The Hypermetric Cone on Seven Vertices

Michel Deza and Mathieu Dutour

CONTENTS

1. Introduction
2. Hypermetrics and Delaunay Polytopes
3. Computing the Extreme Rays of $H Y P_{7}$
4. Adjacency Properties of the Skeleton of $\boldsymbol{H Y} \boldsymbol{P}_{7}$ and of Its Dual
5. Final Remarks

References

The hypermetric cone $H Y P_{n}$ is the set of vectors $\left(d_{i j}\right)_{1 \leq i<j \leq n}$ satisfying the inequalities

$$
\sum_{1 \leq i<j \leq n} b_{i} b_{j} d_{i j} \leq 0 \text { with } b_{i} \in \mathbb{Z} \text { and } \sum_{i=1}^{n} b_{i}=1
$$

A Delaunay polytope of a lattice is called extreme if the only affine bijective transformations of it into a Delaunay polytope, are the homotheties; there is correspondence between such Delaunay polytopes and extreme rays of $H Y P_{n}$. We show that unique Delaunay polytopes of root lattices A_{1} and E_{6} are the only extreme Delaunay polytopes of dimension at most 6 . We describe also the skeletons and adjacency properties of $H Y P_{7}$ and of its dual.

The computational technique used is polyhedral, i.e., enumeration of extreme rays, using the program cdd [Fukuda 03], and groups to reduce the size of the computations.

1. INTRODUCTION

A vector $\left(d_{i j}\right)_{1 \leq i<j \leq n} \in \mathbb{R}^{N}$ with $N=\binom{n}{2}$ is called an n-hypermetric, if it satisfies the following hypermetric inequalities:

$$
\begin{equation*}
\sum_{1 \leq i<j \leq n} b_{i} b_{j} d_{i j} \leq 0 \text { with } b=\left(b_{i}\right) \in \mathbb{Z}^{n} \text { and } \sum_{i=1}^{n} b_{i}=1 \tag{1-1}
\end{equation*}
$$

The set of vectors satisfying (1-1) is called the hypermetric cone and denoted by $H Y P_{n}$.

We have the inclusions $C U T_{n} \subset H Y P_{n} \subset M E T_{n}$, where $M E T_{n}$ denotes the cone of all semimetrics on n points and $C U T_{n}$ (see Section 3 below and Chapter 4 of [Deza and Laurent 97]) is the cone of all semimetrics on n points, which are isometrically embeddable into some space l_{1}^{m}. In fact, the triangle inequality $d_{i j} \leq d_{i k}+d_{j k}$ is the hypermetric inequality with vector b, such that $b_{i}=b_{j}=1, b_{k}=-1$ and $b_{l}=0$, otherwise.

For $n \leq 4$, all three cones coincide and $H Y P_{n}=$ $C U T_{n}$ for $n \leq 6$; so, the cone $H Y P_{7}$ is the first proper hypermetric cone. ${ }^{1}$ See [Deza and Laurent 97] for a detailed study of those cones and their numerous applications in combinatorial optimization, analysis, and other areas of mathematics. In particular, the hypermetric cone had direct applications in the geometry of quadratic forms; see Section 2.

In fact, $H Y P_{n}$ is a polyhedral cone (see [Deza et al. 93]). Lovasz (see [Deza and Laurent 97, pages 201205]) gave another proof of it and the bound $\max \left|b_{i}\right| \leq$ $n!2^{n}\binom{2 n}{n}^{-1}$ for any vector $b=\left(b_{i}\right)$, defining a facet of $H Y P_{n}$.

The group of all permutations on n vertices induces a partition of the set of k-dimensional faces of $H Y P_{n}$ into orbits. Baranovskii, using his method presented in [Baranovskii 70], found in [Baranovskii 99] the list of all facets of $H Y P_{7}$: 3,773 facets, divided into 14 orbits. On the other hand, in [Deza et al. 92] 29 orbits of extreme rays of $H Y P_{7}$ were found by classifying the basic simplexes of the Schläfli polytope of the root lattice E_{6}.

In Section 3, we show that the 37,170 extreme rays contained in those 29 orbits are, in fact, the complete list. It also implies that the Schläfli polytope (unique Delaunay polytope of E_{6}) and the segment α_{1} (the Delaunay polytope of A_{1}) are only extreme Delaunay polytopes of dimension at most six. In Section 4, we give adjacency properties of the skeletons of $H Y P_{7}$ and of its dual.

The computations were done using the programs cdd with rational exact arithmetic (see [Fukuda 03]) and nauty (see [McKay 03]). Certain errors can arise from any of those programs and Dutour's programs (see [Dutour 03b]).

2. HYPERMETRICS AND DELAUNAY POLYTOPES

For more details on the material of this section, see Chapters 13-16 of [Deza and Laurent 97]. Let $L \subset \mathbb{R}^{k}$ be a k-dimensional lattice and let $S=S(c, r)$ be a sphere in \mathbb{R}^{k} with center c and radius r. Then, S is said to be an empty sphere in L if the following two conditions hold:
$\|v-c\| \geq r$ for all $v \in L ;$
the set $S \cap L$ has affine rank $k+1$.

[^0]Then, the center c of S is called a hole in [Conway and Sloane 99]. The polytope P, which is defined as the convex hull of the set $P=S \cap L$, is called a Delaunay polytope, or (in the original terms of Voronoi, who introduced them in [Voronoi 08]), an L-polytope.

