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Logarithmic signatures are a special type of group factorizations,
introduced as basic components of certain cryptographic keys.
Thus, short logarithmic signatures are of special interest. We
deal with the question of finding logarithmic signatures of min-
imal length in finite groups. In particular, such factorizations
exist for solvable, symmetric, and alternating groups.

We show how to use the known examples to derive min-
imal length logarithmic signatures for other groups. Namely,
we prove the existence of such factorizations for several classi-
cal groups and—in parts by direct computation—for all groups
of order <175560 (= ord(J1), where J1 is Janko’s first spo-
radic simple group). Whether there exists a minimal length
logarithmic signature for each finite group still remains an open
question.

1. INTRODUCTION

Public Key Cryptography nourishes on hard mathemat-

ical problems which very often, but not exclusively, arise

from number theory. In the early ’80s, several authors

explored the possibility of using group theoretical prob-

lems for cryptography [Wagner and Magyarik 85, Wag-

ner 90, Magliveras 86]. In particular owing to Magliv-

eras et al., there are various proposals for cryptographic

schemes which make use of special factorizations (so-

called logarithmic signatures) of finite groups [Magliv-

eras 86, Magliveras et al. 02]. Besides inspiring further

cryptographic research [González Vasco and Steinwandt

02, González Vasco et al. 03, Birget et al. 02, Bohli

et al. 02], these factorizations are interesting mathemat-

ical objects in themselves. For example, Hajós’ work

on Minkowski’s conjecture illustrates that for abelian

groups, this kind of factorization arises in the study of

high-dimensional tilings (see [Stein and Szabó 94]).

Defined to be used as keys within a cryptographic

scheme, the question of finding short logarithmic sig-

natures arises naturally. The logarithmic signatures of

abelian groups considered in Rédei’s theorem (see, e. g.,

[Stein and Szabó 94]) are also examples of logarithmic

signatures of minimal possible length.
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In this contribution, we study the existence of mini-

mal length logarithmic signatures for several families of

finite groups: In Section 2, we give the basic definitions

and notations; Section 3 details a (constructive) proof of

the existence of minimal logarithmic signatures for solv-

able groups and recalls some other known constructions.

Thereafter, we discuss how to extend these results to ob-

tain new examples. From the arguments in Section 3, one

can conclude that the smallest group for which a mini-

mal length logarithmic signature does not exist (if there

should be any!) must be a simple group. Hence, we

devote Section 4 to studying several families of simple

groups. We start by pointing out that there are suit-

able factorizations for PSL2(q) and some other classical

groups. Next we prove–in part through direct compu-

tation with a computer algebra system–that all finite

groups of order < 175 560 (the order of Janko’s first spo-

radic simple group) allow for a minimal length logarith-

mic signature. Whether such a factorization exists for

all finite groups is to the best of our knowledge still an

open problem. Some suggestions for possible directions

for further research conclude the paper.

2. PRELIMINARIES

In a series of works, Magliveras et al. [Magliveras 02,

Magliveras 86, Magliveras and Memon 92, Magliveras

et al. 02] explored the possibility of building symmet-

ric and asymmetric cryptosystems using certain group

factorizations. We next recall the definition of logarith-

mic signatures, which are one of the mainstays of their

research. For the basic related notions and results see,

for instance, [Cusack 00].

Definition 2.1. Let G be a finite group. Next, de-

note by α = [α1, . . . ,αs] a sequence of length s ∈ N0
such that each αi (1 ≤ i ≤ s) is itself a sequence

αi = [αi0, . . . ,αiri−1] with αij ∈ G (0 ≤ j < ri) and

ri ∈ N0. Then we call α a logarithmic signature for G if

each g ∈ G is represented uniquely as a product

g = α1j1 · · ·αsjs
with αiji ∈ αi (1 ≤ i ≤ s).
We refer to the sequences αi, i = 1, . . . , s, as blocks of α

and to the integer (α):=
s
i=1 ri as length of α.

Of course, for each group G there always exists a triv-

ial logarithmic signature α := [[g | g ∈ G]] consisting of
a single block. Being precise, we actually obtain ord(G)!

“different” logarithmic signatures in this way, as a block

of a signature is an (ordered) sequence and not just a

set. The distinction of whether a block is a sequence or a

set is mainly motivated by the use of logarithmic signa-

tures in the public key scheme MST1 [Magliveras et al.

02], and as the subsequent discussion concerns only the

length of logarithmic signatures, we can w. l. o. g. ignore

this distinction.

Let us look at a more interesting example of a loga-

rithmic signature: Assume we know a subgroup chain

G = G0 > G1 > · · · > Gs = {eG},
where eG denotes the unit element in G. Now take

α = [αi | i = 1, . . . , s], a sequence such that each

αi = [αij |j = 0, . . . , [Gi−1 : Gi]−1] is a complete system
of left coset representatives of Gi−1 modulo Gi. It is easy
to check that α is a logarithmic signature for G. Such

logarithmic signatures are called exact (left) transversal.

Analogously, one can use right coset representatives to

derive exact (right) transversal logarithmic signatures.

In general, it is a nontrivial problem to check whether

a group has logarithmic signatures of a fixed length.

Luckily, we have at least a lower bound depending on the

group order (first given in [González Vasco and Stein-

wandt 02]), which allows us to recognize the shortest

ones:

Remark 2.2. Let G be a finite group and ord(G) =
k
j=1 p

aj
j the prime factorization of the order of G (with

p1, . . . , pk different prime numbers). Moreover, denote

by B(G) := k
j=1 ajpj the sum of the prime divisors of

ord(G) counting multiplicity. Then for each logarithmic

signature α for G, we have

(α) ≥ B(G). (2—1)

In the remaining part of the paper, we dwell on the

problem of finding logarithmic signatures α for which the

latter inequality is tight, i. e., where (α) = B(G) holds.
Trivial examples are provided by the “empty” logarith-

mic signature α{e} := [ ] (of length 0) for the trivial group
{e} and by the logarithmic signature αCp := [[g |g ∈ Cp]]
for a cyclic group Cp of prime order p. In the next sec-

tion, we look at some more interesting examples.

