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The hypermetric cone HY Pn is the set of vectors (dij)1≤i<j≤n

satisfying the inequalities

∑

1≤i<j≤n

bibjdij ≤ 0 with bi ∈ Z and

n∑

i=1

bi = 1 .

A Delaunay polytope of a lattice is called extreme if the only
affine bijective transformations of it into a Delaunay polytope,
are the homotheties; there is correspondence between such De-
launay polytopes and extreme rays of HY Pn. We show that
unique Delaunay polytopes of root lattices A1 and E6 are the
only extreme Delaunay polytopes of dimension at most 6. We
describe also the skeletons and adjacency properties of HY P7

and of its dual.
The computational technique used is polyhedral, i.e., enu-

meration of extreme rays, using the program cdd [Fukuda 03],
and groups to reduce the size of the computations.

1. INTRODUCTION

A vector (dij)1≤i<j≤n ∈ R
N with N =

(
n
2

)
is called an

n-hypermetric, if it satisfies the following hypermetric in-
equalities:

∑

1≤i<j≤n

bibjdij ≤ 0 with b = (bi) ∈ Z
n and

n∑

i=1

bi = 1 .

(1–1)
The set of vectors satisfying (1–1) is called the hyperme-
tric cone and denoted by HY Pn.

We have the inclusions CUTn ⊂ HY Pn ⊂ METn,
where METn denotes the cone of all semimetrics on n

points and CUTn (see Section 3 below and Chapter 4 of
[Deza and Laurent 97]) is the cone of all semimetrics on
n points, which are isometrically embeddable into some
space lm1 . In fact, the triangle inequality dij ≤ dik + djk

is the hypermetric inequality with vector b, such that
bi = bj = 1, bk = −1 and bl = 0, otherwise.
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For n ≤ 4, all three cones coincide and HY Pn =
CUTn for n ≤ 6; so, the cone HY P7 is the first proper hy-
permetric cone.1 See [Deza and Laurent 97] for a detailed
study of those cones and their numerous applications in
combinatorial optimization, analysis, and other areas of
mathematics. In particular, the hypermetric cone had
direct applications in the geometry of quadratic forms;
see Section 2.

In fact, HY Pn is a polyhedral cone (see [Deza et al.
93]). Lovasz (see [Deza and Laurent 97, pages 201–
205]) gave another proof of it and the bound max|bi| ≤
n!2n

(
2n
n

)−1
for any vector b = (bi), defining a facet of

HY Pn.
The group of all permutations on n vertices induces a

partition of the set of k-dimensional faces of HY Pn into
orbits. Baranovskii, using his method presented in [Bara-
novskii 70], found in [Baranovskii 99] the list of all facets
of HY P7: 3,773 facets, divided into 14 orbits. On the
other hand, in [Deza et al. 92] 29 orbits of extreme rays
of HY P7 were found by classifying the basic simplexes of
the Schläfli polytope of the root lattice E6.

In Section 3, we show that the 37,170 extreme rays
contained in those 29 orbits are, in fact, the complete list.
It also implies that the Schläfli polytope (unique Delau-
nay polytope of E6) and the segment α1 (the Delaunay
polytope of A1) are only extreme Delaunay polytopes of
dimension at most six. In Section 4, we give adjacency
properties of the skeletons of HY P7 and of its dual.

The computations were done using the programs cdd

with rational exact arithmetic (see [Fukuda 03]) and
nauty (see [McKay 03]). Certain errors can arise from
any of those programs and Dutour’s programs (see [Du-
tour 03b]).

2. HYPERMETRICS AND DELAUNAY POLYTOPES

For more details on the material of this section, see Chap-
ters 13–16 of [Deza and Laurent 97]. Let L ⊂ R

k be a
k-dimensional lattice and let S = S(c, r) be a sphere in
R

k with center c and radius r. Then, S is said to be an
empty sphere in L if the following two conditions hold:

‖v − c‖ ≥ r for all v ∈ L;

the set S ∩ L has affine rank k + 1.

1Apropos, MET7 has 46 orbits of extreme rays and not 41 as,
by a technical mistake, was given in [Grishushin 92] and [Deza and
Laurent 97].