On every set $A=\left\{v_{1}, \ldots, v_{m}\right\}$ of vertices of a Delaunay polytope P, one can define a distance function $d_{i j}=\left\|v_{i}-v_{j}\right\|^{2}$. The function d turns out to be a metric and, moreover, a hypermetric. It follows from the following formula (see [Assouad 82] and [Deza and Laurent 97, page 195]):

$$
\sum_{1 \leq i, j \leq m} b_{i} b_{j} d_{i j}=2\left(r^{2}-\left\|\sum_{i=1}^{m} b_{i} v_{i}-c\right\|^{2}\right) \leq 0
$$

On the other hand, Assouad has shown in [Assouad 82] that a distance in every finite hypermetric space is the square of Euclidean distance on a generating set of vertices of a Delaunay polytope of a lattice.

For example, in dimension two, there are two combinatorial types of Delaunay polytopes: triangle and rectangle. Since $H Y P_{3}=M E T_{3}$, we see that a triangle is a Delaunay polytope if and only if it has no obtuse angles.

A Delaunay polytope P is said to be extreme if the only (up to orthogonal transformations and translations) affine bijective transformations T of \mathbb{R}^{k}, for which $T(P)$ is again a Delaunay polytope, are the homotheties. In [Deza et al. 92], the authors show that the hypermetric on any generating subset of an extreme Delaunay polytope (see above) lies on an extreme ray of $H Y P_{n}$ and that a hypermetric, lying on an extreme ray of $H Y P_{n}$, is the square of Euclidean distance on a generating subset of extreme Delaunay polytope of dimension at most $n-1$.

In [Deza and Laurent 97, page 228], there is a more complete dictionary translating the properties of Delaunay polytopes into those of the corresponding hypermetrics.

Recall that E_{6}, E_{7}, and E_{8} are root lattices defined by

$$
\begin{aligned}
& E_{6}=\left\{x \in E_{8}: x_{1}+x_{2}=x_{3}+\cdots+x_{8}=0\right\} \\
& E_{7}=\left\{x \in E_{8}: x_{1}+x_{2}+x_{3}+\cdots+x_{8}=0\right\} \\
& E_{8}=\left\{x \in \mathbb{R}^{8}: x \in \mathbb{Z}^{8} \cup\left(\frac{1}{2}+\mathbb{Z}\right)^{8} \text { and } \sum_{i} x_{i} \in 2 \mathbb{Z}\right\}
\end{aligned}
$$

The skeleton of the unique Delaunay polytope of E_{6} is a 27 -vertex strongly regular graph, called the Schläfli graph. In fact, the 29 orbits of extreme rays of $H Y P_{7}$, found in [Deza et al. 92], were three orbits of extreme rays of CUT_{7} (cuts) and 26 orbits corresponding to all
sets of seven vertices of the Schläfli graph, which are affine bases (over \mathbb{Z}) of E_{6}. The root lattice E_{7} has two Delaunay polytopes: a 7 -simplex and a 56 -vertex polytope, called the Gosset polytope, which is extreme. In [Dutour 03a], all 374 orbits of affine bases for the Gosset polytope were found.

3. COMPUTING THE EXTREME RAYS OF $\mathbf{H Y} \boldsymbol{P}_{\mathbf{7}}$

We recall some terminology. Let C be a polyhedral cone in \mathbb{R}^{n}. Given $v \in \mathbb{R}^{n}$, the inequality $\sum_{i=1}^{n} v_{i} x_{i} \geq 0$ is said to be valid for C, if it holds for all $x \in C$. Then, the set $\left\{x \in C \mid \sum_{i=1}^{n} v_{i} x_{i}=0\right\}$ is called the face of C, induced by the valid inequality $\sum_{i=1}^{n} v_{i} x_{i} \geq 0$. A face of dimension $\operatorname{dim}(C)-1$ is called a facet of C; a face of dimension 1 is called an extreme ray of C.

An extreme ray e is said to be incident to a facet F if $e \subset F$. A facet F is said to be incident to an extreme ray e if $e \subset F$. Two extreme rays of C are said to be adjacent if they span a two-dimensional face of C. Two facets of C are said to be adjacent if their intersection has dimension $\operatorname{dim}(C)-2$.

All 14 orbits $F_{m}, 1 \leq m \leq 14$, of facets of $H Y P_{7}$, found by Baranovskii, are represented below by the corresponding vector b^{m} :

$$
\begin{aligned}
b^{1} & =(1,1,-1,0,0,0,0) \\
b^{2} & =(1,1,1,-1,-1,0,0) \\
b^{3} & =(1,1,1,1,-1,-2,0) \\
b^{4} & =(2,1,1,-1,-1,-1,0) \\
b^{5} & =(1,1,1,1,-1,-1,-1) \\
b^{6} & =(2,2,1,-1,-1,-1,-1) \\
b^{7} & =(1,1,1,1,1,-2,-2) \\
b^{8} & =(2,1,1,1,-1,-1,-2) \\
b^{9} & =(3,1,1,-1,-1,-1,-1) \\
b^{10} & =(1,1,1,1,1,-1,-3) \\
b^{11} & =(2,2,1,1,-1,-1,-3) \\
b^{12} & =(3,1,1,1,-1,-2,-2) \\
b^{13} & =(3,2,1,-1,-1,-1,-2) \\
b^{14} & =(2,1,1,1,1,-2,-3)
\end{aligned}
$$

It gives a total of 3,773 inequalities. The first ten orbits are the orbits of hypermetric facets of the cut cone CUT_{7}; the first four of them come as a 0 -extension of facets of the cone $H Y P_{6}$ (see [Deza and Laurent 97, Chapter 7]). The orbits $F_{11}-F_{14}$ consist of some 19-dimensional simplex faces of $\mathrm{CUT} T_{7}$, becoming simplex facets in $H Y P_{7}$.

The proof (see [Baranovskii 70] and [Ryshkov and Baranovskii 98]) was in terms of volume of simplexes; this result implies that for any facet of $H Y P_{7}$ the bound $\left|b_{i}\right| \leq 3$ holds (compare with the bound in the Introduction).