3. SOME EXAMPLES AND CONSTRUCTION
TECHNIQUES

We start by proving that the bound (2—1) is met

for solvable groups (this result can also be found

in [González Vasco and Steinwandt 02]).
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Proposition 3.1. Let G be a finite solvable group. Then

there exists a logarithmic signature α for G of minimal

length, i. e., such that (α) = B(G).

Proof: Let G be a solvable group of order
k
i=1 pi with

p1, . . . , pk not necessarily distinct prime numbers. As G

is solvable, it allows for a composition series

γ :≡ G = G0 > G1 > · · · > Gk = {eG}
where each [Gi−1 : Gi] is prime and

k
i=1[Gi−1 : Gi] =

k
i=1 pi. Clearly, any exact transversal logarithmic sig-

nature derived from γ has length
k
i=1 pi and is thus of

minimal length.

Remark 3.2. For abelian groups, there is an alterna-

tive construction which leads to a, in general, different,

minimal length logarithmic signature: Let H be a cyclic

group of order ord(H) = pm for some prime p, and take

a any generator of H. Then α = [α1, . . . ,αm] with

αi = [eH , a
pi−1 , . . . , a(p−1)p

i−1
] (i = 1, . . . ,m) is a log-

arithmic signature for H of length m · p = B(H). Now
just observe that the juxtaposition of minimal length log-

arithmic signatures for the cyclic p-primary factors of an

abelian group G yields a minimal length logarithmic sig-

nature for G.

As neither the definition of logarithmic signatures nor

the proof of the bound in Remark 2.2 exploits the fact

that a group allows for inverse elements, it might be

worth pointing out that for finite commutative monoids,

minimal length factorizations do not always exist:

Example 3.3. Using a computer algebra system, one eas-
ily checks by exhaustive search that there exist no 3-

element subsets α1,α2 of the monoid (Z/9Z, ·, 1) such
that α1 · α2 = Z/9Z holds.

Proofs of the tightness of the bound (2—1) for other

families of groups often exploit peculiarities of the under-

lying group structure. This is the case for the symmetric

and alternating groups; the existence of minimal length

logarithmic signatures for the symmetric group Sn was

first proven in [González Vasco and Steinwandt 02], and

the tightness of the bound for the alternating group An

was stated in [Magliveras 02]. Both proofs are construc-

tive, and, moreover, in [Bohli et al. 02], there are exam-

ples of minimal length logarithmic signatures for Sn and

An which are in addition tame and totally nontransversal

(for the definitions of these notions, see [Magliveras et al.

02]).

The mentioned results for symmetric and alternating

groups are in essence obtained by the same technique:

Given a permutation representation of a group G, iden-

tify a point p so that its stabilizer Gp can be factored

through a minimal length logarithmic signature and such

that there exists a complete set of representatives of G

modulo Gp which moves p cyclically. Actually, analo-

gously as in Remark 3.2, the underlying idea is to factor

the group into a “product of disjoint pieces” for which

a minimal length logarithmic signature exists. For the

case where the “disjoint pieces” are finite groups, we can

formalize this idea through the concept of a knit product

of groups [Michor 89] (also called Zappa-Szép product).

Definition 3.4. Let K and H be finite groups. Then we

call two mappings κ : H ×K −→ K, : K ×H −→ H

an automorphically knitted pair of actions for (K,H),

provided that

1. the mapping

ψκ : H −→ SK
h −→ κh(·) := κ(h, ·)

is a group homomorphism,

2. the mapping

φ : K −→ SH
k −→ k(·) := (k, ·)

is a group antihomomorphism, namely eK = idH

and ∀ k1, k2 ∈ K : k1 k2 = k2k1 ,

3. ∀ k1, k2 ∈ K,h ∈ H : κh(k1k2) = κh(k1)κ k1
(h)(k2),

and

4. ∀ k1, k2 ∈ K,h ∈ H : k(h1h2) = κh2 (k)
(h1) k(h2),

where SX denotes the group of permutations on the set

X with functional composition as group operation, i. e.,

for σ, τ ∈ SX , we have (στ )(x) := σ(τ (x)).

Definition 3.5. Let K, H be groups, and (κ, ) an auto-

morphically knitted pair of actions for (K,H). Then the

group defined over K ×H with multiplication

(k1, h1) · (k2, h2) := (k1κh1(k2), k2(h1)h2),

and unit element (eK , eH) is called knit or Zappa-Szép

product of K and H and denoted by K ×(κ, ) H.

Note that K × {eH} and {eK} × H are subgroups of

K ×(κ, ) H, isomorphic respectively to K and H . Also,
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if ψκ ≡ idK , then {eK} × H is a normal subgroup of

K ×(κ, )H, and thus we have a semidirect product (sim-
ilarly, if φ ≡ idH). If both conditions hold, K ×(κ, ) H
is a direct product of K × {eH} and {eK} × H . Actu-
ally, the Zappa-Szép product generalizes the notions of

direct and semidirect product, and it is easy to see that

Zappa-Szép products can be used to derive groups that

allow for a minimal length logarithmic signature:

Proposition 3.6. Let G be a Zappa-Szép product of two

finite groups K and H, and suppose there are logarithmic

signatures αK for K and αH for H such that l(αK) =

B(K) and l(αH) = B(H). Then there exists a logarithmic
signature αG for G with l(αG) = B(G).

Proof: Let αK and αH be of the form

αK = [αK1 , . . . ,α
K
s ], α

K
i = [α

K
i0 , . . . ,α

K
iri−1] (i = 1, . . . , s),

αH = [αH1 , . . . ,α
H
t ], α

H
i = [α

H
i0 , . . . ,α

H
ili−1] (i = 1, . . . , t),

where s, t ∈ N0.Then clearly

αG: = [αG1 , . . . ,α
G
s ,α

G
s+1, . . . ,α

G
s+t]

where

αGi : = [(αKi0 , eH), . . . , (α
K
iri−1, eH)] (i = 1, . . . , s),

αGs+i : = [(eK ,α
H
i0), . . . , (eK ,α

H
ili−1)] (i = 1, . . . , t),

is a minimal length logarithmic signature for G.