Then, the center c of S is called a hole in [Conway and
Sloane 99]. The polytope P , which is defined as the con-
vex hull of the set P = S ∩ L, is called a Delaunay poly-
tope, or (in the original terms of Voronoi, who introduced
them in [Voronoi 08]), an L-polytope.

On every set A = {v1, . . . , vm} of vertices of a De-
launay polytope P , one can define a distance function
dij = ‖vi −vj‖2. The function d turns out to be a metric
and, moreover, a hypermetric. It follows from the follow-
ing formula (see [Assouad 82] and [Deza and Laurent 97,
page 195]):

∑

1≤i,j≤m

bibjdij = 2(r2 − ‖
m∑

i=1

bivi − c‖2) ≤ 0 .

On the other hand, Assouad has shown in [Assouad 82]
that a distance in every finite hypermetric space is the
square of Euclidean distance on a generating set of ver-
tices of a Delaunay polytope of a lattice.

For example, in dimension two, there are two combi-
natorial types of Delaunay polytopes: triangle and rect-
angle. Since HY P3 = MET3, we see that a triangle is a
Delaunay polytope if and only if it has no obtuse angles.

A Delaunay polytope P is said to be extreme if the
only (up to orthogonal transformations and translations)
affine bijective transformations T of R

k, for which T (P )
is again a Delaunay polytope, are the homotheties. In
[Deza et al. 92], the authors show that the hypermetric
on any generating subset of an extreme Delaunay poly-
tope (see above) lies on an extreme ray of HY Pn and
that a hypermetric, lying on an extreme ray of HY Pn,
is the square of Euclidean distance on a generating sub-
set of extreme Delaunay polytope of dimension at most
n − 1.

In [Deza and Laurent 97, page 228], there is a more
complete dictionary translating the properties of Delau-
nay polytopes into those of the corresponding hyperme-
trics.

Recall that E6, E7, and E8 are root lattices defined by

E6 = {x ∈ E8 : x1 + x2 = x3 + · · · + x8 = 0},
E7 = {x ∈ E8 : x1 + x2 + x3 + · · · + x8 = 0},
E8 = {x ∈ R

8 : x ∈ Z
8 ∪ (

1
2

+ Z)8 and
∑

i

xi ∈ 2Z} .

The skeleton of the unique Delaunay polytope of E6 is
a 27-vertex strongly regular graph, called the Schläfli
graph. In fact, the 29 orbits of extreme rays of HY P7,
found in [Deza et al. 92], were three orbits of extreme
rays of CUT7 (cuts) and 26 orbits corresponding to all
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sets of seven vertices of the Schläfli graph, which are
affine bases (over Z) of E6. The root lattice E7 has two
Delaunay polytopes: a 7-simplex and a 56-vertex poly-
tope, called the Gosset polytope, which is extreme. In
[Dutour 03a], all 374 orbits of affine bases for the Gosset
polytope were found.

3. COMPUTING THE EXTREME RAYS OF HY P7

We recall some terminology. Let C be a polyhedral cone
in R

n. Given v ∈ R
n, the inequality

∑n
i=1 vixi ≥ 0 is

said to be valid for C, if it holds for all x ∈ C. Then,
the set {x ∈ C|∑n

i=1 vixi = 0} is called the face of C,
induced by the valid inequality

∑n
i=1 vixi ≥ 0. A face of

dimension dim(C) − 1 is called a facet of C; a face of
dimension 1 is called an extreme ray of C.

An extreme ray e is said to be incident to a facet F

if e ⊂ F . A facet F is said to be incident to an extreme
ray e if e ⊂ F . Two extreme rays of C are said to be
adjacent if they span a two-dimensional face of C. Two
facets of C are said to be adjacent if their intersection
has dimension dim(C) − 2.