Because of the large number of facets of $H Y P_{7}$, it is difficult to find extreme rays just by application of existing programs (see [Fukuda 03]). So, let us consider in more detail the cut cone CUT_{7}.

Denote by $C U T_{n}$ (and call it the cut cone)), the cone generated by all cuts δ_{S} defined by

$$
\left(\delta_{S}\right)_{i j}=1 \text { if }|S \cap\{i, j\}|=1 \text { and }\left(\delta_{S}\right)_{i j}=0, \text { otherwise },
$$

where S is any subset of $\{1, \ldots, n\}$. The cone $C U T_{n}$ has dimension $\binom{n}{2}$ and $2^{n-1}-1$ nonzero cuts as generators of extreme rays. There are $\left\lfloor\frac{n}{2}\right\rfloor$ orbits of those cuts, corresponding to all nonzero values of $\min (|S|, n-|S|)$. The skeleton of $C U T_{n}$ is the complete graph $K_{2^{n-1}-1}$. See Part V of [Deza and Laurent 97] for a survey on facets of $C U T_{n}$.

The 38,780 facets of the cut cone $C U T_{7}$ are partitioned in 36 orbits (see [Grishukhin 90], [De Simone et al. 94], and Chapter 30 of [Deza and Laurent 97] for details). Of these 36 orbits, 10 are orbits of hypermetric facets. We computed the diameter of the skeleton of the dual CUT_{7} : It is exactly 3 (apropos, the diameter of the skeleton of $M E T_{n}, n \geq 4$, is 2 ; see [Deza and Deza 94]). So, we have $C U T_{n} \subset H Y P_{n}$ and the cones $C U T_{7}, H Y P_{7}$ have 10 common (hypermetric) facets: $F_{1}-F_{10}$.

Each of the 26 orbits of nonhypermetric facets of CUT_{7} consists of simplex cones, i.e., those facets are incident exactly to 20 cuts or, in other words, adjacent to 20 other facets. It turns out that the 26 orbits of nonhypermetric facets of CUT_{7} correspond exactly to 26 orbits of noncut extreme rays of $H Y P_{7}$.

In fact, if d is a point of an extreme ray of $H Y P_{7}$, which is not a cut, then it violates one of the nonhypermetric facet inequalities of CUT_{7}. More precisely, our computation consists of the following steps:

1. If d belongs to a noncut extreme ray of $H Y P_{7}$, then $d \notin C U T_{7}$.
2. So, there is at least one nonhypermetric facet F of $C U T_{7}$ with $F(d)<0$.
3. Select a facet F_{i} for each nonhypermetric orbit O_{i} with $1 \leq i \leq 26$ and define 26 subcones $C_{i}, 1 \leq i \leq$ 26, by $C_{i}=\left\{d \in H Y P_{7}: F_{i}(d) \leq 0\right\}$.
4. The initial set of 3,773 hypermetric inequalities is nonredundant, but adding the inequality $F_{i}(d) \leq 0$