Therefore, the bound in Remark 2.2 is, in particular,

tight for any group G that is an extension of two groups

K and H which have logarithmic signatures of minimal

length–and thus for all direct and semidirect products

of groups with that property. The same applies to groups

which are (set theoretically) decomposable as the prod-

uct of two disjoint proper subgroups meeting the bound

of Remark 2.2.

Example 3.7. In the following section, we see that the
groups PSL2(q) have minimal length logarithmic signa-

tures, and thus one concludes the tightness of (2—1) for

the projective mock linear groups PML2(q) (where q is

an even power of an odd prime), for PSL2(q) is a sub-

group of PML2(q) of index two. For further discussion

on projective mock linear groups, we refer to [Blackburn

and Huppert 82, Chapter XI] and [Abhyankar 92].

Starting again with PSL2(q), one also verifies imme-

diately the existence of minimal length logarithmic sig-

natures for general linear groups GL2(q):

Example 3.8. As GL2(q) is a cyclic extension of SL2(q),
and PSL2(q) is SL(2, q) modulo its center, the bound (2—

1) is tight for GL2(q), too.

Similarly, one easily sees that a finite group G has

a minimal length logarithmic signature if it has a sub-

normal series whose factors do. Thus, for instance, the

bound is tight for all nearly solvable groups.1 As a re-

sult, if there exists any finite group which does not have

a minimal length logarithmic signature, then the small-

est (w. r. t. the group order) counterexample must be a

simple group. In the remaining part of this paper, we

therefore focus on simple groups.

4. SIMPLE GROUPS

Finite simple groups are indeed complex objects of study,

but neatly classified [Gorenstein et al. 98] and relatively

well understood. Actually, much research has been de-

voted to the problem of factoring finite simple groups as

a product of two proper subgroups; for a detailed survey,

see [Liebeck et al. 90]. However, the factorizations we

are dealing with are significantly different: They are com-

prised of blocks which impose a unique factorization in

the sense of Definition 2.1 on the group, but the blocks

are not necessarily subgroups and in fact may have no

“structure” at all. Of course, when trying to construct

minimal length logarithmic signatures, we can, in par-

ticular, try to make use of known factorizations of finite

simple groups and to exploit them for our purposes. To

illustrate this approach, in the next section, we consider

factorizations of simple groups into a product of Sylow

subgroups.

4.1 Factoring into a Product of Sylow Subgroups

In [Holt and Rowley 93], Holt and Rowley study which

groups G can be written as a product P1 · · ·Pk where
p1, . . . , pk are the different prime numbers dividing

ord(G) and each Pi is a pi-Sylow subgroup of G. They

show that such a factorization is possible for several types

of groups, including PSL2(q) and PGL3(q) for any prime

power q. As all Sylow subgroups are solvable and there-

fore meet the bound (2—1), we conclude the tightness of

(2—1) for all simple groups PSL2(q) (q > 3) and for all

simple groups PSL3(q) with q ≡ 1 (mod 3) (and hence,
PSL3(q) PGL3(q)).

2

1A group is nearly solvable if it admits a subnormal series so
that each of its factors is a Möbius group; all Möbius groups are
solvable, except from A5.

2For PSL2(q), the existence of minimal length logarithmic signa-
tures is also explored in [Magliveras 02]. However, the proof given
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P2 = (2, 15)(3, 10, 12, 7)(4, 11, 21, 13)(5, 17)(6, 8, 20, 9)(14, 18, 16, 19),

(2, 5)(3, 19, 8, 13)(4, 10, 14, 20)(6, 21, 7, 16)(9, 11, 12, 18)(15, 17),

(2, 5)(3, 8)(4, 16)(6, 20)(7, 10)(9, 12)(14, 21)(15, 17),

(3, 14)(4, 8)(6, 19)(7, 13)(9, 21)(10, 11)(12, 16)(18, 20) ≤ PSL3(4)
P3 = (1, 12, 5)(2, 8, 7)(3, 13, 15)(4, 10, 19)(6, 14, 18)(9, 16, 17),

(1, 5, 12)(2, 13, 9)(3, 17, 7)(6, 14, 18)(8, 15, 16)

(11, 21, 20) ≤ PSL3(4)
P5 = (1, 5, 17, 2, 15)(3, 21, 4, 8, 6)(7, 11, 12, 9, 19)

(13, 16, 20, 14, 18) ≤ PSL3(4)
P7 = (1, 20, 18, 10, 8, 12, 19)(2, 13, 6, 4, 17, 15, 3)

(5, 21, 16, 9, 14, 11, 7) ≤ PSL3(4)
TABLE 1. Factorization PSL3(4) = P7P3P2P5.

Also for q ≡ 1 (mod 3) such a factorization of PSL3(q)
into a product of Sylow subgroups–and thereby a log-

arithmic signature of minimal possible length–can be

available: Representing PSL3(4) as subgroup α,β ≤
S21 with generators

α = (4, 11, 20)(5, 15, 17)(6, 16, 18)(7, 14, 13)

(8, 12, 9)(10, 21, 19),

β = (1, 8, 21, 16, 15, 3, 2)(4, 10, 20, 18, 17, 9, 7)

(5, 12, 11, 14, 19, 13, 6),

and choosing Sylow subgroups P2, P3, P5, P7 as given in

Table 1, we can express PSL3(4) as a product PSL3(4) =

P7P3P2P5. At this, as always throughout the sequel,

the product (σπ) ∈ Sn of two permutations σ,π ∈ Sn
is understood to be the permutation that maps each

i ∈ {1, . . . , n} to π(σ(i)). The correctness of this factor-
ization is easily checked by means of a computer algebra

system like GAP [Team 97] or Magma [Bosma et al. 97].

