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This paper presents algorithms for computing the two funda-
mental units and the regulator of a cyclic cubic extension of a
rational function field over a field of order q ≡ 1 (mod 3). The
procedure is based on a method originally due to Voronoi that
was recently adapted to purely cubic function fields of unit rank
one. Our numerical examples show that the two fundamental
units tend to have large degree, and frequently, the extension
has a very small ideal class number.

1. INTRODUCTION

A central problem in computational number theory is

the question of finding the regulator or even a system

of fundamental units of an algebraic number field. This

is generally a difficult task, in part because the regula-

tor is frequently exponential in the size of the field, re-

sulting in up to doubly exponentially large fundamental

units. Nevertheless, efforts to find regulators and funda-

mental units of certain types of number field extensions

have been quite fruitful, particularly in the case of real

quadratic number fields. Therefore, it seemed natural to

explore the possibility of adapting some of these tech-

niques to algebraic function fields of finite characteristic.

This was achieved with considerable success in the case

of real hyperelliptic function fields K = Fq(t)( D(t))

with deg(D(t)) even [Stein and Williams 99] and, more

recently, purely cubic function fields K = Fq(t)( 3 D(t))

with q ≡ −1 (mod 3) and deg(D(t)) ≡ 0 (mod 3) [Schei-
dler and Stein 00]; both are unit rank 1 extensions.

Purely cubic function fields were classified in [Scheidler

and Stein 00] and come in three flavors, to wit, unit rank

0, 1, or 2, depending on whether the place at infinity

of Fq(t) splits one-, two-, or three-fold in K. This is

in stark contrast to purely cubic number fields Q( 3
√
D)

with D ∈ Z, which are complex cubic fields and thus
always have unit rank 1. Fast arithmetic in the Jacobian

of a purely cubic function field extension of unit rank 0
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was described in [Bauer 03]. As mentioned above, the

case of unit rank 1 was dealt with in [Scheidler and Stein

00]. In this paper, we present a method for finding a

pair of fundamental units and the regulator of a purely

cubic function field K = Fq(t)( 3 D(t)) of unit rank 2

and characteristic at least 5. In this scenario, deg(D) is

divisible by 3 and, more importantly, q ≡ 1 (mod 3), so
Fq (and hence K) contains a primitive cube root of unity.
Kummer theory establishes that under these conditions,

cyclic cubic fields are exactly those extensions that have

a purely cubic representation, and we will see that such

a representation is easily computable. Hence, our paper

not only completely settles the question of fundamental

unit computation in purely cubic function fields (except

in characteristic 2 and 3), but the method given here will

work in all cyclic cubic function fields with q odd and

q ≡ 1 (mod 3).
Purely cubic extensions of unit rank 0 share many

properties with imaginary hyperelliptic function fields.

Since they contain no nontrivial units, their regulator

is equal to 1, the ideal class group is isomorphic to the

Jacobian, and the class number is exponentially large.

The numerical computations of [Scheidler and Stein 00]

indicate that purely cubic function fields of unit rank 1

also behave very much like their quadratic counterparts,

generally exhibiting very small ideal class numbers and

exponentially large regulators and period lengths. There

is no quadratic analog to the unit rank 2 case, and very

little (if any) work has been done even in the setting

of cubic number fields on the number of steps required

to compute the regulator, and on the size of the funda-

mental units. Our examples in this paper show that the

regulator of a purely cubic function field of unit rank 2

tends to be big, and the two fundamental units have very

large coefficients (as expected), but in the interest of lim-

iting the length of this paper, we decided to leave a more

formal investigation of this subject for future research.

Berwick [Berwick 32] showed that any cyclic cubic

number field contains a unit such that and its conju-

gate form a pair of fundamental units. Here, is the

unique minimal unit exceeding 1 whose conjugates have

absolute value less than 1. There are, in fact, exactly

six pairs of fundamental units of the form {η, η }, given
by η ∈ { , , , −1, −1, −1} [Delone and Fadeev 64,
pages 134f]. These results are easily extendable to cyclic

cubic function fields. On first glance, it thus appears that

one might only need to compute one fundamental unit,

obtaining a second one “for free.” Unfortunately, given

a unit η that is known to be one of a pair of fundamen-

tal units, there appears to be no easy way to determine

whether η and one of its conjugates generate the full unit

group of the field, or just a subgroup of finite index.

The algorithms in [Scheidler and Stein 00] and in this

paper both go back to the ideas of Voronoi [Voronoi 96];

see also [Delone and Fadeev 64, pages 246-273]. The first

table of systematically machine-computed fundamental

units in cubic number fields using Voronoi’s algorithm

was given in [Williams et al. 73]. To our knowledge,

Mang [Mang 87] was the first to generate systems of fun-

damental units of purely cubic function fields of both

unit rank 1 or 2. His technique, based on the Pohst-

Zassenhaus method used for number fields [Pohst and

Zassenhaus 97, Chapter 5], is entirely different from ours.

By Mang’s own admission, his procedure is slow and

infeasible for even modest size fields. Our own ideas

and terminology are primarily based on [Scheidler and

Stein 00] and [Buchmann 85]; the latter source developed

the theory for fundamental unit computation in number

fields of unit rank 1 and 2.

2. CUBIC FUNCTION FIELDS

A general introduction to function fields can be found

in [Stichtenoth 93]. Details of the purely cubic case are

discussed in [Mang 87] and [Scheidler and Stein 00].

A cubic function fieldK is an extension of degree 3 of a

field k(t) of rational functions; here, k = Fq is a finite field
of order q whose characteristic is not 3. The extension

K/k(t) is purely cubic if it is a radical extension, i.e., K =

k(t)(ρ) where ρ3 = D(t) ∈ k[t] is a cube-free polynomial
with coefficients in k. Write D = GH2 where G,H ∈
k[t] are square-free and coprime. Then the curve y3 −
D = 0 defining K/k(t) is singular if and only if H is

nonconstant, in which case the singular points are exactly

the points (a, 0) where H(a) = 0. For our purposes, it

suits us to work with such a (possibly singular) model.

If K/k(t) is a normal (i.e., cyclic) cubic extension that

contains the primitive cube roots of unity, then a purely

cubic representation of K always exists and is, in fact,

easy to find.

Lemma 2.1. Let K/k(t) be a cubic extension and q ≡
1 (mod 3). Then K/k(t) is purely cubic if and only if

K/k(t) is cyclic.

Proof: Since q ≡ 1 (mod 3), k contains a primitive cube
root of unity u. If K = k(t)(ρ) with ρ3 ∈ k[t] cube-free,
then the conjugates uρ and u2ρ of ρ both lie in K, so

K/k(t) is Galois with Galois group Z/3Z. Conversely,
let α be any nonzero element in K \ k(t) with minimal
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polynomial f(y) = y3 +Ay2 + By + C (A,B,C ∈ k(t)).
By replacing α by α − A/3 if necessary, we may assume
that Tr(α) = −A = 0 where Tr(α) = α+ α + α is the

trace of α and α ,α ∈ K denote the conjugates of α. If

α = uα, then B = Tr(αα ) = 0, so α3 = −C ∈ k(t).
Suppose now that α = uα and consider the Lagrange

resolvent β = α + uα + u2α ∈ K of α. It is easy to

verify that β = (1−u)(α−uα ), so β = 0. Furthermore,

Tr(β) = Tr(ββ ) = 0, so β3 ∈ k(t). Hence, there always
exists a nonzero element β ∈ K with β3 ∈ k(t). Write
β3 = G/H with G,H ∈ k[t] nonzero and gcd(G,H) = 1,
and set ρ = Hβ ∈ K. Then ρ3 = GH2 ∈ k[t] is cube-free
and K = k(t)(ρ).

Henceforth, let K = k(t)(ρ) be a purely cubic function

field with ρ3 = D = GH2 as before. The genus1 of K/k

is g = deg(GH) − 2 or g = deg(GH) − 1, depending on
whether or not the degree of D is divisible by 3. The

maximal order or ring of algebraic functions in K is the

integral closure O = k[t] of k[t] in K. The set O is a

k[t]-module of rank 3 generated by 1, ρ and ω where

ω = ρ2/H, so ω3 = G2H. Its unit group O∗ is a finitely
generated Abelian group of rank r, the unit rank of K.

The torsion part of O∗ is the set k∗ of nonzero constants,
and a set of generators of the infinite part of O∗ is a
system of fundamental units.