	12	13	14	15	16	17	23	24	25	26	27	34	35	36	37	45	46	47	56	57	67
O_{1}	-1	-1	0	0	1	1	-1	0	1	0	1	1	0	1	0	1	-1	,	1	-1	0
$R_{4} ; \bar{G}_{24}$	2	2	2	2	1	1	2	1	1	2	1	1	1	1	2	1	2	1	1	2	2
$O_{2} ; \delta_{\{3,5,6\}}$	-1	1	0	0	-1	1	1	0	-1	0	1	-1	0	1	0	-1	1	1	1	1	0
$R_{5} ; \bar{G}_{4}$	2	1	2	1	2	1	1	1	2	1	1	2	1	1	1	2	1	1	1	1	1
$O_{3} ; \delta_{\{3,5,4\}}$	-1	1	0	0	1	1	1	0	-1	0	1	1	0	-1	0	1	1	-1	-1	1	0
$R_{6} ; \bar{G}_{23}$	2	1	1	1	1	1	1	2	2	2	1	1	1	2	1	1	1	2	2	1	2
O_{4}	-1	-1	-1	1	1	1	-1	0	0	1	1	0	1	0	1	1	1	1	0	-1	-1
$R_{7} ; \bar{G}_{25}$	2	2	2	1	1	2	2	1	2	1	1	1	1	2	1	1	1	1	1	2	2
$O_{5} ; \delta_{\underline{\{3,7\}}}$	-1	1	-1	1	1	-1	1	0	0	1	-1	0	-1	0	1	1	1	-1	0	1	1
$R_{8} ; \bar{G}_{5}$	2	1	2	1	1	1	1	1	2	1	2	2	2	1	1	1	1	2	1	1	1
$O_{6} ; \delta_{\{2,3,7\}}$	1	1	-1	1	1	-1	-1	0	0	-1	1	0	-1	0	1	1	1	-1	0	1	1
$R_{9} ; \bar{G}_{26}$	1	1	2	1	1	1	2	2	1	2	1	2	2	1	1	1	1	2	1	1	1
$O_{7} ; \delta_{\{1,5,6\}}$	1	1	1	1	1	-1	-1	0	0	-1	1	0	-1	0	1	-1	-1	1	0	1	1
$R_{10} ; \bar{G}_{1}$	1	1	1	1	1	1	2	1	1	2	1	1	2	1	1	2	2	1	1	1	1
O_{8}	-1	-1	-1	0	1	2	-1	0	1	1	2	0	1	1	2	-1	1	1	0	-1	-2
$R_{11} ; \bar{G}_{22}$	2	2	2	2	2	1	1	1	1	1	1	1	1	1	1	2	1	1	1	2	2
$O_{9} ; \delta_{\{1,4,6\}}$	1	1	-1	0	1	-2	-1	0	1	-1	2	0	1	-1	2	1	1	-1	0	-1	2
$R_{12} ; \bar{G}_{21}$	1	1	2	1	2	2	1	2	1	2	1	2	1	2	1	1	1	2	2	2	1
$O_{10} ; \delta_{\{5\}}$	-1	-1	-1	0	1	2	-1	0	-1	1	2	0	-1	1	2	1	1	1	0	1	-2
$R_{13} ; \bar{G}_{20}$	2	2	2	1	2	1	1	1	2	1	1	1	2	1	1	1	1	1	2	1	2
$O_{11} ; \delta_{\{3,5\}}$	-1	1	-1	0	1	2	1	0	-1	1	2	0	1	-1	-2	1	1	1	0	1	-2
$R_{14} ; \bar{G}_{19}$	2	1	2	1	2	1	2	1	2	1	1	2	1	2	2	1	1	1	2	1	2
$O_{12} ; \delta_{\{1,7\}}$	1	1	1	0	-1	2	-1	0	1	1	-2	0	1	1	-2	-1	1	-1	0	1	2
$R_{15} ; \bar{G}_{7}$	1	1	1	1	1	1	1	1	1	1	2	1	1	1	2	2	1	2	1	1	1
$O_{13} ; \delta_{\{7,4,1\}}$	1	1	-1	0	-1	2	-1	0	1	1	-2	0	1	1	-2	1	-1	1	0	1	2
$R_{16} ; \bar{G}_{8}$	1	1	2	1	1	1	1	2	1	1	2	2	1	1	2	1	2	1	1	1	1
$O_{14} ; \delta_{\{6,4\}}$	-1	-1	1	0	-1	2	-1	0	1	-1	2	0	1	-1	2	1	1	-1	0	-1	2
$R_{17} ; \bar{G}_{18}$	2	2	1	2	1	1	1	2	1	2	1	2	1	2	1	1	1	2	2	2	1
O_{15}	-1	-1	-2	1	1	2	0	-1	1	1	2	-2	1	1	1	2	2	3	-1	-2	-2
$R_{18} ; \bar{G}_{14}$	2	2	2	2	2	1	1	1	1	1	1	2	1	1	2	1	1	1	1	2	2
$O_{16} ; \delta_{\{5,3\}}$	-1	1	-2	-1	1	2	0	-1	-1	1	2	2	1	-1	-1	-2	2	3	1	2	-2
$R_{19} ; \bar{G}_{15}$	2	1	2	1	2	1	2	1	2	1	1	1	1	2	1	2	1	1	2	1	2
$O_{17} ; \delta_{\{5,4\}}$	-1	-1	2	-1	1	2	0	1	-1	1	2	2	-1	1	1	2	-2	-3	1	2	-2
$R_{20} ; \bar{G}_{17}$	2	2	1	1	2	1	1	2	2	1	1	1	2	1	2	1	2	2	2	1	2
$O_{18} ; \delta_{\{7,2,6\}}$	-1	1	2	-1	-1	2	0	1	-1	-1	2	-2	1	1	-1	2	2	-3	-1	2	2
$R_{21} ; \bar{G}_{13}$	2	1	1	1	1	1	2	2	2	2	1	2	1	1	1	1	1	2	1	1	1
$O_{19} ; \delta_{\{7,4,1\}}$	1	1	-2	-1	-1	2	0	1	1	1	-2	2	1	1	-1	-2	-2	3	-1	2	2
$R_{22} ; \bar{G}_{6}$	1	1	2	1	1	1	1	2	1	1	2	1	1	1	1	2	2	1	1	1	1
$O_{20} ; \delta_{\{1,7\}}$	1	1	2	-1	-1	2	0	-1	1	1	-2	-2	1	1	-1	2	2	-3	-1	2	2
$R_{23} ; \bar{G}_{2}$	1	1	1	1	1	1	1	1	1	1	2	2	1	1	1	1	1	2	1	1	1
$O_{21} ; \delta_{\{4,5,6\}}$	-1	-1	2	-1	-1	2	0	1	-1	-1	2	2	-1	-1	1	2	2	-3	-1	2	2
$R_{24} ; \bar{G}_{16}$	2	2	1	1	1	1	1	2	2	2	1	1	2	2	2	1	1	2	1	1	1
O_{22}	-1	-1	-2	1	2	3	-1	-2	1	2	3	-2	1	2	3	2	3	5	-2	-3	-5
$R_{25} ; \bar{G}_{11}$	1	1	2	2	1	1	1	2	2	1	1	2	2	1	1	1	2	1	2	2	2
$O_{23} ; \delta_{\{3,6\}}$	-1	1	-2	1	-2	3	1	-2	1	-2	3	2	-1	2	-3	2	-3	5	2	-3	5
$R_{26} ; \bar{G}_{10}$	1	2	2	2	2	1	2	2	2	2	1	1	1	1	2	1	1	1	1	2	1
$O_{24} ; \delta_{\{7,4\}}$	-1	-1	2	1	2	-3	-1	2	1	2	-3	2	1	2	-3	-2	-3	5	-2	3	5
$R_{27} ; \bar{G}_{9}$	1	1	1	2	1	2	1	1	2	1	2	1	2	1	2	2	1	1	2	1	1
$O_{25} ; \delta_{\{5\}}$	-1	-1	-2	-1	2	3	-1	-2	-1	2	3	-2	-1	2	3	-2	3	5	2	3	-5
$R_{28} ; \bar{G}_{12}$	1	1	2	1	1	1	1	2	1	1	1	2	1	1	1	2	2	1	1	1	2
$O_{26} ; \delta_{\{5,4\}}$	-1	-1	2	-1	2	3	-1	2	-1	2	3	2	-1	2	3	2	-3	-5	2	3	-5
$R_{29} ; \bar{G}_{3}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	1	1	2

TABLE 1. Nonhypermetric facets of $C U T_{7}$ and noncut extreme rays of $H Y P_{7}$.
yields a highly redundant set of inequalities. We remove the redundant inequalities using an invariant group (of permutations preserving the cone C_{i}) and linear programming (see polyhedral FAQ^{2} in [Fukuda 03]).
5. For each of 26 subcones, we found, by computation, a set of 21 nonredundant facets, i.e., each of the

[^1]subcones C_{i} is a simplex. One gets 21 extreme rays for each of these 26 subcones.
6. We remove the 20 extreme rays, which correspond to cuts, from each list and get, for each of these subcones, exactly one noncut extreme ray.