All 14 orbits Fm, 1 ≤ m ≤ 14, of facets of HY P7,
found by Baranovskii, are represented below by the cor-
responding vector bm:

b1 = (1, 1,−1, 0, 0, 0, 0);

b2 = (1, 1, 1,−1,−1, 0, 0);

b3 = (1, 1, 1, 1,−1,−2, 0);

b4 = (2, 1, 1,−1,−1,−1, 0);

b5 = (1, 1, 1, 1,−1,−1,−1);

b6 = (2, 2, 1,−1,−1,−1,−1);

b7 = (1, 1, 1, 1, 1,−2,−2);

b8 = (2, 1, 1, 1,−1,−1,−2);

b9 = (3, 1, 1,−1,−1,−1,−1);

b10 = (1, 1, 1, 1, 1,−1,−3);

b11 = (2, 2, 1, 1,−1,−1,−3);

b12 = (3, 1, 1, 1,−1,−2,−2);

b13 = (3, 2, 1,−1,−1,−1,−2);

b14 = (2, 1, 1, 1, 1,−2,−3).

It gives a total of 3,773 inequalities. The first ten orbits
are the orbits of hypermetric facets of the cut cone CUT7;
the first four of them come as a 0-extension of facets of the
cone HY P6 (see [Deza and Laurent 97, Chapter 7]). The
orbits F11–F14 consist of some 19-dimensional simplex
faces of CUT7, becoming simplex facets in HY P7.

The proof (see [Baranovskii 70] and [Ryshkov and
Baranovskii 98]) was in terms of volume of simplexes;
this result implies that for any facet of HY P7 the bound
|bi| ≤ 3 holds (compare with the bound in the Introduc-
tion).

Because of the large number of facets of HY P7, it
is difficult to find extreme rays just by application of
existing programs (see [Fukuda 03]). So, let us consider
in more detail the cut cone CUT7.

Denote by CUTn (and call it the cut cone)), the cone
generated by all cuts δS defined by

(δS)ij = 1 if |S ∩ {i, j}| = 1 and (δS)ij = 0, otherwise,

where S is any subset of {1, . . . , n}. The cone CUTn has
dimension

(
n
2

)
and 2n−1−1 nonzero cuts as generators of

extreme rays. There are �n
2 	 orbits of those cuts, corre-

sponding to all nonzero values of min(|S|, n − |S|). The
skeleton of CUTn is the complete graph K2n−1−1. See
Part V of [Deza and Laurent 97] for a survey on facets
of CUTn.

The 38,780 facets of the cut cone CUT7 are partitioned
in 36 orbits (see [Grishukhin 90], [De Simone et al. 94],
and Chapter 30 of [Deza and Laurent 97] for details). Of
these 36 orbits, 10 are orbits of hypermetric facets. We
computed the diameter of the skeleton of the dual CUT7:
It is exactly 3 (apropos, the diameter of the skeleton of
METn, n ≥ 4, is 2; see [Deza and Deza 94]). So, we
have CUTn ⊂ HY Pn and the cones CUT7, HY P7 have
10 common (hypermetric) facets: F1–F10.

Each of the 26 orbits of nonhypermetric facets of
CUT7 consists of simplex cones, i.e., those facets are in-
cident exactly to 20 cuts or, in other words, adjacent to
20 other facets. It turns out that the 26 orbits of nonhy-
permetric facets of CUT7 correspond exactly to 26 orbits
of noncut extreme rays of HY P7.

In fact, if d is a point of an extreme ray of HY P7,
which is not a cut, then it violates one of the nonhyper-
metric facet inequalities of CUT7. More precisely, our
computation consists of the following steps:

1. If d belongs to a noncut extreme ray of HY P7, then
d /∈ CUT7.

2. So, there is at least one nonhypermetric facet F of
CUT7 with F (d) < 0.

3. Select a facet Fi for each nonhypermetric orbit Oi

with 1 ≤ i ≤ 26 and define 26 subcones Ci, 1 ≤ i ≤
26, by Ci = {d ∈ HY P7 : Fi(d) ≤ 0}.