The completion with respect to the infinite place of

k(t) (defined by the negative degree valuation) is the field

k t−1 of Puiseux series in t−1 over k. For a nonzero
element α =

∞
i=−m ait

−i ∈ k t−1 , (m ∈ Z, ai ∈ k for
i ≥ −m, a−m = 0), we write sgn(α) = a−m, deg(α) =
m, |α| = qm = qdeg(α), and α =

0
i=−m ait

−i (with
sgn(0) = 0, |0| = 0, and 0 = 0). Then α ∈ k[t]
and |α − α | < 1. As usual, α is said to be monic if

sgn(α) = 1.

According to Theorem 2.1 of [Scheidler and Stein 00],

the unit rank of a purely cubic function field can be 0,

1, or 2. The first scenario happens if and only if the

degree of D is not divisible by 3 or the leading coefficient

sgn(D) of D is not a cube in k. If deg(D) ≡ 0 (mod 3)
and sgn(D) ∈ (k∗)3, then r = 1 if q ≡ −1 (mod 3) and
r = 2 if q ≡ 1 (mod 3). In the case of nonzero unit

rank, we can explicitly extract a cube root ρ of D which

lies in k t−1 ; the other two cube roots of D are uρ and

u2ρ where u is a fixed primitive cube root of unity. If

q ≡ 1 (mod 3), or equivalently, u ∈ k, then K is normal

over k(t), and all three cube roots lie in k t−1 , giving
rise to three distinct embeddings of K into k t−1 . Here,

1The genus is an invariant of K/k; it is independent of the
transcendental element t and hence, the representation of K/k.

the place at infinity of k(t) splits completely. If on the

other hand, q ≡ −1 (mod 3), then there is a unique such
embedding, the infinite place of k(t) splits only two-fold,

and K/k(t) is not a normal extension.

We now limit our discussion to cyclic cubic fields of

unit rank 2 in purely cubic representation. Let σ be a

generator of the Galois group ofK/k(t) so that σ(ρ) = uρ

and σ2(ρ) = u2ρ. Write α = α(0), σ(α) = α(1) = α

and σ2(α) = α(2) = α for any α ∈ K, and let

N(α) = αα α ∈ k(t) denote the norm of α. Let ∞ be

one of the three places at infinity in K and | · |∞ its as-

sociated (multiplicative) valuation. Then |α |∞ = |α|∞
and |α |∞ = |α|∞ for all α ∈ K. We number the valu-
ations | · |0, | · |1, | · |2 so that |α|∞ = |α|0, |α |0 = |α|1
and |α |0 = |α|2, so |α(i)|0 = |α(0)|i for i ∈ {0, 1, 2}.
Then |α|i is called the i-value of α. We note that

|ρ|0 = |ρ|1 = |ρ|2 = |D|1/3, so henceforth, we omit the
subscript and simply write |ρ| and |ω|.
Let { 1, 2} be a system of fundamental units in K.

The regulator of K is the absolute value of the determi-

nant of any 2× 2 submatrix of the 2× 3 matrix
deg( 1) deg( 1) deg( 1 )

deg( 2) deg( 2) deg( 2 )
;

it is independent of the choice of the submatrix and the

system of fundamental units.

3. MINIMA, NEIGHBORS, AND i-CHAINS

A fractional ideal of O is a set of the form f = d−1a where
d ∈ k[t] is a nonzero polynomial and a is an ideal (in the
ordinary sense) of O. The unique monic polynomial d(f)
of minimal degree such that d(f)f ⊆ O is the denominator
of f. For α ∈ K, (α) = {αθ | θ ∈ O} denotes the principal
fractional ideal generated by α. Every nonzero fractional

ideal f in O is a k[t]-module of rank 3; if {λ, µ, ν} is a
k[t]-basis of f where λ = (l0 + l1ρ + l2ω)/d, µ = (m0 +

m1ρ+m2ω)/d, ν = (n0+n1ρ+n2ω)/d with d = d(f) and

l0, l1, l2,m0,m1,m2, n0, n1, n2, d ∈ k[t] coprime, then the
norm and the discriminant of f, respectively, are the two

rational functions

N(f) =
1

d3
det

 l0 l1 l2
m0 m1 m2

n0 n1 n2

 and

∆(f) =det

 λ λ λ

µ µ µ

ν ν ν

2

which are unique up to nonzero constant factors in K

and independent of the choice of basis of f. The maximal
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order O = [1, ρ,ω] has norm 1 and discriminant ∆ =

∆(O) = −27G2H2. Norm and discriminant of an ideal

f are related through the identity ∆(f) = aN(f)2∆ for

suitable a ∈ k∗. We note that since for all nonzero α ∈ f,
(d)f divides (dα) (as integral ideals), we have |N(f)| ≤
|N(α)|.
In our context, fractional ideals are always assumed

to contain 1; in particular, they are nonzero, and 1 can

always be chosen as a basis element. For a fractional

ideal f and θ ∈ f, we define the set

Nf(θ) = {α ∈ f | |α|i ≤ |θ|i for i = 0, 1, 2}.

θ is a minimum in f if Nf(θ) = kθ, i.e., Nf(θ) consists
only of constant multiples of θ. The ideal f is reduced if 1

is a minimum in f. We briefly summarize some properties

of minima and reduced ideals.

Lemma 3.1. Let f be a fractional ideal of O and θ ∈ f.
1. θ is a minimum in f if and only if the fractional ideal

(θ−1)f is reduced.

2. If θ is a minimum in f and a unit in O, then θ is a

minimum in f. So the unit group O∗ acts on the set
of minima of any fractional ideal by multiplication.

3. If f is reduced, then |N(f)| > |∆|−1/2 and |d(f)| <
|∆|1/2.

Proof: Part 1 is easy to see, and the proof of Part 2 is

completely analogous to that of Proposition 4.2 of [Schei-

dler and Stein 00]. Part 3 follows from Theorem 4.5 and

Corollary 4.6 of [Scheidler and Stein 00]; the proofs given

in that source are independent of the unit rank of K.

As usual, we call two elements in O associate if they

differ by a factor in O∗, and nonassociate otherwise.

Lemma 3.2.

1. O is reduced.

2. Every unit in O is a minimum in O.
3. If θ is a minimum in O, then |N(θ)| < |∆|1/2.
4. The action of the unit group on the set of minima in

O decomposes this set into a finite number of orbits.

So the number of nonassociate minima in O is finite.

Proof: Properties 1 and 2 are easy to establish; see also

Theorem 4.1 and Corollary 4.3 of [Scheidler and Stein 00].

To see Part 3, we observe that by Part 1 of Lemma 3.1,

the principal fractional ideal (θ−1) is reduced and hence,
has norm exceeding |∆|−1/2 in absolute value by Part 3
of that lemma. It follows that the norm of a minimum

in O can only take on finitely many values, and for each

such value, the number of nonassociate minima with this

norm is also finite. This proves Part 4.

Fix an index i ∈ {0, 1, 2} and let α,β ∈ K∗ be distinct
elements. Write α ≤i β if the triple (|α|i, |α|i+1, |α|i+2)
appears before the triple (|β|i, |β|i+1, |β|i+2) with respect
to lexicographical order, where we allow the possibility

that the two triples are equal. Here, the indices i+1 and

i+2 are taken modulo 3 to lie between 0 and 2 inclusive;

this convention for the indices will be used throughout

the paper. The following statement is obvious.

Remark 3.3. The set of monic minima in any fractional
ideal f is totally ordered under the ordering ≤i; in par-
ticular, by antisymmetry, if α,β are minima in f with

α ≤i β ≤i α, then α and β differ by a nonzero constant
factor.

For i ∈ {0, 1, 2}, f a fractional ideal of O, and θ ∈ f,
we let

Hf,i(θ) = {α ∈ f | |α|i > |θ|i, |α|j ≤ |θ|j
for all j = i, |α|j < |θ|j for at least one j = i}.

Theorem 3.4. Let i ∈ {0, 1, 2}, f a reduced fractional
ideal, and θ a minimum in f. Then there exists an ele-

ment φ ∈ Hf,i(θ) such that φ ≤i α for all α ∈ Hf,i(θ).
The element φ is unique up to nonzero constant factors

and is also a minimum in f.

Proof: For brevity, set H = Hf,i(θ). Let ∈ O∗ with
| |i > 1, so | |i < 1. Without loss of generality, assume
that | |j ≤ 1 for j = i (one of , ( )−1, ( )−1 satisfies
these inequalities). Then | |j < 1 for at least one j = i.
It follows that θ ∈ H, so H is nonempty.