So, one gets an upper bound 26 for the number of noncut orbits of extreme rays. But [Deza et al. 92] gave, in fact, a lower bound of 26 for this number. So, one gets:

	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}	F_{6}	F_{7}	F_{8}	F_{9}	F_{10}	F_{11}	F_{12}	F_{13}	F_{14}	Inc.	$\left\|R_{i}\right\|$
R_{1}	90	150	150	180	20	15	15	180	30	30	180	180	120	120	1460	7
R_{2}	80	130	80	220	20	60	0	180	40	10	240	100	320	10	1490	21
R_{3}	75	126	96	180	18	36	12	156	30	12	162	132	240	84	1359	35
R_{4}	13	7	0	0	0	0	0	0	0	0	0	0	0	0	20	2520
R_{5}	14	6	0	0	0	0	0	0	0	0	0	0	0	0	20	2520
R_{6}	13	7	0	0	0	0	0	0	0	0	0	0	0	0	20	2520
R_{7}	14	5	0	0	1	0	0	0	0	0	0	0	0	0	20	2520
R_{8}	15	4	0	0	1	0	0	0	0	0	0	0	0	0	20	1260
R_{9}	14	5	0	0	1	0	0	0	0	0	0	0	0	0	20	1260
R_{10}	15	5	0	0	0	0	0	0	0	0	0	0	0	0	20	252
R_{11}	11	7	1	1	0	0	0	0	0	0	0	0	0	0	20	2520
R_{12}	11	7	0	2	0	0	0	0	0	0	0	0	0	0	20	2520
R_{13}	12	6	2	0	0	0	0	0	0	0	0	0	0	0	20	2520
R_{14}	11	7	0	2	0	0	0	0	0	0	0	0	0	0	20	2520
R_{15}	12	7	0	1	0	0	0	0	0	0	0	0	0	0	20	1260
R_{16}	12	6	0	2	0	0	0	0	0	0	0	0	0	0	20	1260
R_{17}	12	6	2	0	0	0	0	0	0	0	0	0	0	0	20	630
R_{18}	10	6	0	2	1	0	0	1	0	0	0	0	0	0	20	2520
R_{19}	11	5	1	1	1	0	0	1	0	0	0	0	0	0	20	2520
R_{20}	10	6	0	2	1	1	0	0	0	0	0	0	0	0	20	1260
R_{21}	10	6	1	1	1	1	0	0	0	0	0	0	0	0	20	840
R_{22}	11	6	1	0	1	0	0	1	0	0	0	0	0	0	20	840
R_{23}	11	6	0	2	1	0	0	0	0	0	0	0	0	0	20	420
R_{24}	11	6	2	0	0	0	1	0	0	0	0	0	0	0	20	420
R_{25}	7	6	1	3	0	1	0	1	0	0	0	0	1	0	20	840
R_{26}	8	5	2	2	0	0	0	2	0	0	1	0	0	0	20	630
R_{27}	8	6	0	3	0	0	0	2	0	0	0	1	0	0	20	420
R_{28}	8	6	4	0	0	0	1	0	0	0	0	0	0	1	20	210
R_{29}	8	6	0	4	0	2	0	0	0	0	0	0	0	0	20	105
$\left\|F_{i}\right\|$	105	210	210	420	35	105	21	420	105	42	630	420	840	210	3773	37170

TABLE 2. Orbitwise incidence between extreme rays and facets of $H Y P_{7}$.

Proposition 3.1. The hypermetric cone $H Y P_{7}$ has 37,170 extreme rays, divided into 3 orbits, corresponding to nonzero cuts, and 26 orbits, corresponding to hypermetrics on 7-vertex affine bases of the Schläfli polytope.

Note that the above computation proves again that the list of 14 orbits of hypermetric facets is complete. If not, there would exist an hypermetric facet, which is violated by one extreme ray belonging to the 29 found orbits, but this would imply that the Schläfli polytope (or the 1 -simplex) has interior lattice points, which is false.

The actual implementation, using the program cdd [Fukuda 03], of our computational techniques is available from [Dutour 03b].

Corollary 3.2. The only extreme Delaunay polytopes of dimension at most six are the 1 -simplex and the Schläfli polytope.

This method computes precisely the difference between $\mathrm{HY} \mathrm{P}_{7}$ and CUT_{7}.

The observed correspondence between the 37,107 nonhypermetric facets of CUT_{7} and the 37,107 noncut extreme rays of $H Y P_{7}$ is presented in Table 1.

The first line of Table 1 indicates the $i j$ position of the vector, defining facets, and generators of extreme rays.