Similar factorizations can be obtained for PSU4(2) and

PSU3(4). Namely, representing PSU4(2) as subgroup

γ, δ ≤ S45 with generators
γ = (2, 5, 3)(4, 12, 7)(6, 17, 10)(8, 21, 14)(9, 19, 13)

(11, 29, 20)(16, 30, 25)(18, 28, 27)(22, 26, 32)

(23, 36, 31)(33, 35, 39)(34, 37, 41)(40, 42, 43),

δ = (1, 2, 4, 8, 15, 24)(3, 6, 11, 21, 31, 37)

(5, 9, 16, 14, 23, 34)(7, 13, 22, 33, 40, 20)(10, 18, 25)

(12, 17, 26, 35, 42, 30)(19, 28, 29)(32, 38, 43)

(36, 41, 45)(39, 44),

and choosing Sylow subgroups P2, P3, P5 as listed in Ta-

ble 2, we can express PSU4(2) as a product PSU4(2) =

there does not cover all choices of q. For example, for PSL2(13),
no logarithmic signature can be obtained in this way.

P3P2P5. Juxtaposing minimal length logarithmic signa-

tures for these solvable factors yields the required mini-

mal length logarithmic signature for PSU4(2).

Based on the representation PSU3(4) = , ζ ≤ S65 with

= (2, 9, 50, 12, 61, 38, 14, 3, 15, 4, 27, 63, 52, 23, 6)

(5, 32, 21, 10, 53, 33, 18, 11, 55, 45, 22, 47, 30, 16, 8)

(7, 62, 39, 29, 51, 25, 60, 17, 43, 42, 49, 44, 28, 34, 36)

(13, 48, 57, 59, 46, 41, 24, 20, 37, 54, 58, 35, 40, 19, 26)

(56, 64, 65),

ζ = (1, 2, 4, 8, 18, 39, 26, 48, 59, 44, 22, 21, 6, 15, 31)

(3, 7, 10, 23, 33, 47, 27, 16, 34, 9, 20, 41, 61, 40, 58)

(5, 12, 17, 37, 55, 54, 60, 38, 32, 56, 28, 52, 63, 62, 64)

(11, 25, 43, 45, 51, 46, 49, 50, 57, 65, 13, 14, 29, 19, 42)

(24, 35, 36),

in Table 3, a respective factorization PSU3(4) =

P13P5P2P3 of PSU3(4) into Sylow subgroups is specified.

In general, we certainly cannot expect that a logarith-

mic signature of minimal length for a given finite (sim-

ple) group can be obtained by means of a factorization

into Sylow subgroups. Actually, Holt and Rowley prove

in [Holt and Rowley 93] that such a factorization does not

exist for the simple group PSU3(3). At the moment, we

do not know whether there exists a finite simple group–

or equivalently any finite group–for which no logarith-

mic signature at all meeting the bound (2—1) exists. In

the next section, we show that, in particular, for all spo-

radic simple Mathieu groups, a minimal length logarith-

mic signature exists, and thereafter, we prove that all

simple groups of order < 175 560 (the order of Janko’s

first sporadic simple group) allow for a minimal length

logarithmic signature, too. This implies that the bound
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P2 = (1, 30, 45, 23)(2, 28, 3, 42)(4, 17, 16, 19)(5, 11)(6, 9, 26, 35)

(7, 43, 20, 27)(8, 31, 41, 12)(10, 44, 39, 18)(13, 40, 32, 38)

(14, 36, 37, 29)(15, 24, 34, 21)(22, 33),

(1, 15, 17, 6)(2, 44, 31, 13)(3, 32, 12, 18)(4, 40, 23, 39)(5, 22)(7, 20)

(8, 9, 42, 24)(10, 30, 38, 16)(11, 33)(14, 37)(19, 34, 45, 26)

(21, 28, 35, 41)(27, 29)(36, 43),

(1, 21, 17, 35)(2, 10, 31, 38)(3, 40, 12, 39)(4, 32, 23, 18)(5, 33)

(6, 41, 15, 28)(7, 20)(8, 26, 42, 34)(9, 19, 24, 45)(11, 22)

(13, 16, 44, 30)(14, 37)(27, 36)(29, 43) ≤ PSU4(2)
P3 = (1, 27, 3, 19, 16, 12, 11, 34, 25)(2, 32, 26, 17, 8, 21, 33, 24, 36)

(4, 30, 22, 37, 43, 45, 10, 35, 31)(5, 41, 29)

(6, 20, 44, 28, 13, 14, 40, 38, 23)(7, 42, 18)(9, 39, 15),

(2, 44, 34)(3, 40, 24)(4, 22, 30)(5, 42, 41)(6, 32, 12)(7, 18, 39)

(8, 25, 28)(9, 15, 29)(10, 31, 35)(13, 20, 38)(14, 27, 17)(16, 33, 23)

(21, 36, 26)(37, 45, 43) ≤ PSU4(2)
P5 = (1, 30, 40, 34, 20)(2, 42, 21, 18, 37)(3, 23, 10, 13, 7)(4, 35, 15, 27, 17)

(5, 11, 33, 22, 25)(6, 14, 45, 28, 9)(8, 38, 26, 36, 19)(12, 16, 24, 32, 43)

(29, 31, 41, 39, 44) ≤ PSU4(2)

TABLE 2. Factorization PSU4(2) = P3P2P5.

(2—1) must be tight for arbitrary (not necessarily simple)

groups of order < 175 560.