To define φ, we repeatedly use the Well-Ordering Prin-

ciple as follows. Since |α|i > |θ|i for all α ∈ H, there ex-
ists an element in H of minimal i-value qm, say. Now

for all α ∈ H with |α|i = qm, we have |α α |i =
|N(α)||α|−1i ≥ |N(f)|q−m, so there exists β ∈ H with

|β|i = qm and |β β |i is minimal, say equal to qn. Fi-
nally, if γ ∈ H with |γ|i = qm and |γ γ |i = qn, then

|γ|i+1 = qn|γ|−1i+2 ≥ qn|θ|−1i+2, so there exists φ ∈ H
with |φ|i = qm, |φ φ |i = qn, and |φ|i+1 minimal. Now
for all α ∈ H, |φ|i ≤ |α|i, |φ|i+1 ≤ |α|i+1, and if
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equality holds in both these relations, then the property

|φ φ |i ≤ |α α |i yields |φ|i+2 ≤ |α|i+2. So φ ≤i α.
To see that φ is a minimum in f, let α ∈ Nf(φ). Then

|α|i ≤ |φ|i, |α|j ≤ |φ|j , |α|h ≤ |φ|h,
|θ|i < |φ|i, |θ|j ≥ |φ|j , |θ|h > |φ|h,

where j, h ∈ {1, 2, 3} \ {i} are suitably labelled.
If |α|i ≤ |θ|i, then from the above inequalities |α|j ≤

|θ|j and |α|h < |θ|h, so α ∈ Nf(θ) = kθ, in which case

|α|h < |θ|h implies α = 0 ∈ kφ. So suppose that |α|i >
|θ|i. Then α ∈ H, so φ ≤i α and hence, |α|m = |φ|m for

m = 0, 1, 2. Set β = α−sgn(α)sgn(φ)−1φ, then β ∈ f and
|β|i < |φ|i. Therefore, φ ≤i β, and hence, β ∈ H. Since
|β|j ≤ |φ|j ≤ |θ|j and |β|h ≤ |φ|h < |θ|h, we must have
|β|i > |θ|i. But then β ∈ Nf(θ) = kθ. Since |β|h < |θ|h,
we must have β = 0 as before. Hence, α and φ differ by

a constant factor.

Finally, φ is unique up to nonzero constant factors by

Remark 3.3.

An element in Hf,i(θ) that is minimal with respect
to ≤i is an i-neighbor of θ in f. We henceforth ignore
constant factors, speaking of “the” i-neighbor of θ in f

which we denote by ϕf,i(θ). Hence, it needs to be under-

stood that equalities such as those in Lemma 3.5 and in

Theorem 4.2 only hold up to nonzero constant factors.

Lemma 3.5. Let i ∈ {0, 1, 2}, f a reduced fractional ideal,
and θ a minimum in f.

1. θ ϕ(θ−1)f,i(1) = ϕf,i(θ).

2. ϕf,i(θ) = ϕf,i( θ) for every ∈ O∗.

Proof: For brevity, set φ = ϕf,i(θ).

1. By Part 1 of Lemma 3.1, (θ−1)f is reduced, so
φ1 = ϕ(θ−1)f,i(1) exists. We first observe that φ1 ∈
H(θ−1)f,i(1), so θφ1 ∈ Hf,i(θ) and hence, φ ≤i θφ1.

Conversely, φ ∈ Hf,i(θ) implies θ−1φ ∈ H(θ−1)f,i(1), so

φ1 ≤i θ−1φ and hence, θφ1 ≤i φ. Since φ1 is a minimum
in (θ−1)f, θφ1 is a minimum in f, so the claim now follows
from Remark 3.3.

2. Clearly, φ ∈ f and φ ∈ Hf,i( θ). Set φ2 = ϕf,i( θ),

then φ2 ≤i φ. On the other hand, −1φ2 ∈ Hf,i(θ), so
φ ≤i −1φ2. Since φ is a minimum in f by Part 2 of

Lemma 3.1, Remark 3.3 again yields the desired result.

Let i ∈ {0, 1, 2} and θ a minimum in O. Define θ0 = θ

and θn = ϕO,i(θn−1) for n ∈ N0(= N∪ {0}). We call the
sequence (θn)n∈N0

the i-chain of θ.

Theorem 3.6. Let i ∈ {0, 1, 2}, θ a minimum in O, and
(θn)n∈N0

the i-chain of θ. For n ∈ N0, set fn = (θ−1n )

1. The sequence (fn)n∈N0
is periodic, i.e., there ex-

ist minimal integers p ≥ 0 and l ≥ 1 such that

fml+p+n = fp+n for all m ∈ N0 and n ∈ {0, 1, . . . , l−
1}.

2. There exists a unit ∈ O∗ such that θml+p+n =
mθp+n for all m ∈ N0 and n ∈ {0, 1, . . . , l − 1}.

3. θn+1 = αnθn with αn = ϕfn,i
(1) for all n ∈ N0.

Proof: The sequence (fn)n∈N0
is periodic by Part 4 of

Lemma 3.2 and the i-chain of θ is of the form described

in the second part of the theorem by Part 2 of Lemma

3.5. The ideal fn is reduced by Part 1 of Lemma 3.1, and

the recursion for the chain follows from Part 1 of Lemma

3.5.

The portions (θn)0≤n<p and (θn)p≤n<p+l are the
preperiod and the (primitive) period, respectively, of the

i-chain of θ. Here, p is the preperiod length, l the period

length, and = θl+pθ
−1
p the primitive unit of the chain.

For j ∈ {0, 1, 2} \ {i}, the i-chain of θ is degenerated in
j-direction if | |j = 1, or equivalently, if |αn|j = 1, i.e.

|θn+1|j = |θn|j , for all n ∈ N. It is easy to see that any
chain can be degenerated in at most one direction.

Our algorithm for computing a pair of fundamental

units of K is based on the following theorem. For the

corresponding result in number fields and its proof, see

Theorems 2.1 and 2.2 in [Buchmann 85, Part II]; the

proofs of that source essentially carry over literally to

the function field scenario.

Theorem 3.7. Let {i, j, k} = {0, 1, 2}, θ a minimum in

O, (θn)n∈N0
the i-chain of θ, and (φn)n∈N0

the j-chain

of θ. Suppose the i-chain of θ is not degenerated in k-

direction.

1. There exists an element in the j-chain of θ which is

different from θ and is nontrivially associate to an

element in the primitive period of the i-chain of θ.

2. Let m,n ∈ N be minimal so that θn and φm are

nontrivially associate. Let 1 be the primitive unit

of the i-chain of θ and 2 = φmθ
−1
n . Then { 1, 2}

is a pair of fundamental units of K.

Thus, in order to find a pair of fundamental units, we

need a procedure for generating i-chains, which in turn
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requires a method for computing the i-neighbor of 1 in

any given reduced fractional ideal by Part 3 of Theorem

3.6. In Section 4, we explain how to accomplish this.

4. REDUCED BASES

Much of the ideas and terminology in this section are

similar to Section 7 of [Scheidler and Stein 00]. Hence-

forth, we exclude the characteristic 2 case; that is, we

require k to be a finite field of characteristic at least 5.

For α = a+ bρ+ cω ∈ K with a, b, c ∈ k(t), we let

ξα = bρ+ cω =
1

3
(2α− α − α ),

ηα = bρ− cω =
1

2u+ 1
(α − α ),

ζα = 2a− bρ− cω = α + α = 2α− 3ξα,
(4—1)

where as before, u ∈ k is a primitive cube root of unity,
and ρ,ω are defined as in Section 2.. The following lemma

will be useful later on:

Lemma 4.1. Let i ∈ {0, 1, 2} and let β = a+ bρ+ cω ∈ K
(a, b, c ∈ k(t)) with |β|i > 1, |β|i+1 = 1, and |ζβ |i < 1.

Set α = β−sgn(β(i+1)). Then |α|i = |β|i > 1, |α|i+1 < 1,
and |α|i+2 = 1.