4. The initial set of 3,773 hypermetric inequalities is
nonredundant, but adding the inequality Fi(d) ≤ 0
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12 13 14 15 16 17 23 24 25 26 27 34 35 36 37 45 46 47 56 57 67
O1 -1 -1 0 0 1 1 -1 0 1 0 1 1 0 1 0 1 -1 1 1 -1 0

R4; G24 2 2 2 2 1 1 2 1 1 2 1 1 1 1 2 1 2 1 1 2 2
O2; δ{3,5,6} -1 1 0 0 -1 1 1 0 -1 0 1 -1 0 1 0 -1 1 1 1 1 0

R5; G4 2 1 2 1 2 1 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1
O3; δ{3,5,4} -1 1 0 0 1 1 1 0 -1 0 1 1 0 -1 0 1 1 -1 -1 1 0

R6; G23 2 1 1 1 1 1 1 2 2 2 1 1 1 2 1 1 1 2 2 1 2

O4 -1 -1 -1 1 1 1 -1 0 0 1 1 0 1 0 1 1 1 1 0 -1 -1

R7; G25 2 2 2 1 1 2 2 1 2 1 1 1 1 2 1 1 1 1 1 2 2
O5; δ{3,7} -1 1 -1 1 1 -1 1 0 0 1 -1 0 -1 0 1 1 1 -1 0 1 1

R8; G5 2 1 2 1 1 1 1 1 2 1 2 2 2 1 1 1 1 2 1 1 1
O6; δ{2,3,7} 1 1 -1 1 1 -1 -1 0 0 -1 1 0 -1 0 1 1 1 -1 0 1 1

R9; G26 1 1 2 1 1 1 2 2 1 2 1 2 2 1 1 1 1 2 1 1 1
O7; δ{1,5,6} 1 1 1 1 1 -1 -1 0 0 -1 1 0 -1 0 1 -1 -1 1 0 1 1

R10; G1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 2 1 1 1 1

O8 -1 -1 -1 0 1 2 -1 0 1 1 2 0 1 1 2 -1 1 1 0 -1 -2

R11; G22 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 2
O9; δ{1,4,6} 1 1 -1 0 1 -2 -1 0 1 -1 2 0 1 -1 2 1 1 -1 0 -1 2

R12; G21 1 1 2 1 2 2 1 2 1 2 1 2 1 2 1 1 1 2 2 2 1
O10; δ{5} -1 -1 -1 0 1 2 -1 0 -1 1 2 0 -1 1 2 1 1 1 0 1 -2

R13; G20 2 2 2 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 2 1 2
O11; δ{3,5} -1 1 -1 0 1 2 1 0 -1 1 2 0 1 -1 -2 1 1 1 0 1 -2

R14; G19 2 1 2 1 2 1 2 1 2 1 1 2 1 2 2 1 1 1 2 1 2
O12; δ{1,7} 1 1 1 0 -1 2 -1 0 1 1 -2 0 1 1 -2 -1 1 -1 0 1 2

R15; G7 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 2 1 2 1 1 1
O13; δ{7,4,1} 1 1 -1 0 -1 2 -1 0 1 1 -2 0 1 1 -2 1 -1 1 0 1 2

R16; G8 1 1 2 1 1 1 1 2 1 1 2 2 1 1 2 1 2 1 1 1 1
O14; δ{6,4} -1 -1 1 0 -1 2 -1 0 1 -1 2 0 1 -1 2 1 1 -1 0 -1 2

R17; G18 2 2 1 2 1 1 1 2 1 2 1 2 1 2 1 1 1 2 2 2 1

O15 -1 -1 -2 1 1 2 0 -1 1 1 2 -2 1 1 1 2 2 3 -1 -2 -2

R18; G14 2 2 2 2 2 1 1 1 1 1 1 2 1 1 2 1 1 1 1 2 2
O16; δ{5,3} -1 1 -2 -1 1 2 0 -1 -1 1 2 2 1 -1 -1 -2 2 3 1 2 -2

R19; G15 2 1 2 1 2 1 2 1 2 1 1 1 1 2 1 2 1 1 2 1 2
O17; δ{5,4} -1 -1 2 -1 1 2 0 1 -1 1 2 2 -1 1 1 2 -2 -3 1 2 -2

R20; G17 2 2 1 1 2 1 1 2 2 1 1 1 2 1 2 1 2 2 2 1 2
O18; δ{7,2,6} -1 1 2 -1 -1 2 0 1 -1 -1 2 -2 1 1 -1 2 2 -3 -1 2 2