4.2 Mathieu Groups

Among the sporadic simple groups, the five Mathieu

groups M11, M12, M22, M23, and M24 were constructed

two centuries ago. They are highly transitive permuta-

tion groups and can be obtained as the automorphism

groups of Steiner systems. More precisely, M12 is the

sharply 5-transitive automorphism group of a Steiner

system S(5, 6; 12) and M24 is the 5-transitive automor-

phism group of a Steiner system S(5, 8; 24). We refer

to [Beth et al. 99] for notations and the realization of

the Mathieu groups as automorphism groups of Steiner

systems. In the following, we employ a more direct con-

struction which allows us to obtain the Mathieu groups as

symmetries of the projective geometries PG(2,F11) and
PG(2,F23), respectively.
We first outline an elementary construction of the

Mathieu groups M11 and M12 based on the projective

geometry PG(2,F11). Let

P = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,∞}

denote the points of the standard coordinatization of

PG(2,F11). Then M12 can be obtained as a permuta-

tion group on the set P . Namely, consider the following

mappings (see [Gorenstein 82, Chapter 2.2]) which per-

mute the set P :

f : x→ x+ 1, g : x→ − 1
x
, h : x→ 4x2 − 3x7.

Note that by convention ∞ = 1/0 and 0 = 1/∞. The
elements f and g generate the group PSL2(11) which is

contained in M12 := f, g, h . Explicitly, f , g, and h give

rise to the following permutations σ, τ , and π of P :

σ = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10),

τ = (0,∞)(1, 10)(2, 5)(3, 7)(4, 8)(6, 9),
π = (2, 6, 10, 7)(3, 9, 4, 5).

Now M12 is a simple group of order 95 040 which is

sharply 5-transitive on the points P . Furthermore,

M11 is defined as the stabilizer of the point 0. Hence,

ord(M11) = 7 920 and a direct calculation shows that

M12 = K12 ·M11, (4—1)
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P2 = (1, 40, 29, 21)(2, 23, 15, 20)(3, 49, 34, 12)(4, 27, 46, 54)

(5, 50, 30, 26)(6, 32, 47, 38)(7, 35, 65, 25)(8, 41, 62, 13)

(9, 44, 36, 52)(10, 28, 45, 56)(11, 53, 59, 17)(14, 61, 24, 63)

(16, 19, 43, 37)(22, 60, 48, 31)(33, 39, 58, 55)(42, 51, 64, 57),

(1, 27, 24, 6)(2, 8, 22, 37)(3, 51, 52, 33)(4, 21, 38, 61)(5, 25, 45, 11)

(7, 50, 53, 56)(9, 64, 49, 39)(10, 59, 30, 35)(12, 55, 36, 42)

(13, 20, 43, 31)(14, 47, 29, 54)(15, 62, 48, 19)(16, 60, 41, 23)

(17, 28, 65, 26)(32, 63, 46, 40)(34, 57, 44, 58),

(1, 2, 14, 48)(3, 30, 44, 45)(4, 16, 32, 13)(5, 52, 10, 34)(6, 62, 54, 37)

(7, 42, 17, 39)(8, 27, 19, 47)(9, 28, 12, 50)(11, 58, 35, 51)

(15, 24, 22, 29)(20, 63, 60, 21)(23, 61, 31, 40)(25, 57, 59, 33)

(26, 36, 56, 49)(38, 41, 46, 43)(53, 55, 65, 64),

(1, 57, 14, 33)(2, 35, 48, 11)(3, 6, 44, 54)(4, 12, 32, 9)(5, 37, 10, 62)

(7, 31, 17, 23)(8, 30, 19, 45)(13, 26, 16, 56)(15, 25, 22, 59)

(20, 65, 60, 53)(21, 42, 63, 39)(24, 58, 29, 51)(27, 34, 47, 52)

(28, 41, 50, 43)(36, 46, 49, 38)(40, 64, 61, 55) ≤ PSU3(4)
P3 = (1, 21, 22)(2, 14, 40)(3, 62, 42)(4, 65, 49)(5, 41, 25)(6, 33, 56)

(7, 9, 32)(8, 55, 44)(10, 13, 11)(12, 38, 53)(15, 29, 61)(16, 59, 30)

(17, 36, 46)(19, 39, 34)(23, 31, 60)(24, 63, 48)(26, 47, 51)

(27, 57, 28)(35, 45, 43)(37, 64, 52)(50, 54, 58) ≤ PSU3(4)
P5 = (1, 40, 52, 42, 30)(2, 51, 60, 38, 8)(3, 55, 10, 24, 63)

(4, 37, 22, 33, 23)(5, 29, 21, 44, 64)(6, 53, 43, 28, 9)(7, 13, 26, 49, 27)

(12, 54, 65, 41, 50)(14, 61, 34, 39, 45)(15, 57, 31, 32, 62)

(16, 56, 36, 47, 17)(19, 48, 58, 20, 46),

(1, 47, 54, 5, 15)(2, 51, 60, 38, 8)(3, 53, 49, 34, 22)(4, 24, 9, 13, 14)

(6, 26, 61, 37, 63)(7, 45, 23, 10, 28)(11, 59, 25, 35, 18)

(12, 64, 62, 30, 36)(16, 41, 21, 31, 52)(17, 65, 29, 57, 40)

(19, 58, 46, 48, 20)(27, 39, 33, 55, 43)

(32, 42, 56, 50, 44) ≤ PSU3(4)
P13 = (1, 3, 48, 30, 53, 6, 58, 18, 60, 56, 16, 55, 38)

(2, 65, 21, 61, 13, 46, 45, 19, 10, 59, 42, 8, 64)

(4, 54, 14, 50, 27, 44, 26, 15, 22, 34, 25, 29, 32)

(5, 47, 35, 28, 39, 51, 31, 37, 36, 9, 62, 33, 20)

(7, 49, 24, 43, 40, 57, 23, 63, 17, 52, 12, 41, 11) ≤ PSU3(4)

TABLE 3. Factorization PSU3(4) = P13P5P2P3.

where K12 ≤ M12 is the subgroup of order 12 generated

by

α := (0, 7)(1, 8)(2, 6)(3,∞)(4, 10)(5, 9),
β := (0, 1)(2, 9)(3, 4)(5, 6)(7, 8)(10,∞).