Proof: Since |β|i > 1, |α|i = |β|i. Since |β(i+1)|0 =
|β|i+1 = 1 > |ζβ |i = |β(i+1) + β(i+2)|0, we have
|β(i+1)|0 = |β(i+2)|0 = 1 and sgn(β(i+1)) = −sgn(β(i+2));
also sgn(β(j)) = β(j) for j ∈ {i + 1, i + 2}. It follows
that |α|i+1 = |α(i+1)|0 = |β(i+1) − β(i+1) |0 < 1 and

|α|i+2 = |β(i+2) + β(i+2) |0 = |β|i+2 = 1.
Fix i ∈ {0, 1, 2}. We call a k[t]-basis {1, µ, ν} of any

fractional ideal f i-reduced if

|ξµ|i > |ξν |i, |ηµ|i < 1 ≤ |ην |i, |ζµ|i < 1, |ζν |i < 1.
(4—2)

We note that |ην |i ≥ 1 > |ζν |i implies |ην |i = |ν|i+1 =
|ν|i+2 ≥ 1. Also, |ηµ|i, |ζµ|i < 1 yield |µ|i+1, |µ|i+2 < 1,

so if f is reduced, then we must have |µ|i > 1 and hence,
|µ|i = |ξµ|i and µ ∈ Hf,i(1). Reduced bases provide a
means for finding neighbors of 1:

Theorem 4.2. Let i ∈ {0, 1, 2} and let {1, µ, ν} be an i-
reduced basis of a reduced fractional ideal f.

If |ν|i+1 = 1, then ϕf,i(1) = ν − sgn(ν(i+1)).
If |ν|i+1 > 1, then ϕf,i(1) = µ.

Proof: For brevity, set φ = ϕf,i(1) and α = ν −
sgn(ν(i+1)). Label the valuations so that |φ|i > 1,

|φ|j ≤ 1, |φ|h < 1. By (4—1), |ηφ|i ≤ 1, |ζφ|i ≤ 1, and
|ξφ|i = |φ|i. Write φ = l +mµ+ nν with l,m, n ∈ k[t].
Case 1. |ν|i+1 = 1. Then |ν|i+2 = |ην |i = 1. Since

f is reduced, we must have |ν|i > 1; hence, by (4—1),

|ν|i = |ξν |i.
We prove |m| < |n|. To this end, suppose |m| ≥ |n|.

If m = 0, then φ = l, so |φ|h < 1 implies φ = l =

0, a contradiction. So m = 0, in which case by (4—2),

|mξµ|i > |nξν |i. Also by Lemma 4.1, α ∈ Hf,i(1), so
φ ≤i α. In particular, |φ|i ≤ |α|i = |ν|i. It follows that

|ν|i = |α|i ≥ |φ|i = |ξφ|i = |mξµ + nξν |i
= |mξµ|i ≥ |ξµ|i > |ξν |i = |ν|i,

again a contradiction. So we must have |m| < |n|.
Now (4—2) implies |mηµ|i < |nην |i = |n|, so 1 ≥

|ηφ|i = |mηµ + nην |i = |n|. Thus, n ∈ k∗ and m = 0;

without loss of generality, n = 1. Then φ = l+ ν = l̃+α

with l̃ = l + sgn(ν(i+1)) ∈ k. Therefore, |φ|i = |α|i,
and since φ ≤i α, we must have |φ|i+1 ≤ |α|i+1 < 1 by

Lemma 4.1. It follows that |l̃| = |φ− α|i+1 < 1, so l̃ = 0
and φ = α.

Case 2. |ν|i+1 > 1. Then |ην |i > 1. In this scenario, we
prove |m| > |n|. This is clear if n = 0, as |m| ≤ |n| would
imply m = n = 0 and |l| = |φ|h < 1, so φ = l = 0 which
is impossible. If n = 0, then the inequalities |nην |i > 1

and 1 ≥ |ηφ|i = |mηµ + nην |i imply |mηµ|i = |nην |i, in
which case by (4—2), |m| > |mηµ|i = |nην |i > |n|. Hence,
|m| > |n| and by (4—2), |mξµ|i > |nξν |i. Now µ ∈ Hf,i(1),
so φ ≤i µ and hence |φ|i ≤ |µ|i. It follows that

|φ|i = |ξφ|i = |mξµ+nξν |i = |mξµ|i ≥ |ξµ|i = |µ|i ≥ |φ|i,

so |m| = 1, i.e., m ∈ k∗, and n = 0. Again, normalize so
m = 1 and φ = l+µ. Finally, |l| = |φ−µ|h < 1, so l = 0
and φ = µ.

Corollary 4.3. Let i ∈ {0, 1, 2} and θ be a minimum in

O. Then the i-chain (θn)n∈N0
of θ is not degenerated in

(i+ 1)-direction.

Proof: Let n ∈ N0 and let {1, µn, νn} be an i-reduced
basis of fn = (θ−1n ). By Theorem 4.2, Lemma 4.1, and

the remark following (4—2), we have |ϕfn,i(1)|i+1 < 1.

The corollary now immediately follows from Part 3 of

Theorem 3.6.

We can now show that reduced bases are essentially

unique:
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Theorem 4.4. Two fractional ideals are equal if and only
if they have the same i-reduced bases (up to constant fac-

tors) for some i ∈ {0, 1, 2}. More exactly, let i ∈ {0, 1, 2}
and for j = 1, 2, let {1, µj , νj} be an i-reduced basis of a
fractional ideal fj . Then f1 = f2 if and only if there exist

v, w ∈ k∗ such that µ2 = vµ1 and ν2 = wν1.

Proof: The “if” part is obvious, so assume that f1 = f2.

Then by Theorem 3.4,

sgn(ϕf1,i
(1))−1ϕf1,i(1) = sgn(ϕf2,i(1))

−1ϕf2,i(1);

denote this quantity by φ and note that φ is monic. With-

out loss of generality, assume that µj , νj are also monic

for j = 1, 2. Now there exists a unimodular 3× 3 matrix
with entries in k[t] that transforms the basis {1, µ1, ν1}
into the basis {1, µ2, ν2}.
Case 1. |ν1|i+1 = 1. Then by Theorem 4.2, φ = ν1 −
sgn(ν

(i+1)
1 ), so by Lemma 4.1, |φ|i+2 = 1. Since |µ2|i+2 <

1, we cannot have φ = µ2, so we must have φ = ν2 −
sgn(ν

(i+1)
2 ). Hence, ν1 = ν2 + s with s = sgn(ν

(i+1)
2 ) −

sgn(ν
(i+1)
1 ) ∈ k. Then |s| = |ζs|i = |ζν1 − ζν2 |i < 1 by

(4—2), so s = 0 and ν1 = ν2.

Now there exist l,m, n ∈ k[t] with µ2 = l+mµ1+nν1,
and since the basis transformation matrix is unimodular,

we must havem ∈ k∗. Since by (4—2), 1 > |ηµ2−mηµ1 |i =
|nην1 |i = |n|, we have n = 0. Similarly, 1 > |ζµ2 −
mζµ1 |i = |l| implies l = 0, so m = 1 and µ1 = µ2.

Case 2. |ν1|i+1 > 1. Then by Theorem 4.2, φ = µ1.

Since |µ1|i+2 < 1, φ cannot equal ν2 − sgn(ν(i+1)2 ), so

φ = µ2, giving µ1 = µ2. As before, ν2 = l +mµ1 + nν1
for some l,m ∈ k[t] and n ∈ k∗. Then |mξµ1 |i = |ξν2 −
nξν1 |i < |ξµ1 |i, so m = 0. Finally, |l| = |ζν2 − nζν1 |i < 1,
so l = 0, n = 1, and ν1 = ν2.

If i ∈ {0, 1, 2} and {1, µ, ν} is a basis of some fractional
ideal f, then an easy computation shows that there exists

a ∈ k∗ such that

det
ξµ ηµ
ξν ην

2

= (ξµην − ξνηµ)2 = a∆(f). (4—3)

If the basis is i-reduced, then (4—3) implies |µ|i|ν|j =
|∆(f)|1/2 for j ∈ {0, 1, 2} \ {i}. Using (4—2), (4—3), and
Part 3 of Lemma 3.1, one can now prove analogously to

Proposition 5.1 of [Scheidler 00] that reduced bases are

small; more exactly:

Proposition 4.5. Let i ∈ {0, 1, 2} and let {1, µ, ν}
be an i-reduced basis of a reduced fractional ideal f

where µ = (m0 + m1ρ + m2ω)/d, ν = (n0 +

n1ρ + n2ω)/d with m0,m1,m2, n0, n1, n2, d ∈ k[t] and

gcd(m0,m1,m2, n0, n1, n2, d) = 1. Then

1. m0/d = m1ρ/d = m2ω/d = µ /3.