R21; G13 2 1 1 1 1 1 2 2 2 2 1 2 1 1 1 1 1 2 1 1 1
O19; δ{7,4,1} 1 1 -2 -1 -1 2 0 1 1 1 -2 2 1 1 -1 -2 -2 3 -1 2 2

R22; G6 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 2 2 1 1 1 1
O20; δ{1,7} 1 1 2 -1 -1 2 0 -1 1 1 -2 -2 1 1 -1 2 2 -3 -1 2 2

R23; G2 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 1 1 1
O21; δ{4,5,6} -1 -1 2 -1 -1 2 0 1 -1 -1 2 2 -1 -1 1 2 2 -3 -1 2 2

R24; G16 2 2 1 1 1 1 1 2 2 2 1 1 2 2 2 1 1 2 1 1 1

O22 -1 -1 -2 1 2 3 -1 -2 1 2 3 -2 1 2 3 2 3 5 -2 -3 -5

R25; G11 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 1 2 1 2 2 2
O23; δ{3,6} -1 1 -2 1 -2 3 1 -2 1 -2 3 2 -1 2 -3 2 -3 5 2 -3 5

R26; G10 1 2 2 2 2 1 2 2 2 2 1 1 1 1 2 1 1 1 1 2 1
O24; δ{7,4} -1 -1 2 1 2 -3 -1 2 1 2 -3 2 1 2 -3 -2 -3 5 -2 3 5

R27; G9 1 1 1 2 1 2 1 1 2 1 2 1 2 1 2 2 1 1 2 1 1
O25; δ{5} -1 -1 -2 -1 2 3 -1 -2 -1 2 3 -2 -1 2 3 -2 3 5 2 3 -5

R28; G12 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 2 2 1 1 1 2
O26; δ{5,4} -1 -1 2 -1 2 3 -1 2 -1 2 3 2 -1 2 3 2 -3 -5 2 3 -5

R29; G3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2

TABLE 1. Nonhypermetric facets of CUT7 and noncut extreme rays of HY P7.

yields a highly redundant set of inequalities. We
remove the redundant inequalities using an invari-
ant group (of permutations preserving the cone Ci)
and linear programming (see polyhedral FAQ2 in
[Fukuda 03]).

5. For each of 26 subcones, we found, by computation,
a set of 21 nonredundant facets, i.e., each of the

2http://www.ifor.math.ethz.ch/ fukuda/polyfaq/polyfaq.html.

subcones Ci is a simplex. One gets 21 extreme rays
for each of these 26 subcones.

6. We remove the 20 extreme rays, which correspond
to cuts, from each list and get, for each of these
subcones, exactly one noncut extreme ray.

So, one gets an upper bound 26 for the number of noncut
orbits of extreme rays. But [Deza et al. 92] gave, in fact,
a lower bound of 26 for this number. So, one gets:
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F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 Inc. |Ri|
R1 90 150 150 180 20 15 15 180 30 30 180 180 120 120 1460 7
R2 80 130 80 220 20 60 0 180 40 10 240 100 320 10 1490 21
R3 75 126 96 180 18 36 12 156 30 12 162 132 240 84 1359 35
R4 13 7 0 0 0 0 0 0 0 0 0 0 0 0 20 2520
R5 14 6 0 0 0 0 0 0 0 0 0 0 0 0 20 2520
R6 13 7 0 0 0 0 0 0 0 0 0 0 0 0 20 2520
R7 14 5 0 0 1 0 0 0 0 0 0 0 0 0 20 2520
R8 15 4 0 0 1 0 0 0 0 0 0 0 0 0 20 1260
R9 14 5 0 0 1 0 0 0 0 0 0 0 0 0 20 1260
R10 15 5 0 0 0 0 0 0 0 0 0 0 0 0 20 252
R11 11 7 1 1 0 0 0 0 0 0 0 0 0 0 20 2520
R12 11 7 0 2 0 0 0 0 0 0 0 0 0 0 20 2520
R13 12 6 2 0 0 0 0 0 0 0 0 0 0 0 20 2520
R14 11 7 0 2 0 0 0 0 0 0 0 0 0 0 20 2520
R15 12 7 0 1 0 0 0 0 0 0 0 0 0 0 20 1260
R16 12 6 0 2 0 0 0 0 0 0 0 0 0 0 20 1260
R17 12 6 2 0 0 0 0 0 0 0 0 0 0 0 20 630
R18 10 6 0 2 1 0 0 1 0 0 0 0 0 0 20 2520
R19 11 5 1 1 1 0 0 1 0 0 0 0 0 0 20 2520
R20 10 6 0 2 1 1 0 0 0 0 0 0 0 0 20 1260
R21 10 6 1 1 1 1 0 0 0 0 0 0 0 0 20 840
R22 11 6 1 0 1 0 0 1 0 0 0 0 0 0 20 840
R23 11 6 0 2 1 0 0 0 0 0 0 0 0 0 20 420
R24 11 6 2 0 0 0 1 0 0 0 0 0 0 0 20 420
R25 7 6 1 3 0 1 0 1 0 0 0 0 1 0 20 840
R26 8 5 2 2 0 0 0 2 0 0 1 0 0 0 20 630
R27 8 6 0 3 0 0 0 2 0 0 0 1 0 0 20 420
R28 8 6 4 0 0 0 1 0 0 0 0 0 0 1 20 210
R29 8 6 0 4 0 2 0 0 0 0 0 0 0 0 20 105
|Fi| 105 210 210 420 35 105 21 420 105 42 630 420 840 210 3773 37170