In terms of the generators σ, τ , and π, we obtain

the factorizations α = πσ2τπ−1τπτ−1σ−2π−1 and β =

π−1τσ2τ−1σπ.
Since K12 is an abelian group isomorphic to a product

C2 × C6 of two cyclic groups, we obtain from Equation

(4—1) that M12 has a logarithmic signature of minimal

length if we can find one for M11. To put it another way,

we have that M12 is a Zappa-Szép product of K12 and

M11 (see Section 3).

Focusing on M11, we consider the stabilizer of the

point 1 and obtain a group M10 of order 720 which is

known to have a composition series {eM10}<A6<M10.

Since A6 allows for a logarithmic signature meeting the

bound (2—1) [Magliveras 02, González Vasco and Stein-

wandt 02] and the factor group is isomorphic to C2, we

obtain that M10 has a logarithmic signature of minimal

length, and because ofM11 being isomorphic to a Zappa-

Szép product

M11 = C11 ·M10,

we can also construct minimal length logarithmic signa-

tures for the small Mathieu groups M11 and M12.

4.2.1 The Mathieu groups M22, M23, and M24. Simi-

larly to the construction of M12, one may obtain M24 as

a permutation group acting on the projective geometry

PG(2,F23). This time, we start from PSL2(23) which
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group order possible minimal length factorization

Cp (p prime) p trivial: [[g | g ∈ Cp]]
An (n≥5) n!/2 stabilizer chain (see [Magliveras 02]

and [Bohli et al. 02])

PSL2(q) (q>3)
q·(q2−1)
gcd(2,q−1) product of Sylow subgroups (Section 4.1)

PSL3(q) (q≡31) q3(q3−1)(q2−1) product of Sylow subgroups (Section 4.1)

PSL3(4) 20 160 product of Sylow subgroups (Table 1)

PSU4(2) 25 920 product of Sylow subgroups (Table 2)

PSU3(4) 62 400 product of Sylow subgroups (Table 3)

M11 7 920 product of subgroups: C11 ·A6 · C2
M12 95 040 product of subgroups: (C2 × C6) ·M11

M22 443 520 product of subgroups: PSL3(4) · C2 · C11
M23 10 200 960 product of subgroups: C23 ·M22

M24 244 823 040 product of subgroups: S4 ·M23

TABLE 4. Simple groups meeting the bound in Remark 2.2.

is generated by f : x → x + 1 and g : x → − 1
x . The

mapping, (see [Gorenstein 82])

h : x→ −3x15 + 4x4,

defines a permutation of the points of PG(2,F23). The
Mathieu group M24 is defined as M24 := σ, τ,π , where

the permutations σ, τ , and π are obtained from f , g, and

h. Explicitly, we have

σ = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22),

τ = (0,∞)(1, 22)(2, 11)(3, 15)(4, 17)(5, 9)(6, 19)
(7, 13)(8, 20)(10, 16)(12, 21)(14, 18),

π = (2, 16, 9, 6, 8)(3, 12, 13, 18, 4)(7, 17, 10, 11, 22)

(14, 19, 21, 20, 15).

Note that M24 can be written as a Zappa-Szép product

in the following way:

M24 = S4 ·M23,

where M23 denotes the stabilizer of the point 0 in M24.

The symmetric group S4 := α,β ≤ M24 is generated

by the permutations

α := (0, 2)(1, 14)(3, 8)(4,∞)(5, 20)(6, 17)(7, 10)
(9, 21)(11, 18)(12, 16)(13, 15)(19, 22),

β := (0, 1,∞, 12)(2, 7, 3, 9)(4, 18, 13, 22)(5, 10, 16, 19)
(6, 11, 14, 21)(8, 20, 15, 17).

We can descend one more step to M22 since the corre-

sponding transversal can be chosen to be a cyclic group

of order 23. More precisely, we have M23 = C23 ·M22,

where M22 stabilizes the points 0 and 1, and C23 is a

cyclic group of order 23. In fact, as generator of C23, we

can choose an arbitrary element of order 23 in M23.

Finally, M22 can be realized as follows: We define the

subgroups

C11 := (2, 19, 9, 7, 18, 12,∞, 5, 11, 16, 21)
(3, 17, 8, 10, 13, 20, 22, 14, 6, 4, 15) ≤M22

and

C2 := (2, 10)(3, 19)(4, 11)(7, 13)(8, 21)(9, 15)(12, 14)

(16, 17) ≤M22.

Then the subset A := C2 · C11 of M22 has the property

that for each point x ∈ {2, . . . , 22,∞}, there is an ele-
ment ρ ∈ A such that ρ(2) = x. On the other hand, the
stabilizer of the points 0, 1, and 2 inside M24 is isomor-

phic to the simple group PSL3(4) of order 20 160. Thus,

using the result that PSL3(4) has a logarithmic signature

of minimal possible length (see Table 1), we also obtain

a logarithmic signature forM22 = PSL3(4) ·A that meets
the bound (2—1). Hence, by the previous arguments,M23

andM24 also have logarithmic signatures of minimal pos-

sible length.

4.3 A Lower Bound for the Size of a Counterexample

In Table 4, the simple groups for which we already know

that the bound in Remark 2.2 is tight are listed.

In particular, this list covers all simple groups of order

≤ 217 up to the following three exceptions:

• PSU3(3) (of order 6 048)
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C4 = (1, 7, 13, 21)(2, 8, 19, 4)(3, 24, 22, 18)(5, 6, 10, 14)(9, 23)

(11, 20, 28, 15)(12, 16)(17, 27, 25, 26) ≤ PSU3(3)

C7 = (1, 11, 8, 14, 20, 27, 2)(3, 5, 12, 21, 18, 4, 28)(6, 23, 24, 26, 22, 9, 13)

(7, 25, 16, 17, 10, 15, 19) ≤ PSU3(3).

TABLE 5. Factors C4 and C7 of the factorization PSU3(3) = G1C4C7.