2. |ν|i < |µ|i ≤ |∆(f)|1/2, so |m0| = |m1ρ| = |m2ω| ≤
|∆|1/2 and |n0|, |n1ρ|, |n2ω| < |∆|1/2.

Part 3 of Theorem 3.6, as well as Theorem 4.2, show

how to generate i-chains (i ∈ {0, 1, 2}). Suppose we have
an i-reduced basis {1, µn, νn} (n ∈ N0) of the reduced
fractional ideal fn = (θ

−1
n ) where θn is the n-th element

of the i-chain of θ0 ∈ O. Since θn+1 = ϕfn,i
(1)θn, we

have fn+1 = (ϕfn,i
(1)−1)fn. If |νn|i+1 = 1, then by The-

orem 4.2, ϕfn,i
(1) = αn with αn = νn − sgn(ν(i+1)n ).

Since fn = [1, µn,αn], we have fn+1 = (α−1n )fn =

[1,α−1n , µnα
−1
n ]. If |νn|i+1 > 1, then again by Theorem

4.2, fn+1 = (µ−1n )fn = [1, µ−1n , νnµ
−1
n ]. Either of these

basis representations of fn+1 is usually nonreduced, so

we now compute a reduced basis {1, µn+1, νn+1} of fn+1
(using Algorithm 4.6 below). At the very beginning of

our computation, we start out with f0 = O = [1, ρ,ω]

and apply the algorithm to find our first reduced basis

{1, µ0, ν0} of O.
The following algorithm produces an i-reduced basis

of a reduced fractional ideal f, provided f is given in terms

of a basis {1, µ̃, ν̃} where

{µ̃, ν̃} = {ρ,ω} or

{µ̃, ν̃} = {α−1, µα−1} with α = ν − sgn(ν(i+1)) or
{µ̃, ν̃} = {µ−1, νµ−1} (4—4)

and g = (ϕf,i(1))f = [1, µ, ν] is a reduced fractional ideal.

Here, the first case corresponds to f = O and the sec-

ond and third cases to the situations where |ν̃|i+1 = 1,

f = (α−1)g, and |ν̃|i+1 > 1, f = (µ−1)g, respectively.
The method is an adaptation and slight simplification of

Algorithm 7.1 in [Scheidler and Stein 00].

Algorithm 4.6. (Reduction Algorithm.)
Input: (i, µ̃, ν̃) where i ∈ {0, 1, 2} and µ̃, ν̃ are given

by (4—4).

Output: (µ, ν) where {1, µ, ν} is an i-reduced basis of
f = [1, µ̃, ν̃].

Algorithm:

1. Set µ = µ̃, ν = ν̃.

2. If |ξµ|i < |ξν |i or if |ξµ|i = |ξν |i and |ηµ|i < |ην |i,
replace

µ

ν
by

0 1

−1 0

µ

ν
.
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3. If |ηµ|i ≥ |ην |i then

3.1. While |ξνην |i > |∆(f)|1/2, replace µ

ν
by

0 1

−1 ξµ(i)/ξν(i)

µ

ν
.

3.2. Replace
µ

ν
by

0 1

−1 ξµ(i)/ξν(i)

µ

ν
.

3.3. If |ηµ|i = |ην |i, replace µ

ν
by

1 −a
0 1

µ

ν

where a = sgn(ηµ(i))sgn(η
−1
ν(i)
).

4. While |ηµ|i ≥ 1, replace µ

ν
by

ην(i)/ηµ(i) −1
1 0

µ

ν
.

5. Replace µ by µ− ζµ(i) /2 and ν by ν − ζν(i) /2.

6. Return (µ, ν).

Before we prove the correctness of Algorithm 4.6, we

require an auxiliary lemma.

Lemma 4.7. Let i ∈ {0, 1, 2} and f = [1, µ̃, ν̃] where µ̃

and ν̃ satisfy (4—4). Then min{|ξµ̃|i, |ξν̃ |i} < |∆(f)|1/2.

Proof: Clear for {µ̃, ν̃} = {ρ,ω}. Suppose that g =

(ϕf,i(1)f = [1, µ, ν] is a reduced ideal and assume first

that |ν|i+1 = 1. Then g = (α)f with α = ν − sgn(ν(i+1)),
and without loss of generality, µ̃ = α−1, ν̃ = µα−1.
By Lemma 4.1 and Proposition 4.5, 1 < |α|i = |ν|i <
|∆(g)|1/2 = |N(α)||∆(f)|1/2, |α|i+1 < 1, |α|i+2 = 1, so

|ξµ̃|i = 2

α
− 1

α
− 1

α i

=
1

|α |i =
|α|i
|N(α)| < |∆(f)|

1/2.

Now assume that |ν|i+1 > 1, so g = (µ)f, and without

loss of generality, µ̃ = µ−1, ν̃ = νµ−1. Then by (4—2) and
Proposition 4.5, 1 < |µ|i ≤ |∆(g)|1/2 = |N(µ)||∆(f)|1/2
and |µ|i+1, |µ|i+2 < 1, so

|ξµ̃|i = 2

µ
− 1

µ
− 1

µ i

≤ max 1

|µ |i ,
1

µ |i
=
|µ|imax{|µ |i, |µ |i}

|N(µ)| <
|µ|i
|N(µ)| ≤ |∆(f)|

1/2.

Proposition 4.8. Algorithm 4.6 terminates and produces

a reduced basis.

Proof: We first note that for any α ∈ K, |ξα|i = |ξ(i)α |0 =
|ξα(i) |0; similarly for ηα and ζα.
Upon entering Step 3, we have |ξµ|i ≥ |ξν |i and

|ηµ|i ≥ |ην |i. Now by (4—3), |ξνην |i > |∆(f)|1/2 if and
only if |ξµ/ξν−ηµ/ην |i < 1 or equivalently, ξµ(i)/ξν(i) =

ηµ(i)/ην(i) . If µ, ν are the inputs to Step 3.1 and

α = ν,β = −µ+ ξµ(i)/ξν(i) ν, then

|ξβ |i = −ξµ +
ξµ(i)

ξν(i)
ξν

i

= −ξµ(i) +
ξµ(i)

ξν(i)
ξν(i)

0

< |ξν(i) |0 = |ξν |i = |ξα|i;
similarly, |ηβ|i < |ηα|i. So both |ξν |i and |ην |i decrease
in each iteration of the loop in Step 3.1. Hence, this

loop terminates and leaves the inequalities |ξµ|i ≥ |ξν |i
and |ηµ|i ≥ |ην |i intact (both inequalities are strict if the
loop is executed at least once) .

Now Step 3.2 decreases |ξν |i further, thereby achieving
|ξµ|i > |ξν |i. If α and β are as before, then
|ηβ |i =

−ηµ(i) +
ηµ(i)

ην(i)
ην(i) +

ξµ(i)

ξν(i)
− ηµ(i)

ην(i)
ην(i)

0

≥ |ην |i = |ηα|i
because | ξµ(i)/ξν(i) − ηµ(i)/ην(i) |i ≥ 1 and the expres-
sion inside the first pair of parentheses has i-value less

than |ην |i. We note that in Step 3.3, a = ηµ(i)/ην(i) ,

so if we set α = µ − aν and β = ν, then as be-

fore, |ηα|i < |ηβ|i, and since |ξµ|i > |ξν |i, we have
|ξα|i = |ξµ|i > |ξβ|i. It follows that upon entering Step
4, we have

|ξµ|i > |ξν |i, |ηµ|i < |ην |i. (4—5)

Using (4—3), we infer that after Step 3.2, |ηβ |i =

|∆(f)|1/2|ξν |−1i , and Step 3.3 does not change ηβ . We

recall that throughout Step 3, |ξν |i decreases, and since
Step 2 ensures that |ξν |i < |∆(f)|1/2 by Lemma 4.7, we
have |ην |i > 1 upon entering Step 4. Using analogous

reasoning as above, it is easily proved that throughout

Step 4, |ξµ|i increases, |ηµ|i decreases, and inequalities
(4—5) are maintained, with |ηµ|i < 1 ≤ |ην |i at the end
of Step 4.