TABLE 2. Orbitwise incidence between extreme rays and facets of HY P7.

Proposition 3.1. The hypermetric cone HY P7 has 37,170
extreme rays, divided into 3 orbits, corresponding to
nonzero cuts, and 26 orbits, corresponding to hypermet-
rics on 7-vertex affine bases of the Schläfli polytope.

Note that the above computation proves again that
the list of 14 orbits of hypermetric facets is complete.
If not, there would exist an hypermetric facet, which is
violated by one extreme ray belonging to the 29 found
orbits, but this would imply that the Schläfli polytope
(or the 1-simplex) has interior lattice points, which is
false.

The actual implementation, using the program cdd

[Fukuda 03], of our computational techniques is available
from [Dutour 03b].

Corollary 3.2. The only extreme Delaunay polytopes of
dimension at most six are the 1-simplex and the Schläfli
polytope.

This method computes precisely the difference be-
tween HY P7 and CUT7.

The observed correspondence between the 37,107 non-
hypermetric facets of CUT7 and the 37,107 noncut ex-
treme rays of HY P7 is presented in Table 1.

The first line of Table 1 indicates the ij position of the
vector, defining facets, and generators of extreme rays.

Using double lines, we separate 26 pairs (facet and cor-
responding extreme ray) into five switching classes. Two
facets F and F ′ of CUT7 are called switching equivalent
if there exist

S ⊂ {1, . . . , 7}, such that F (δS) = 0,

Fij = −F ′
ij for |S ∩ {i, j}| = 1 and

Fij = F ′
ij , otherwise.

See Section 9 of [Deza et al. 92] for details on the switch-
ing in this case. The first column of Table 1 gives, for
each of five switching classes, the cut δS , such that the
corresponding facet is obtained by the switching by δS

from the first facet of the class. The nonhypermetric
orbits of facets of CUT7 are indicated by Oi and the cor-
responding noncut orbits of extreme rays of HY P7 are
indicated by Ri+3. For any extreme ray, we indicate also
the corresponding graph Gj (in terms of [Deza et al. 92]
and [Deza and Laurent 97, Chapter 16]).

The five switching classes of Table 1 correspond, re-
spectively, to the following five classes of nonhyperme-
tric facets of CUT7, in terms of [De Simone et al. 94]
and [Deza and Laurent 97, Chapter 30]: parachute facets
P1 − P3; cycle facets C1, C4 − C6; Grishukhin facets
G1 − G7; cycle facets C2, C7 − C12; and cycle facets
C3, C13 − C16.