C5 = (1, 38, 43, 40, 64)(2, 50, 32, 63, 44)(3, 18, 10, 65, 61)

(4, 7, 15, 24, 12)(5, 19, 33, 54, 17)(6, 8, 36, 27, 13)

(9, 31, 48, 47, 30)(11, 49, 51, 20, 23)(14, 60, 16, 53, 57)

(21, 39, 56, 35, 37)(22, 46, 58, 45, 59)(25, 34, 62, 26, 41)

(28, 55, 29, 42, 52) ≤ Sz(8)
C13 = (1, 46, 21, 18, 47, 51, 22, 31, 15, 4, 39, 6, 41)

(2, 56, 32, 27, 5, 49, 3, 20, 40, 54, 50, 59, 23)

(7, 42, 48, 61, 37, 65, 53, 36, 19, 8, 17, 45, 43)

(9, 52, 55, 29, 38, 12, 62, 25, 57, 24, 11, 58, 30)

(10, 63, 26, 14, 44, 35, 13, 34, 33, 16, 64, 28, 60) ≤ Sz(8)
TABLE 6. Factors C5 and C13 of the factorization Sz(8) = G1C5C13.

• Sz(8) (of order 29 120)

• PSU3(5) (of order 126 000)

Subsequently, we give a logarithmic signature for each of

these three groups. They have been found and verified

by means of the computer algebra system Magma.

4.3.1 PSU3(3). We represent PSU3(3) as a subgroup

α,β ≤ S28 with generators

α = (2, 7, 23, 26, 17, 13, 6, 3)(4, 19, 11, 28, 25, 24, 16, 9)

(5, 18, 10, 14, 15, 8, 20, 12)(21, 27),

β = (1, 2, 4, 10, 8, 16, 13, 22)(3, 7, 9, 17, 6, 12, 21, 5)

(11, 19, 26, 14, 15, 23, 24, 25)(27, 28).

Then PSU3(3) can be factored into a product α,β =

G1C4C7 where G1 is the stabilizer of 1, and C4, respec-

tively, C7, is a cyclic group of order 4, respectively, 7.

Precise choices for C4 and C7 are given in Table 5.

As the stabilizer G1 (of order 216 = ord(PSU3(3))/(4 ·
7)) is solvable, we immediately obtain a minimal length

logarithmic signature for PSU3(3) by juxtaposing mini-

mal length logarithmic signatures for the three subgroups

G1, C4, and C7.

4.3.2 Sz(8). We represent the Suzuki group Sz(8) as

subgroup α,β ≤ S65 with generators

α = (1, 2)(3, 4)(5, 7)(6, 9)(8, 12)(10, 13)(11, 15)(14, 19)

(16, 21)(17, 23)(18, 25)(20, 28)(22, 31)(24, 33)

(26, 35)(27, 32)(29, 37)(30, 39)(34, 43)(36, 46)

(38, 48)(41, 51)(42, 44)(45, 55)(47, 50)(49, 58)

(52, 60)(53, 61)(54, 59)(56, 62)(57, 63)(64, 65),

β = (1, 3, 5, 8)(4, 6, 10, 14)(7, 11, 16, 22)(9, 12, 17, 24)

(13, 18, 26, 36)(15, 20, 29, 38)(19, 27, 31, 28)

(21, 30, 40, 50)(23, 32, 41, 52)(25, 34, 44, 54)

(33, 42, 53, 43)(35, 45, 56, 63)(37, 47, 51, 46)

(39, 49, 59, 60)(48, 57, 55, 58)(61, 64, 62, 65).

Then Sz(8) can be factored into a product Sz(8) =

G1C5C13 where G1 is the stabilizer of 1, and C5, respec-

tively, C13, is cyclic of order 5, respectively, 13. Concrete

choices for the cyclic groups C5 and C13 are given in Ta-

ble 6.

As the stabilizer G1 (of order 448=ord(Sz(8))/(5 ·13))
is solvable, we immediately obtain the required mini-

mal length logarithmic signature for Sz(8) by juxtaposing

minimal length logarithmic signatures for the three fac-

tors G1, C5, and C13.
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C2 = (1, 60)(3, 6)(4, 27)(5, 21)(7, 94)(8, 59)(9, 12)(10, 83)(11, 42)

(13, 30)(14, 84)(15, 58)(16, 47)(17, 32)(18, 74)(19, 115)(20, 77)

(22, 54)(23, 78)(24, 120)(25, 82)(26, 43)(28, 114)(29, 100)(31, 76)

(33, 106)(34, 35)(36, 45)(37, 80)(38, 39)(40, 105)(41, 98)(44, 55)

(46, 67)(48, 79)(49, 116)(50, 61)(52, 124)(53, 71)(56, 91)(57, 70)

(62, 97)(63, 119)(64, 92)(65, 88)(66, 111)(68, 103)(69, 109)

(72, 96)(73, 101)(75, 126)(81, 122)(86, 107)(87, 113)(90, 110)

(93, 108)(95, 125)(102, 121)(104, 112)(118, 123) ≤ PSU3(5)
C
(1)
3 = (1, 81, 13)(2, 119, 26)(3, 16, 105)(4, 121, 97)(5, 120, 109)

(6, 24, 113)(7, 10, 28)(8, 40, 74)(9, 66, 94)(11, 39, 49)(12, 112, 62)

(14, 60, 83)(15, 126, 122)(17, 123, 56)(18, 76, 33)(19, 69, 91)

(20, 101, 45)(21, 87, 61)(22, 78, 104)(23, 100, 65)(25, 43, 72)

(27, 67, 75)(29, 58, 36)(30, 51, 38)(31, 118, 108)(32, 59, 89)

(34, 41, 55)(35, 82, 71)(37, 103, 110)(42, 63, 86)(44, 114, 107)

(46, 48, 116)(47, 85, 115)(50, 90, 80)(52, 77, 70)(53, 124, 111)

(54, 98, 102)(57, 84, 117)(64, 79, 88)(68, 93, 106)(73, 95, 99)

(92, 125, 96) ≤ PSU3(5)
C
(2)
3 = (1, 8, 6)(2, 57, 56)(3, 88, 104)(4, 79, 9)(5, 22, 97)(7, 30, 67)