Finally, if α = µ − ζµ(i) /2, then since ζ ζ
µ(i)

=

2 ζµ(i) , we have ζα = ζµ − ζµ(i) and |ζα|i = |ζµ(i) −
ζµ(i) |0 < 1; similarly for ζν(i) . Hence, after Step 5, the
output basis {1, µ, ν} is reduced.
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5. FUNDAMENTAL UNIT COMPUTATION

As mentioned before, Theorem 3.7 provides the basis for

finding a pair of fundamental units { 1, 2} of K. Ac-
cording to this theorem, we obtain the first such unit

1 = θp+lθ
−1
p by computing the preperiod and primitive

period C = (θ0, θ1, . . . , θp, . . . , θp+l−1) of the 0-chain of
θ0 = 1; here, p is the preperiod length and l the pe-

riod length of the chain. Theorem 4.4 provides a sim-

ple method for establishing whether or not two elements

in C are associate; we simply need to compare the 0-
reduced bases {1, µn, νn} of the reduced principal frac-
tional ideals (θ−1n ) with θn ∈ C. For this purpose, we
maintain a list I consisting of these reduced bases, nor-
malized so that their first nonzero coefficients and de-

nominators are monic. Once 1 is found, we remove the

preperiod (θn)0≤n<p of the 0-chain from C and the first p
reduced basis element pairs from I, but we preserve the
primitive period (θn)p≤n<p+l as well as the reduced basis
element pairs (µn, νn)p≤n<p+l.
By Corollary 4.3, the 0-chain of 1 is not degenerated

in 1-direction. To find the second fundamental unit 2,

we generate elements φ0 = θp,φ1,φ2, . . . of the 2-chain

of θp one by one, until an entry is found that differs

from one of {θp, θp+1, . . . , θp+l−1} by a unit factor 2.

Then 2 is the desired second fundamental unit. To check

whether an element φj is associate to any of the θi (p ≤
i < p + l), we compute a 0-reduced basis of the ideal

gj = (φ−1j ) (in addition to the 2-reduced basis {σj , τj}
computed to generate the 2-chain), again normalized as

above, and compare it to all the 0-reduced bases in the

list I. Alternatively, one could check whether for any
i ∈ {p, p + 1, . . . , p + l − 1}, φj divides θi in O and vice

versa; this is the case if and only if the norms N(φj)

and N(θi) differ by a constant factor and N(φj) divides

a, b, c where φjφj θi = a+bρ+cω. However, our numerical

experiments revealed that this test is significantly slower

than simply computing and comparing 0-reduced bases.

Algorithm 5.1. (First Fundamental Unit Computation.)
Input: q,G,H .

Output: ( 1, C, I, p, l) where
• 1 is the first of a pair of fundamental units of K;

• C is the primitive period of the 0-chain of 1;
• I contains the 0-reduced bases of the reduced frac-
tional ideals generated by the inverses of the ele-

ments in C;
• p is the preperiod length of C;
• l is the period length of C.

Algorithm:

1. Set C = I = ∅ and θ = 1.
2. Call Algorithm 4.6 on input (0, ρ,ω) to compute

(µ, ν) where {1, µ, ν} is a 0-reduced basis of O (nor-

malize so that the denominator is 1 and the first

nonzero coefficients of µ and ν are monic).

3. Repeat

3.1. Append θ to C and (µ, ν) to I;
3.2. If |ν|1 = 1, then set N = TRUE and α = ν −

sgn(ν ), else set N = FALSE;

3.3. If (N), then replace θ by θα, else replace θ by

θµ;

3.4. If (N), then replace {µ, ν} by {α−1, µα−1}, else
replace {µ, ν} by {µ−1, νµ−1};

3.5. Call Algorithm 4.6 to replace (µ, ν) by the ele-

ments (µ, ν) of a 0-reduced basis {1, µ, ν} of the
reduced principal fractional ideal (θ−1) (nor-
malize so that the denominator and the first

nonzero coefficients of µ and ν are monic);

until (µ, ν) ∈ I.
4. Set p to be one less than the first position in which

(µ, ν) appeared in I.
5. Remove the first p elements from C (so now C =
(θp, θp+1, . . . , θp+l−1)).

6. Remove the first p basis pairs from I (so now I =
((µp, νp), (µp+1, νp+1), . . . , (µp+l−1, νp+l−1))).

7. Set 1 = θθ−1p and l = #C.

8. Return ( 1, C, I, p, l).

Algorithm 5.2. (Second Fundamental Unit Computa-
tion.)
Input: q,G,H , and the lists C, I generated in

Algorithm 5.1.

Output: ( 2,m) where

• 2 is the second of a pair of fundamental units of K;

• m is the number of elements computed in the 2-chain
of the first element of C to obtain 2.

Algorithm:

1. Set φ to be the first element in C, (σ, τ) the first pair
in I, and m = 0.

2. Repeat

2.1. Call Algorithm 4.6 to replace (σ, τ ) by the ele-

ments (σ, τ) of a 2-reduced basis {1,σ, τ} of the
reduced principal fractional ideal (φ−1);
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2.2. If |τ |0 = 1, then set T = TRUE and β = τ −
sgn(τ ), else set T = FALSE;

2.3. If (T ), then replace φ by φβ, else replace φ by

φσ;

2.4. If (T ), then replace {σ, τ} by {β−1,σβ−1}, else
replace {σ, τ} by {σ−1, τσ−1};

2.5. Call Algorithm 4.6 on input (0,σ, τ) to compute

(µ, ν) where {1, µ, ν} is a 0-reduced basis of the
reduced principal fractional ideal (φ−1) (nor-
malize so that the denominator and the first

nonzero coefficients of µ and ν are monic);

2.6. Increase m by 1;

until (µ, ν) ∈ I;
3. Set j to be the position in which (µ, ν) appeared in

I.
4. Set 2 = φθ−1 where θ is the j-th element in C.
5. Return ( 2,m).

6. REGULATOR COMPUTATION

From the Hasse-Weil Theorem (see Theorem V.1.15, page

166, and Theorem V.2.1, page 169, of [Stichtenoth 93]),

we know that

(
√
q − 1)2g ≤ hR ≤ (√q + 1)2g, (6—1)

where as before, g = deg(GH) − 2 is the genus of K, h
is the ideal class number of K/k(t), R is the regulator of

K/k(t), and the product hR is the order of the Jacobian

of K/k. If h is small, then R is therefore of magnitude

qdeg(GH)−2, and our numerical examples (see Section 7)
reveal that R can, in fact, come close to the upper bound

in (6—1). Since the size of the field K is given by the de-

grees of G and H as well as the number of bits in q,

the regulator can be exponentially large in the size of

the field, and the fundamental units doubly exponential.

In order to compute regulators of even moderately sized

fields, it is thus necessary to avoid computing fundamen-

tal units explicitly. To find R, we therefore only generate

the list I of 0-reduced bases, but not the list C of min-
ima. We also store the degrees of the 0-neighbors of 1 and

the degrees of their conjugates in an array N . Once two
identical pairs of basis elements (µp, νp) and (µp+l, νp+l)

in I are encountered, we compute

deg( 1) =

p+l−1

n=p

deg(ϕfn,0
(1)),

deg( 1) =

p+l−1

n=p

deg(ϕfn,0
(1) ).

Similarly, we have

deg( 2) =

m−1

n=0

deg(ϕgn,2(1))−
p+j−1

n=p

deg(ϕfn,0
(1)),

deg( 2) =

m−1

n=0

deg(ϕgn,2(1) )−
p+j−1

n=p

deg(ϕfn,0
(1) ),

where j, m are as in Algorithm 5.2. The algorithm

for computing the regulator R of K is given below.

Here, e11 = deg( 1), e12 = deg( 1), e21 = deg( 2),

e22 = deg( 2), and R = |e11e22 − e12e21|.

Algorithm 6.1. (Regulator Computation.)
Input: q,G,H .

Output: (R, p, l,m) where

• R is the regulator of K;
• p and l are as in Algorithm 5.1;

• m is as in Algorithm 5.2.

Algorithm:

1. Set µ = ρ, ν = ω, I = N = ∅.
2. Call Algorithm 4.6 on input (0, ρ,ω) to compute

{µ, ν} where {1, µ, ν} is a 0-reduced basis of O (nor-
malize so that the denominator is 1 and the first

nonzero coefficients of µ and ν are monic).