[Deza and Grishukhin 93] considered extreme rays of
HY Pn, which correspond, moreover, to the path-metric
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of a graph; the Delaunay polytope, generated by such hy-
permetrics, belongs to an integer lattice and, moreover,
to a root lattice. They found, among the 26 noncut orbits
of extreme rays of HY P7, exactly 12 that are graphic:
R4, R5, R8, R9, R10, R15, R16, R17, R22, R23, R24, R29.
For example, R10, R23, and R29 correspond to graphic
hypermetrics on K7 − C5, K7 − P4, and K7 − P3, re-
spectively. Three of the above 12 extreme hypermetrics
correspond to polytopal graphs: the 3-polytopal graphs,
corresponding to R4, and 4-polytopal graphs K7 − C5,
K7−P4. Note also that the footnote and figures in [Deza
and Laurent 97, pages 242–243] mistakenly attribute the
graph G18 to the class q = 11 (fourth class, in our terms);
in fact, it belongs to the class q = 12 (our third class) as
it was originally correctly given in [Deza et al. 92].

4. ADJACENCY PROPERTIES OF THE SKELETON
OF HY P7 AND OF ITS DUAL

We start with Table 2, giving incidence between extreme
rays and facets, i.e., the number of facets from the orbit
Fj , containing a fixed extreme ray from the orbit Ri, is
given at postion ij.

It turns out, curiously, that each of 19-dimensional hy-
permetric faces F11–F14 of the 21-dimensional cone CUT7

(which became simplex facets in HY P7) is the intersec-
tion of a triangle facet and a cycle facet, corresponding,
respectively, to orbits O23, O24, O22, and O25 of Table 1.

The skeleton graph of HY P7 is the graph whose nodes
are the extreme rays of HY P7 and whose edges are the
pairs of adjacent extreme rays. The ridge graph of HY P7

is the graph whose node set is the set of facets of HY P7

and with an edge between two facets if they are adjacent
on HY P7. Those graphs can be computed easily, since
we know all extreme rays and facets of HY P7. Then
the nauty program (see [McKay 03]) finds the symmetry
group Sym(7) for the ridge graph of HY P7. The only
symmetries preserving all facets of a cone, which is not
a simplex, are the homotheties v 
→ λv with λ > 0. So,
the symmetry group of HY P7 is Sym(7) × R

∗
+.

Proposition 4.1. One has the following properties of ad-
jacency of extreme rays of HY P7:

(i) The restriction of the skeleton of HY P7 on the union
of cut orbits R1 ∪ R2 ∪ R3 is the complete graph.

(ii) Every noncut extreme ray of HY P7 has adjacency
20 (namely, it is adjacent to 20 cuts lying on cor-
responding nonhypermetric facets of CUT7); see the

R1 R2 R3 Adj. |Ri|
R1 6 21 35 15662 7
R2 7 20 35 12532 21
R3 7 21 34 10664 35
R4 3 6 11 20 2520
R5 4 7 9 20 2520
R6 3 7 10 20 2520
R7 3 7 10 20 2520
R8 4 7 9 20 1260
R9 3 8 9 20 1260
R10 5 5 10 20 252
R11 3 6 11 20 2520
R12 2 8 10 20 2520
R13 4 5 11 20 2520
R14 2 8 10 20 2520
R15 4 7 9 20 1260
R16 3 9 8 20 1260
R17 4 4 12 20 630
R18 2 8 10 20 2520
R19 3 7 10 20 2520
R20 1 10 9 20 1260
R21 2 9 9 20 840
R22 4 6 10 20 840
R23 4 7 9 20 420
R24 5 1 14 20 420
R25 1 9 10 20 840
R26 2 8 10 20 630
R27 3 6 11 20 420
R28 5 1 14 20 210
R29 2 12 6 20 105
|Rj | 7 21 35 37170

TABLE 3. Orbitwise adjacency between extreme rays of HY P7.

distribution of those 20 cuts amongst the cut orbits
in Table 3.

(iii) Any two simplex extreme rays are nonadjacent; any
simplex extreme ray (i.e., noncut ray) has a local
graph (i.e., the restriction of the skeleton on the set
of its neighbors) K20.

(iv) The diameter of the skeleton graph of HY P7 is 3.

One also has the following properties of adjacency of
facets of HY P7:

(i’) See Table 4, where the number of facets (from orbit
Fj), which are adjacent to the fixed facet of orbit Fi,
are given by the ijth position.