Using double lines, we separate 26 pairs (facet and corresponding extreme ray) into five switching classes. Two facets F and F^{\prime} of CUT_{7} are called switching equivalent if there exist

$$
\begin{aligned}
& S \subset\{1, \ldots, 7\}, \text { such that } F\left(\delta_{S}\right)=0, \\
& F_{i j}=-F_{i j}^{\prime} \text { for }|S \cap\{i, j\}|=1 \text { and } \\
& F_{i j}=F_{i j}^{\prime}, \text { otherwise } .
\end{aligned}
$$

See Section 9 of [Deza et al. 92] for details on the switching in this case. The first column of Table 1 gives, for each of five switching classes, the cut δ_{S}, such that the corresponding facet is obtained by the switching by δ_{S} from the first facet of the class. The nonhypermetric orbits of facets of CUT_{7} are indicated by O_{i} and the corresponding noncut orbits of extreme rays of $H Y P_{7}$ are indicated by R_{i+3}. For any extreme ray, we indicate also the corresponding graph \bar{G}_{j} (in terms of [Deza et al. 92] and [Deza and Laurent 97, Chapter 16]).

The five switching classes of Table 1 correspond, respectively, to the following five classes of nonhypermetric facets of CUT_{7}, in terms of [De Simone et al. 94] and [Deza and Laurent 97, Chapter 30]: parachute facets $P 1-P 3$; cycle facets $C 1, C 4-C 6$; Grishukhin facets $G 1-G 7$; cycle facets $C 2, C 7-C 12$; and cycle facets C3, C13-C16.
[Deza and Grishukhin 93] considered extreme rays of $H Y P_{n}$, which correspond, moreover, to the path-metric
of a graph; the Delaunay polytope, generated by such hypermetrics, belongs to an integer lattice and, moreover, to a root lattice. They found, among the 26 noncut orbits of extreme rays of $H Y P_{7}$, exactly 12 that are graphic: $R_{4}, R_{5}, R_{8}, R_{9}, R_{10}, R_{15}, R_{16}, R_{17}, R_{22}, R_{23}, R_{24}, R_{29}$. For example, R_{10}, R_{23}, and R_{29} correspond to graphic hypermetrics on $K_{7}-C_{5}, K_{7}-P_{4}$, and $K_{7}-P_{3}$, respectively. Three of the above 12 extreme hypermetrics correspond to polytopal graphs: the 3-polytopal graphs, corresponding to R_{4}, and 4-polytopal graphs $K_{7}-C_{5}$, $K_{7}-P_{4}$. Note also that the footnote and figures in [Deza and Laurent 97, pages 242-243] mistakenly attribute the graph \bar{G}_{18} to the class $q=11$ (fourth class, in our terms); in fact, it belongs to the class $q=12$ (our third class) as it was originally correctly given in [Deza et al. 92].

4. ADJACENCY PROPERTIES OF THE SKELETON OF HY_{7} AND OF ITS DUAL

We start with Table 2, giving incidence between extreme rays and facets, i.e., the number of facets from the orbit F_{j}, containing a fixed extreme ray from the orbit R_{i}, is given at postion $i j$.

It turns out, curiously, that each of 19-dimensional hypermetric faces $F_{11}-F_{14}$ of the 21-dimensional cone CUT_{7} (which became simplex facets in $H Y P_{7}$) is the intersection of a triangle facet and a cycle facet, corresponding, respectively, to orbits O_{23}, O_{24}, O_{22}, and O_{25} of Table 1.

The skeleton graph of $H Y P_{7}$ is the graph whose nodes are the extreme rays of $H Y P_{7}$ and whose edges are the pairs of adjacent extreme rays. The ridge graph of $H Y P_{7}$ is the graph whose node set is the set of facets of $H Y P_{7}$ and with an edge between two facets if they are adjacent on $H Y P_{7}$. Those graphs can be computed easily, since we know all extreme rays and facets of $H Y P_{7}$. Then the nauty program (see [McKay 03]) finds the symmetry group $\operatorname{Sym}(7)$ for the ridge graph of $H Y P_{7}$. The only symmetries preserving all facets of a cone, which is not a simplex, are the homotheties $v \mapsto \lambda v$ with $\lambda>0$. So, the symmetry group of $H Y P_{7}$ is $\operatorname{Sym}(7) \times \mathbb{R}_{+}^{*}$.

Proposition 4.1. One has the following properties of adjacency of extreme rays of $H Y P_{7}$:
(i) The restriction of the skeleton of $H Y P_{7}$ on the union of cut orbits $R_{1} \cup R_{2} \cup R_{3}$ is the complete graph.
(ii) Every noncut extreme ray of $H Y P_{7}$ has adjacency 20 (namely, it is adjacent to 20 cuts lying on corresponding nonhypermetric facets of $C U T_{7}$); see the

	R_{1}	R_{2}	R_{3}	Adj.	$\left\|R_{i}\right\|$
R_{1}	6	21	35	15662	7
R_{2}	7	20	35	12532	21
R_{3}	7	21	34	10664	35
R_{4}	3	6	11	20	2520
R_{5}	4	7	9	20	2520
R_{6}	3	7	10	20	2520
R_{7}	3	7	10	20	2520
R_{8}	4	7	9	20	1260
R_{9}	3	8	9	20	1260
R_{10}	5	5	10	20	252
R_{11}	3	6	11	20	2520
R_{12}	2	8	10	20	2520
R_{13}	4	5	11	20	2520
R_{14}	2	8	10	20	2520
R_{15}	4	7	9	20	1260
R_{16}	3	9	8	20	1260
R_{17}	4	4	12	20	630
R_{18}	2	8	10	20	2520
R_{19}	3	7	10	20	2520
R_{20}	1	10	9	20	1260
R_{21}	2	9	9	20	840
R_{22}	4	6	10	20	840
R_{23}	4	7	9	20	420
R_{24}	5	1	14	20	420
R_{25}	1	9	10	20	840
R_{26}	2	8	10	20	630
R_{27}	3	6	11	20	420
R_{28}	5	1	14	20	210
R_{29}	2	12	6	20	105
$\left\|R_{j}\right\|$	7	21	35		37170

TABLE 3. Orbitwise adjacency between extreme rays of $H Y P_{7}$.
distribution of those 20 cuts amongst the cut orbits in Table 3.
(iii) Any two simplex extreme rays are nonadjacent; any simplex extreme ray (i.e., noncut ray) has a local graph (i.e., the restriction of the skeleton on the set of its neighbors) K_{20}.
(iv) The diameter of the skeleton graph of $H Y P_{7}$ is 3.