3. Repeat

3.1. Append (µ, ν) to I;
3.2. If |ν|1 = 1, then set N = TRUE and α = ν −

sgn(ν ), else set N = FALSE;

3.3. If (N), then append (deg(α), deg(α )) to N ,
else append (deg(µ), deg(µ )) to N ;

3.4. If (N), then replace {µ, ν} by {α−1, µα−1}, else
replace {µ, ν} by {µ−1, νµ−1};

3.5. Call Algorithm 4.6 to replace (µ, ν) by the ele-

ments (µ, ν) of a 0-reduced basis {1, µ, ν} of the
ideal [1, µ, ν] (normalize so that the denomina-

tor and the first nonzero coefficients of µ and ν

are monic);

until (µ, ν) ∈ I.
4. Set p to be one less than the first position in which

(µ, ν) appeared in I.
5. Remove the first p pairs from I and from N .
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6. Set l = #I.
7. Set e11 = e12 = 0.

8. For n = p to p+ l − 1 do
8.1. Add the first element of the n-th pair of N to

e11;

8.2. Add the second element of the n-th pair of N
to e12;

end for.

9. Set m = 0, e21 = e22 = 0, σ = µp, τ = νp.

10. Repeat

10.1. Call Algorithm 4.6 to replace (σ, τ ) by the ele-

ments (σ, τ ) of a 2-reduced basis {1,σ, τ} of the
ideal [1,σ, τ ];

10.2. If |τ |0 = 1, then set T = TRUE and β = τ −
sgn(τ ), else set T = FALSE;

10.3. If (T ), then add deg(β) to e21 and deg(β ) to

e22, else add deg(σ) to e21 and deg(σ ) to e22;

10.4. If (T ), then replace {σ, τ} by {β−1,σβ−1}, else
replace {σ, τ} by {σ−1, τσ−1};

10.5. Call Algorithm 4.6 on input (0,σ, τ) to compute

(µ, ν) where {1, µ, ν} is a 0-reduced basis of the
reduced principal fractional ideal [1,σ, τ ] (nor-

malize so that the denominator and the first

nonzero coefficients of µ and ν are monic);

10.6. Increase m by 1;

until (µ, ν) ∈ I.
11. Set j to be one less than the position in which (µ, ν)

appeared in I.
12. For n = p to p+ j − 1 do
12.1. Subtract the first element of the n-th pair of N

from e21;

12.2. Subtract the second element of the n-th pair of

N from e22;

end for.

13. Set R = |e11e22 − e12e21|.
14. Return (R, p, l,m).

7. IMPLEMENTATION AND EXAMPLES

We begin with the trivial case where deg(G) = deg(H) =

1, so g = 0 and K is a rational function field. We recall

that u ∈ k is a primitive cube root of unity.

Proposition 7.1. Let q be any (even or odd) prime power
with q ≡ 1 (mod 3), G = at + b, H = at + c with

a, b, c ∈ k, a = 0, and b = c. Then the function field

K = k(t)(
3
√
GH2) has regulator R = 1 and a pair of

fundamental units { 1, 2} where

1 = at+ b
u+ 2

3
+ c

u2 + 2

3
+ ρ+ ω,

2 = at+ b
u2 + 2

3
− cu+ 2

3
+ ρ+ ω.

Proof: R = h = 1 follows from (6—1). An easy, though

somewhat messy, calculation shows that 1 and 2 have

nonzero constant norm. It is also easy to see that both

have equal degree, namely 1, so they must be indepen-

dent.

We now proceed with nontrivial examples. Since ele-

ments in k t−1 (and hence in K) are infinite series, they

need to be approximated by finite series, just as real num-

bers are approximated by rationals for the purpose of

computing. To this end, we proceed as in [Scheidler 00]

and define for a nonzero element α =
∞
i=−m ait

−i ∈
k t−1 of degree m the relative approximation of pre-

cision n ∈ N0 to α to be α̂ =
n−m
i=−m ait

−i. Then

|1− α̂/α| < q−n.
Fix a primitive cube root of unity u ∈ k and an em-

bedding of K into k t−1 so that the restriction of | · | on
k t−1 onto K is | · |0. For sufficiently large n, we first ex-
tract the leading n+1 terms of the Puiseux series of some

cube root ρ of D = GH2. This yields a relative approx-

imation ρ̂0 of precision n to ρ, so |1 − ρ̂0/ρ|0 < q−n.
Setting ρ̂1 = uρ̂0 and ρ̂2 = uρ̂1 = u2ρ̂0, we have

|1 − ρ̂i/ρ|i < q−n for i = 0, 1, 2. As in Lemma 7.1 of

[Scheidler 00], set

ω̂0 =
tn−deg(D)/3ρ̂0

H
, ω̂1 = u

2ω̂0, ω̂2 = uω̂0;

then |1 − ω̂i/ω|i < q−n for i = 0, 1, 2. If θ = a+ bρ+ cω
is any of the quantities used in Algorithm 4.6, i.e.,

θ ∈ {µ, ν, ξµ, ξν , ηµ, ην , ζµ, ζν}, then we replace θ(i) =
a + bρ(i) + cω(i) everywhere by θ̂i = a + bρ̂i + cω̂i
(i = 0, 1, 2). Hence, the precision n must be sufficiently

large that the algorithm still generates correct results.

Most importantly, replacing ξµ(i) and ξν(i) by their re-

spective approximations in the expression ξµ(i)/ξν(i)

should produce the same partial quotient; similarly for

ηµ(i) and ην(i) . The precision analysis of [Scheidler 00]

for the unit rank 1 case can easily be adapted to the unit

rank 2 scenario, showing that n = deg(GH) is generally

sufficient.
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q = 7 G = x2 + 2x+ 6 H = x2 + 5x+ 3

p = 0 l = 4 m = 1

1 = (6x
7 + 5x6 + 2x4 + 5x3 + 6x2 + 5x) 2 = (6x

3 + 4x2 + 4)

+(6x5 + 2x4 + 2x3 + 5x2 + 5x+ 1)ρ +(5x+ 2)ρ

+(6x5 + x4 + x3 + 3x2 + x+ 2)ω +3ω

Time for each unit: < 1 s

TABLE 1. A fundamental unit example.

Our implementation was written in Magma and run

on a 1.2 Gigahertz AMD Athlon PC with 512 megabytes

of memory. All our examples were done over prime fields

k = Fq where q is a prime with q ≡ 1 (mod 3). We

randomly generated monic square-free coprime polyno-

mials G,H ∈ Fq[t] so that deg(GH2) ≡ 0 (mod 3) and
deg(G) ≥ deg(H); the latter condition was imposed in

lieu of the fact that the curves y3 = GH2 and y3 = G2H

generate the same function field and maximal order. For

several not too large fields K, we computed a pair of

fundamental units; however, for most fields, this was

not feasible due to the size of the units–one runs out

of virtual memory for fields of even moderate size–so

we computed the regulator only. Our largest regulator

R = 15 314 917 occurred for q = 37, G = x5+7x4+31x3,

H = x2+19x+24, and took 9 hours, 47 minutes to com-

pute.

We also compared some of our computational results

with those given by Magma’s built-in Regulator() func-

tion. In those cases where the built-in function produces

a result, it gives the answer faster than our algorithm.

However, Regulator() requires far more storage than

Voronoi’s algorithm and sometimes runs out of memory

for even quite small fields; for example, it was unable to

compute the not very large regulator R = 32239 for q =

43, G = x3+37x2+17x+15, and H = x3+18x2+8x+33,

which our method produced in only 38 seconds. To be

fair, however, Magma’s Regulator() function works for

arbitrary function fields, whereas Voronoi’s technique is

only applicable to cubic extensions.

As in the unit and regulator algorithms, p denotes the

preperiod length and l the period length of the 0-chain of

1. Also, m is the number of steps performed for finding

the second unit, i.e., the number of elements computed in

the 2-chain of θ where θ is the first element in the prim-

itive period of the 0-chain of 1. The set { 1, 2} is a pair
of fundamental units, and R is the regulator of the field

K = Fq(t)(
3
√
GH2). Table 1 explicitly lists the two fun-

damental units for an example with minimal nontrivial

parameters (q = 7, deg(G) = deg(H) = 2). In Table 2,

which uses larger parameters, we only give the degree of

1 and 2 ; note that if i = e0i+e1iρ+e2iω (e0i, e1i, e2i ∈
k[t] for i = 1, 2), then | 1|0 = |e01| = |e11ρ| = |e21ω| and
| 2|2 = |e02| = |e12ρ| = |e22ω|. For these examples, we
still did compute the units explicitly; they were simply

too large to write down while at the same time keeping

the length of this paper within reasonable limits. Tables

1 and 2 also show the computation time (in minutes and

seconds) for each unit.