(10, 58, 54)(11, 28, 27)(12, 75, 106)(13, 19, 94)(14, 50, 51)

(15, 68, 66)(16, 34, 44)(17, 36, 73)(18, 25, 32)(20, 93, 112)

(21, 26, 70)(23, 87, 24)(29, 64, 111)(31, 47, 116)(33, 105, 91)

(35, 98, 84)(37, 72, 121)(38, 83, 40)(39, 59, 78)(41, 110, 71)

(42, 43, 69)(45, 108, 123)(46, 95, 102)(48, 100, 77)(49, 115, 55)

(52, 80, 63)(53, 125, 96)(60, 82, 89)(61, 124, 76)(62, 113, 74)

(65, 126, 117)(81, 114, 118)(85, 90, 119)(86, 120, 92)

(99, 109, 101)(103, 107, 122) ≤ PSU3(5)
C7 = (1, 108, 125, 9, 17, 95, 64)(2, 39, 63, 34, 111, 25, 60)

(3, 33, 68, 30, 74, 47, 107)(4, 5, 32, 52, 67, 57, 62)

(6, 23, 78, 28, 80, 46, 122)(7, 24, 50, 100, 48, 104, 15)

(8, 18, 85, 93, 44, 51, 16)(10, 116, 113, 22, 90, 126, 65)

(11, 55, 72, 26, 42, 124, 14)(12, 77, 121, 75, 120, 84, 59)

(13, 92, 56, 88, 118, 94, 73)(19, 36, 45, 103, 35, 21, 54)

(20, 98, 110, 69, 82, 29, 87)(27, 112, 109, 70, 117, 97, 89)

(31, 99, 96, 79, 66, 81, 123)(37, 61, 91, 101, 71, 102, 58)

(38, 115, 105, 106, 40, 114, 76)(41, 119, 53, 49, 43, 86, 83)

TABLE 7. Cyclic factors of the factorization PSU3(5) = C7C
(1)
3 C

(2)
3 C2G1.

4.3.3 PSU3(5). We represent PSU3(5) as a subgroup

α,β ≤ S126 with generators

α = (1, 2, 4, 10, 25)(3, 7, 17, 41, 19)(5, 13, 33, 68, 111)

(6, 14, 36, 34, 70)(8, 20, 47, 81, 48)(9, 22, 32, 61, 106)

(11, 28, 37, 40, 82)(12, 30, 24, 55, 65)

(15, 38, 77, 29, 64)(16, 39, 43, 85, 73)

(18, 44, 75, 118, 109)(21, 49, 93, 126, 120)

(23, 53, 42, 83, 52)(26, 58, 104, 122, 101)

(27, 60, 105, 110, 124)(31, 35, 72, 116, 66)

(45, 87, 123, 108, 96)(46, 89, 95, 100, 59)

(50, 94, 57, 76, 103)(51, 97, 114, 71, 107)

(54, 88, 74, 63, 98)(56, 102, 117, 99, 121)

(62, 86, 78, 90, 80)(67, 79, 112, 92, 125)

(69, 113, 84, 115, 119),

β = (2, 13, 112, 108, 24, 93, 45, 7)

(3, 32, 53, 102, 54, 65, 75, 16)

(4, 41, 52, 104, 11, 68, 99, 30)

(5, 81, 122, 18, 56, 34, 19, 63)

(6, 17, 72, 69, 101, 10, 55, 31)

(8, 29, 100, 40, 84, 67, 37, 57)

(9, 36, 98, 124, 27, 94, 117, 66)

(12, 120, 42, 43, 33, 15, 26, 106)
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(14, 76, 64, 85, 86, 96, 70, 97)

(20, 73, 82, 83, 125, 50, 39, 113)

(21, 74, 87, 23, 59, 105, 110, 61)

(22, 60, 88, 123, 78, 62, 90, 116)

(28, 118, 77, 79, 44, 46, 115, 121)

(35, 80, 109, 48, 95, 49, 114, 126)

(38, 91, 47, 92, 51, 107, 71, 119)

(58, 103, 89, 111).

Then PSU3(5) can be factored into a product α,β =

C7C
(1)
3 C

(2)
3 C2G1 where G1 is the stabilizer of 1, C2 is a

cyclic group of order 2, both C
(1)
3 and C

(2)
3 are cyclic

groups of order 3, and C7 is a cyclic group of order

7. Precise choices for the four cyclic factors are given

in Table 7. As the stabilizer G1 (of order 1000 =

ord(PSU3(5))/(2 ·3 ·3 ·7)) is solvable, we immediately ob-
tain a minimal length logarithmic signature for PSU3(5)

by juxtaposing minimal length logarithmic signatures for

the five subgroups G1, C2, C
(1)
3 , C

(2)
3 , and C7.

Thus, if there is any finite group G such that no loga-

rithmic signature for G meets the bound in Remark 2.2,

then the smallest counterexample (w. r. t. the group or-

der) has to be both simple and of order > 217. Further

on, we can exclude all simple groups covered by Table 4,

and thus the smallest group for which the tightness of

(2—1) is open is Janko’s first sporadic group J1 of order

175 560.

5. CONCLUSIONS AND FURTHER RESEARCH

Motivated by the question of finding short keys for the

public key cryptosystemMST1, we have shown that var-

ious finite groups allow for logarithmic signatures of min-

imal possible length. Unfortunately, so far we could not

answer the question whether there is any finite group for

which the bound (2—1) is not tight, but we have shown

that there can be no such group of cardinality smaller

than Janko’s first sporadic simple group.

Both from the mathematical and the cryptographic

point of view, it would be desirable to identify further

families of–not necessarily simple–groups for which the

bound (2—1) is tight. On the cryptographic side, the

question also arises whether logarithmic signatures of

minimal length can be found, where effectively factoring

group elements along the logarithmic signature is com-

putationally hard. Such logarithmic signatures would be

desirable for realizing the MST1 public key cryptosys-

tem.
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