One also has the following properties of adjacency of facets of $H Y P_{7}$:
(${ }^{\prime}$) See Table 4, where the number of facets (from orbit $\left.F_{j}\right)$, which are adjacent to the fixed facet of orbit F_{i}, are given by the ijth position.
(ii') Any two simplex facets are nonadjacent; any simplex facet (i.e., one amongst $F_{9}-F_{14}$) has a local graph K_{20}.
(iii') The diameter of the ridge graph of $H Y P_{7}$ is 3 .

5. FINAL REMARKS

In order to find extreme rays of $H Y P_{8}$, the same methods will probably work with more computational difficulties; in dimension $n \geq 9$, polyhedral methods may fail.

The list of 374 orbits of noncut extreme rays of $H Y P_{8}$ (containing 7,126,560 extreme rays), found in [Dutour 03a], will be compared with the list of at least 2,169 orbits

	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}	F_{6}	F_{7}	F_{8}	F_{9}	F_{10}	F_{11}	F_{12}	F_{13}	F_{14}	Adj.	$\left\|F_{i}\right\|$
F_{1}	86	168	110	216	35	56	13	196	14	6	54	36	64	18	1072	105
F_{2}	84	116	62	114	3	5	1	18	0	0	15	12	24	6	460	210
F_{3}	55	62	9	20	1	1	1	4	1	1	6	0	4	4	169	210
F_{4}	54	57	10	25	2	2	0	6	1	0	3	3	6	0	169	420
F_{5}	105	18	6	24	0	3	0	12	0	0	0	0	0	0	168	35
F_{6}	56	10	2	8	1	2	0	8	0	0	0	0	8	0	95	105
F_{7}	65	10	10	0	0	0	0	0	0	0	0	0	0	10	95	21
F_{8}	49	9	2	6	1	2	0	5	0	0	3	2	2	0	81	420
F_{9}	14	0	2	4	0	0	0	0	0	0	0	0	0	0	20	105
F_{10}	15	0	5	0	0	0	0	0	0	0	0	0	0	0	20	42
F_{11}	9	5	2	2	0	0	0	2	0	0	0	0	0	0	20	630
F_{12}	9	6	0	3	0	0	0	2	0	0	0	0	0	0	20	420
F_{13}	8	6	1	3	0	1	0	1	0	0	0	0	0	0	20	840
F_{14}	9	6	4	0	0	0	1	0	0	0	0	0	0	0	20	210
$\left\|F_{j}\right\|$	105	210	210	420	35	105	21	420	105	42	630	420	840	210		3773

TABLE 4. Orbitwise adjacency between facets of $H Y P_{7}$.
of facets of CUT_{8}, found in [Christof and Reinelt 98]. Exactly 55 of the above 374 orbits correspond to pathmetrics of a graph. It was shown in [Deza and Grishukhin 93] that any graph whose path-metric lies on an extreme ray of a $H Y P_{n}$ is a subgraph of the skeleton of Gosset or Schläfli polytopes.

It turns out (it can also be found in [Deza and Laurent 97, Chapter 28]) that exactly 26 of those orbits consist of hypermetric inequalities; 10 are 0 -extensions of the hypermetric facets of $C U T_{7}$ and 16 come from the following vectors b (see (1-1)):

$$
\begin{aligned}
& (2,1,1,1,-1,-1,-1,-1) \\
& (3,1,1,1,-1,-1,-1,-2) \\
& (2,2,1,1,-1,-1,-1,-2), \\
& (4,1,1,-1,-1,-1,-1,-1), \\
& (3,2,2,-1,-1,-1,-1,-2),
\end{aligned}
$$

representing, respectively, switching classes of sizes 2,4 , $3,2,5$.

There is a one-to-one correspondence between nonhypermetric facets of CUT_{7} and noncut extreme rays of $H Y P_{7}$; namely, every such facet is violated by exactly one such ray. There is also a one-to-one correspondence between 10 noncut extreme rays (in fact, 10 permutations of the path-metric $K_{2 \times 3}$) for $M E T_{5}$ and 10 nontriangle facets (in fact, 10 permutations of $b=(1,1,1,-1,-1)$) for $C U T_{5}$. There is no such connection between $M E T_{n}$ and $C U T_{n}$ for $n>5$ in general, but we hope, that similar correspondence exist for CUT_{8} and $H Y P_{8}$.

Another direction for further study is to find all faces of $H Y P_{7}$. While the extreme rays of $H Y P_{n}$ yield the extreme Delaunay polytopes of dimension $n-1$, the study of all faces of $H Y P_{n}$ will provide the list of all (combinatorial types of) Delaunay polytopes of dimension less than or equal to $n-1$. See [Fedorov 85] for the threedimensional case, [Ryshkov and Erdahl 87] and [Ryshkov
and Erdahl 88] for the four-dimensional case, [Kononenko 99] and [Kononenko 02] for the five-dimensional case, and [Dutour 02] for the six-dimensional case.

