · · · , 0

)
τ

)

+ (−1)d−1
∑

τ

g((1, 0, . . . , 0)τ);

then Lp = 0 for all p ∈ Πd
d−1.

Proof: Since the points in S+ and S− are symmetric
with respect to Sd, a moment’s reflection shows that we
only need to verify Lg = 0 for symmetric polynomials.
One basis of symmetric polynomials in Πd

d−1 consists of
mk(x) = xk

1 + · · · + xk
d for k = 0, 1, . . . , d − 1. We

show Lmk = 0. Let aj = (1/j, . . . , 1/j, 0, . . . , 0) ∈ T d,
which contains exactly j nonzero entries. Then the sum∑

τ∈Sd
g(ajτ) contains

(
d
j

)
terms and mk(aj) = j(1/j)k.

Consequently, for k ≥ 1,

Lmk = dd−k −
(

d

1

)
(d − 1)d−k

+
(

d

2

)
(d − 2)d−k + . . . + (−1)d−1

(
d

d − 1

)
.

Furthermore, it is easy to see that L1 gives the same
formula as Lm1 (recall that points in S+ and S− satisfy
x1 + . . . + xd = 1). Hence, we need to show, changing
n − k to k,

d∑
j=0

(−1)j

(
d

j

)
jk = 0, k = 1, 2, . . . , d − 1. (4–1)

This is well known and can be proved by induction on d.

By Theorem 3.2, the above proposition has proved
that

inf
p∈Πd

d−1

‖x1 . . . xd − p(x)‖C(T d) ≥ r−1
d .

In order to show that the equality holds, we only need to
prove that |Td(x)| ≤ 1 for x ∈ T d. However, we are able
to establish this inequality only for d = 3, 4, 5.

Proposition 4.7. For d = 3, 4, 5,

|Td(x)| ≤ ‖Td‖C(T d−1) = 1, x ∈ T d.

Proof: There does not seem to be an easy way of prov-
ing this. We use the standard method of finding criti-
cal points upon solving (∂iTd(x)/∂xi) = 0, 1 ≤ i ≤ d.
The case d = 3 is in the previous section and the equa-
tions can be solved algebraically. The cases d = 4 and
d = 5 are solved numerically. The details are omitted.
Once the critical points are found, we can then verify
that the inequality |Td(x)| < 1 holds on these points,
which shows that the maximum of |Td(x)| is attained
on the boundary of T d. Since Td(x1, . . . , xd−1, 0) =
−Td−1(x1, . . . , xd−1), by induction, we only need to prove
that |Td(x1, . . . , xd−1, 1 − x1 − . . . − xd−1)| ≤ 1 for
x ∈ T d−1. Again, this is done by computing the criti-
cal points and evaluating.

Putting the above propositions together, we have com-
pleted the proof of Theorem 4.3.

We still need to prove Lemma 4.2. First, we note that
the definition of Td implies

Td(x) =
d∑

k=4

(−1)d−krkek(x) + (−1)d−3T3(x).

Proof of Lemma 4.2: Setting x = ad+1 = (d + 1)−11d+1

and using the fact that ek(ad+1) =
(
d+1

k

)
(d + 1)−k leads

to the relation

(d + 1)−(d+1)rd+1 =
d∑

k=4

(−1)d−k

(
d + 1

k

)
(d + 1)−krk

+ (−1)d−3T3(ad+1) + 1.

Replacing d+1 by d, we can write the above equation as

d∑
k=4

(−1)d−k

(
d

k

)
d−krk = (−1)dT3(d−11d) + 1 := Ad.

We want to reverse this relation so that rd =
∑d

j=4 bjAj .
A standard argument shows that, with bj given below,
this will follow from the combinatoric relation

Jk,d :=
d∑

j=k

bj(−1)j−k

(
j

k

)
j−k = δk,d, bj = d

(
d

j

)
jd−1,

where δk,d = 1 if k = d and 0 otherwise. For k = d, Jd,d =
1 holds trivially. For k < d, a change of summation index
gives

Jk,d =
(

d

k

) d∑
j=k

(−1)j−k

(
d − k

j − k

)
jd−1−k

=
(

d

k

) d−k∑
j=0

(−1)j

(
d − k

j

)
(k + j)d−1−k.
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By (4–1), the last formula shows that Jk,d = 0. Finally,
the definition of T3 shows that

T3(d−11d) = 72
(

d

3

)
d−3 − 8

(
d

2

)
d−2 + 1

= d−2(9d2 − 32d + 24),

which gives the explicit value of Ad. Putting these rela-
tions together completes the proof.

We conjecture that |Td(x)| ≤ 1 for all d and the points
in S+ and S− are the only ones on the face of T d defined
by x1 + . . . + xd = 1 on which |Td(x)| = 1. The following
fact is helpful for the case d = 5 and could be useful for
d > 5. Let

Dd(x) = det




1 1 . . . 1
x1 x2 . . . xd

...
...

. . .
...

xd−3
1 xd−3

2 . . . xd−3
d

∂1Td(x) ∂1T2(x) . . . ∂dTd(x)




,

where ∂i = ∂/∂xi. Then Dd(x) can be factored com-
pletely. We have, for example,

D5(x) = −64
∏

1≤i<j≤4

(xi − xj)(−14 + 225x5).

At the critical points of T5, D5(x) = 0 and D5(xτ) = 0
for τ ∈ S5. One could use it to confirm the conjecture
for d > 5. We did not try hard to push for larger d, since
the method does not seem to lead to a proof for all d.

Our conjecture implies that Td(x) attains its max-
imum on the boundary of T d. Part of this can be
proved as follows: Let ∆ denote the Laplacian operator
∆ = ∂2

1 +. . .+∂2
d . Then it is easy to verify that ∆Td(x) =

(−1)d−18. In particular, this shows that (−1)d−1Td(x) is
a subharmonic function. Hence, by the maximum prin-
ciple ([John 82]) for the subharmonic functions, we can
conclude that (−1)d−1Td(x) ≤ maxx∈∂T d(−1)d−1Td(x).
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