(ii’) Any two simplex facets are nonadjacent; any simplex
facet (i.e., one amongst F9–F14) has a local graph
K20.

(iii’) The diameter of the ridge graph of HY P7 is 3.

5. FINAL REMARKS

In order to find extreme rays of HY P8, the same methods
will probably work with more computational difficulties;
in dimension n ≥ 9, polyhedral methods may fail.

The list of 374 orbits of noncut extreme rays of HY P8

(containing 7,126,560 extreme rays), found in [Dutour
03a], will be compared with the list of at least 2,169 orbits
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F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 Adj. |Fi|
F1 86 168 110 216 35 56 13 196 14 6 54 36 64 18 1072 105
F2 84 116 62 114 3 5 1 18 0 0 15 12 24 6 460 210
F3 55 62 9 20 1 1 1 4 1 1 6 0 4 4 169 210
F4 54 57 10 25 2 2 0 6 1 0 3 3 6 0 169 420
F5 105 18 6 24 0 3 0 12 0 0 0 0 0 0 168 35
F6 56 10 2 8 1 2 0 8 0 0 0 0 8 0 95 105
F7 65 10 10 0 0 0 0 0 0 0 0 0 0 10 95 21
F8 49 9 2 6 1 2 0 5 0 0 3 2 2 0 81 420
F9 14 0 2 4 0 0 0 0 0 0 0 0 0 0 20 105
F10 15 0 5 0 0 0 0 0 0 0 0 0 0 0 20 42
F11 9 5 2 2 0 0 0 2 0 0 0 0 0 0 20 630
F12 9 6 0 3 0 0 0 2 0 0 0 0 0 0 20 420
F13 8 6 1 3 0 1 0 1 0 0 0 0 0 0 20 840
F14 9 6 4 0 0 0 1 0 0 0 0 0 0 0 20 210
|Fj | 105 210 210 420 35 105 21 420 105 42 630 420 840 210 3773

TABLE 4. Orbitwise adjacency between facets of HY P7.

of facets of CUT8, found in [Christof and Reinelt 98].
Exactly 55 of the above 374 orbits correspond to path-
metrics of a graph. It was shown in [Deza and Grishukhin
93] that any graph whose path-metric lies on an extreme
ray of a HY Pn is a subgraph of the skeleton of Gosset or
Schläfli polytopes.

It turns out (it can also be found in [Deza and Laurent
97, Chapter 28]) that exactly 26 of those orbits consist of
hypermetric inequalities; 10 are 0-extensions of the hy-
permetric facets of CUT7 and 16 come from the following
vectors b (see (1–1)):

(2, 1, 1, 1,−1,−1,−1,−1),

(3, 1, 1, 1,−1,−1,−1,−2),

(2, 2, 1, 1,−1,−1,−1,−2),

(4, 1, 1,−1,−1,−1,−1,−1),

(3, 2, 2,−1,−1,−1,−1,−2),

representing, respectively, switching classes of sizes 2, 4,
3, 2, 5.

There is a one-to-one correspondence between nonhy-
permetric facets of CUT7 and noncut extreme rays of
HY P7; namely, every such facet is violated by exactly
one such ray. There is also a one-to-one correspondence
between 10 noncut extreme rays (in fact, 10 permutations
of the path-metric K2×3) for MET5 and 10 nontriangle
facets (in fact, 10 permutations of b = (1, 1, 1,−1,−1))
for CUT5. There is no such connection between METn

and CUTn for n > 5 in general, but we hope, that similar
correspondence exist for CUT8 and HY P8.

Another direction for further study is to find all faces
of HY P7. While the extreme rays of HY Pn yield the ex-
treme Delaunay polytopes of dimension n− 1, the study
of all faces of HY Pn will provide the list of all (combi-
natorial types of) Delaunay polytopes of dimension less
than or equal to n − 1. See [Fedorov 85] for the three-
dimensional case, [Ryshkov and Erdahl 87] and [Ryshkov

and Erdahl 88] for the four-dimensional case, [Kononenko
99] and [Kononenko 02] for the five-dimensional case, and
[Dutour 02] for the six-dimensional case.
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