For a more extensive set of parameters, we computed

the regulator only (Table 3). Here, we give the total

time required (in seconds, minutes, and hours) to find

R. In four of our examples, 2R exceeds the upper Hasse-

Weil bound (6—1), implying that the purely cubic func-

tion fields in question have ideal class number 1 and their

Jacobians have order R. This occurred when deg(G) = 4

and deg(H) = 1 for q = 73, 103, and 199, as well as when

q = 811. The corresponding values of R in Table 3 are

marked with an asterisk (∗).
We noticed that the preperiod p is often small com-

pared to the period l, and is frequently equal to zero,

particularly when deg(G) = deg(H). Furthermore, all

our examples show that m is very small compared to l

most of the time; the only case where m is as large as

l happens for some, but not all, of the examples where

deg(G) = deg(H). Finally, we observed that if G and

H have equal degree, then the regulator R tends to be

comparatively small. In fact, R is usually close to the

product lm. From the bounds in Proposition 4.5, it is

easy to infer that l(m + j) ≤ R ≤ cl(m + j) where j is

such that φm is associate to θj . Here, c depends only on

deg(∆) and is no larger than deg(∆)2/2. Hence, if j is

small, we do indeed expect R ≈ lm, as our computations
suggest. In any case, the sizes of R, p, l,m, and j clearly

present an interesting subject for further study.
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Field Parameters q, G, H p, l, m Unit Degrees Time per Unit

q = 7 p = 246 deg( 1) = 4791 3 m 3 s

G = x8 + 2x7 + 5x6 + 5x5 + 5x4 + x3 + 2x2 + 4x+ 3 l = 3595 deg( 2) = 882 1 s

H = x2 + 4x m = 26

q = 13 p = 5023 deg( 1) = 1547 7 m 47 s

G = x7 + 4x6 + 8x5 + 9x4 + 9x3 + x+ 7 l = 1312 deg( 2) = 562 38 s

H = x+ 1 m = 438

q = 19 p = 231 deg( 1) = 1850 40 s

G = x4 + 4x3 + 18x l = 1666 deg( 2) = 646 6 s

H = x4 + 12x3 + 8x2 + 14x+ 15 m = 454

q = 31 p = 0 deg( 1) = 998 8 s

G = x4 + 28x3 + 9x2 + 30x+ 13 l = 928 deg( 2) = 454 < 1 s

H = x+ 2 m = 2

q = 37 p = 83 deg( 1) = 1849 33 s

G = x3 + 26x+ 26 l = 1744 deg( 2) = 1265 < 1 s

H = x3 + 19x2 + 16x+ 21 m = 44

q = 43 p = 81 deg( 1) = 2975 1 m 13 s

G = x4 + 42x3 + 21x2 + 19x+ 35 l = 2841 deg( 2) = 1309 < 1 s

H = x+ 4 m = 8

q = 73 p = 0 deg( 1) = 1144 14 s

G = x2 + 65x+ 34 l = 1131 deg( 2) = 1061 < 1 s

H = x2 + 45x+ 43 m = 1

TABLE 2. Fundamental unit degree computations.

q G H p l m R Time

7 x2 + 2x+ 6 x2 + 5x+ 3 0 4 1 13 < 1 s

x4 + 5x3 + 6x2 + 5 x+ 5 0 7 7 163 1 s

x3 + 2x2 + 5x+ 5 x3 + 5x+ 3 0 2 2 37 < 1 s

x5 + 4x4 + 5x3 + 4x2 x2 + 5x+ 2 21 47 42 3276 < 1 s

+2x+ 3

x7 + 3x6 + 2x5 + 6x4 x+ 5 0 552 13 9589 2 s

+3x3 + x+ 2

x4 + 5x2 + 3x x4 + 4x3 + 4x2 0 11 11 441 < 1 s

+4x+ 3

x6 + 5x5 + x4 + x3 x3 + 5x2 + 4x+ 1 592 525 24 23344 7 s

+6x2 + 5

x8 + 2x7 + 5x6 x2 + 4x 246 3595 26 135121 46 s

+5x5 + 5x4 + x3

+2x2 + 4x+ 3

TABLE 3. Regulator computations.
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q G H p l m R Time

13 x2 + 8x+ 10 x2 + 10x+ 2 0 11 3 61 < 1 s

x4 + 10x3 + 11x2 + 4x x+ 9 0 62 4 336 1 s

x3 + 7x2 + 2x x3 + 8x2 178 163 10 2569 4 s

+10x+ 11

x5 + 9x4 + 5x3 x2 + 10x+ 11 3097 6933 12 186276 5 m

+6x2 + 2 43 s

x7 + 4x6 + 8x5 + 9x4 x+ 1 5023 1312 438 731092 2 m

+9x3 + x+ 7 57 s

x4 + 8x3 + 6x2 x4 + x3 + 11x2 192 3511 40 142861 1 m

+7x+ 12 +2x+ 9 20 s

x6 + 8x5 + x4 + 8x3 x3 + x2 47819 32827 388 7401027 4 h

+x2 + 4x+ 1 +10x+ 12 22 m

19 x2 + 2x+ 5 x2 + 7 0 156 2 307 < 1 s

x4 + 9x3 + x+ 18 x+ 13 0 405 6 2817 1 s

x3 + 11x2 + x+ 15 x3 + 3x2 + x+ 10 0 314 9 3769 < 1 s

x5 + 16x4 + 18x3 x2 + 17x+ 5 188 10890 20 151801 5 m

+6x2 + 13x+ 5 17 s

x7 + 8x6 + 17x5 + 17x3 x+ 13 683 26324 127 3543631 26 m

+16x2 + 3x+ 1 58 s

x4 + 4x3 + 18x x4 + 12x3 + 8x2 231 1666 544 1089148 18 s

+14x+ 15

31 x2 + 10x+ 10 x2 + 10x+ 30 0 1 1 4 < 1 s

x4 + 28x3 + 9x2 x+ 2 0 928 2 3748 4 s

+30x+ 13

x3 + 28x2 + 8x+ 3 x3 + 7x2 + 18x+ 14 0 66 66 5363 < 1 s

x5 + 12x4 + 11x3 x2 + 3x+ 20 6068 13998 45 742228 18 m

+14x2 + 11x+ 26 48 s

37 x2 + 11x+ 32 x2 + 27x+ 36 0 3 3 25 < 1 s

x4 + 13x3 + 36x2 x+ 14 111 133 132 19612 1 s

+36x+ 26

x3 + 26x+ 26 x3 + 19x2 + 16x+ 21 83 1744 44 90111 13 s

x5 + 7x4 + 31x3 x2 + 19x+ 24 4525 124605 113 15314917 9 h

+12x2 + 34x+ 35 47 m

43 x2 + 38x+ 30 x2 + 30x+ 16 194 297 5 1612 2 s

x4 + 42x3 + 21x2 x+ 4 81 2841 8 28861 29 s

+19x+ 35

x3 + 37x2 + 17x+ 15 x3 + 18x2 + 8x+ 33 0 3393 9 32239 38 s

x5 + 8x4 + 26x3 x2 + 35x+ 17 185 23690 21 849853 23 m

+31x2 + x+ 15 30 s

TABLE 3 (continued). Regulator computations.
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q G H p l m R Time

73 x2 + 65x+ 34 x2 + 45x+ 43 0 1131 1 1801 8 s

x4 + 46x3 + 51x2 x+ 15 384 17456 18 ∗ 402928 14 m

+51x+ 56 21 s

x3 + 24x2 + 72x+ 32 x3 + 58x2 + 29x+ 13 11847 18206 67 940251 41 m

34 s

103 x2 + 11x+ 101 x2 + 101x+ 22 10 31 31 1024 1 s

x4 + 63x3 x+ 62 4349 20827 42 ∗ 1046143 25 m

+48x2 + 96 12 s

199 x2 + 156x+ 184 x2 + 52x+ 158 0 777 1 1459 19 s

x4 + 47x3 + 178x2 x+ 33 742 27561 243 ∗ 6945127 40 m

+ 191x + 68 41 s

811 x2 + 484x+ 424 x2 + 546x+ 156 145 765 765 ∗ 591361 5 s

911 x2 + 516x+ 879 x2 + 664x+ 267 0 23060 3 107275 21 m

58 s

TABLE 3 (continued). Regulator computations.
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