REFERENCES

[Assouad 82] P. Assouad. "Sous-espaces de L^{1} et inégalités hypermétriques." Compte Rendus de l'Académie des Sciences de Paris 294(A) (1982), 439-442.
[Baranovskii 70] E. P. Baranovskii. "Simplexes of L Subdivisions of Euclidean Spaces." Mathematical Notes 10 (1971), 827-834.
[Baranovskii 99] E. P. Baranovskii. "The Conditions for a Simplex of a 6-Dimensional Lattice to Be an L-Simplex" (in Russian). Mathematica 2 (1999), 18-24.
[Baranovksii and Kononenko 00] E. P. Baranovskii and P. G. Kononenko. "A Method of Deducing L-Polyhedra for n Lattices." Mathematical Notes 68:6 (2000), 704-712.
[Christof and Reinelt 98] T. Christof and G. Reinelt. "Decomposition and Parallelization Techniques for Enumerating the Facets of Combinatorial Polytopes." Internat. J. Comput. Geom. Appl. 11:4 (2001), 423-437.
[Conway and Sloane 99] J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices and Groups, Third edition. Grundlehren der mathematischen Wissenschaften, 290. Berlin-Heidelberg: Springer-Verlag, 1999.
[De Simone et al. 94] C. De Simone, M. Deza, and M. Laurent. "Collapsing and Lifting for the Cut Cone." Discrete Mathematics 127 (1994), 105-140.
[Deza and Deza 94] A. Deza and M. Deza. "The Ridge Graph of the Metric Polytope and Some Relatives." In Polytopes: Abstract, Convex and Computational, edited by T. Bisztriczky, P. McMullen, R. Schneider, and A. Ivic Weiss, pp. 359-372. New York: Kluwer, 1994.
[Deza and Grishukhin 93] M. Deza and V. P. Grishukhin. "Hypermetric Graphs." The Quarterly Journal of Mathematics Oxford 44:2 (1993), 399-433.
[Deza and Laurent 97] M. Deza and M. Laurent. Geometry of Cuts and Metrics. Berlin: Springer-Verlag, 1997.
[Deza et al. 92] M. Deza, V. P. Grishukhin, and M. Laurent. "Extreme Hypermetrics and L-polytopes." In Sets, Graphs and Numbers, Budapest (Hungary), 1991, edited by G. Halász et al., pp. 157-209, Colloquia Mathematica Societatis János Bolyai 60. Amsterdam: North-Holland, 1992.
[Deza et al. 93] M. Deza, V. P. Grishukhin, and M. Laurent. "The Hypermetric Cone is Polyhedral." Combinatorica 13 (1993), 397-411.
[Dutour 02] M. Dutour. "The Six Dimensional Delaunay Polytopes." To appear in Proc. Int. Conference on Arithmetics and Combinatorics, 2002.
[Dutour 03a] M. Dutour. "The Gosset Polytope and the Hypermetric Cone on Eight Vertices." In preparation.
[Dutour 03b] M. Dutour. "The Extreme Rays of the Hypermetric Cone $H Y P_{7}$." Available from World Wide Web (http://www.liga.ens.fr/~dutour/HYP7), 2003.
[Fedorov 85] E. S. Fedorov. Elements of the Theory of Figures (in Russian). St. Petersburg: Imp. Akad. Nauk, 1885. (New edition: Akad. Nauk USSR, 1953).
[Fukuda 03] K. Fukuda. "The cdd Program." Available from World Wide Web (http://www.ifor.math .ethz.ch/~fukuda/cdd_home/cdd.html), 2003.
[Grishukhin 90] V. P. Grishukhin. "All Facets of the Cut Cone C_{n} for $n=7$ Are Known." European Journal of Combinatorics 11 (1990), 115-117.
[Grishushin 92] V. P. Grishukhin. "Computing Extreme Rays of the Metric Cone for Seven Points." European Journal of Combinatorics 13 (1992), 153-165.
[Kononenko 99] P. G. Kononenko. "Affine Types of LPolytopes of Five-Dimensional Lattices" (in Russian). Theses (kandidatskaia dissertacia), Ivanovo, 1999.
[Kononenko 02] P. G. Kononenko. "Affine Types of L Polyhedra for Five-Dimensional Lattices" (in Russian). Mat. Zametki 71:3 (2002), 412-430.
[Ryshkov and Baranovskii 98] S. S. Ryshkov and E. P. Baranovskii. "The Repartitioning Complexes in n Dimensional Lattices (with Full Description for $n \leq 6$)." In Voronoi's Impact on Modern Science, Book 2, pp. 115-124. Kyiv: Institute of Mathematics, 1998.
[Ryshkov and Erdahl 87] S. S. Ryshkov and R. M. Erdahl. "The Empty Sphere. I." Canad. J. Math. 39:4 (1987), 794-824.
[Ryshkov and Erdahl 88] S. S. Ryshkov and R. M. Erdahl. "The Empty Sphere. II." Canad. J. Math. 40:5 (1988), 1058-1073.
[McKay 03] B. McKay, "The nauty Program." Available from World Wide Web (http://cs.anu.edu. au/people/bdm/nauty/), 2003.
[Voronoi 08] G. F. Voronoi. "Nouvelles applications des paramètres continus à la théorie des formes quadratiques - Deuxième mémoire." J. für die reine und angewandte Mathematik 134 (1908), 198-287; 136 (1909), 67-178.

Michel Deza, Laboratoire interdisciplinaire de géométrie appliquée (LIGA), 45 rue d'Ulm, CNRS/ENS, 75005 Paris, France and Institute of Statistical Mathematics, Tokyo (Michel.Deza@ens.fr)

Mathieu Dutour, Laboratoire interdisciplinaire de géométrie appliquée (LIGA), 45 rue d’Ulm, CNRS/ENS, 75005 Paris, France and Hebrew University, Jerusalem (Mathieu.Dutour@ens.fr)

Received October 22, 2001; accepted in revised form September 2, 2003.

[^0]: ${ }^{1}$ Apropos, $M E T_{7}$ has 46 orbits of extreme rays and not 41 as, by a technical mistake, was given in [Grishushin 92] and [Deza and Laurent 97].

[^1]: ${ }^{2}$ http://www.ifor.math.ethz.ch/ fukuda/polyfaq/polyfaq.html.

