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Let p be an odd prime number which splits into two distinct
primes in an imaginary quadratic field K. Then K has certain
kinds of noncyclotomic Zp-extensions which are constructed
through ray class fields with respect to a prime ideal lying above
p. We try to show that Iwasawa invariants µ and λ both vanish
for these specfic noncyclotomic Zp-extensions.

1. INTRODUCTION

Let p be a prime number. Then the rational number field

Q has the unique Zp-extension Q∞. Iwasawa proved ele-
gantly that the class numbers of all intermediate fields of

Q∞/Q are prime to p ([Iwasawa 56]). Consequently, Iwa-
sawa invariants µ(Q∞/Q) and λ(Q∞/Q) are both zero.
This is based on the fact that there is a unique prime

ideal of Q ramified in Q∞ which is totally ramified. Our

purpose in this paper is to consider a noncyclotomic ana-

log to Iwasawa’s theorem in the case where the base field

is an imaginary quadratic field. We give some numerical

evidence for our expectation.

Let K be an imaginary quadratic field and p an odd

prime number which splits into two distinct primes p and

p̄ in K. We denote by Kn = K(p
n+1) the ray class field

of K modulo pn+1 and put K∞ = ∪∞n=0Kn. Then there

exists a unique Zp-extension K∞ of K in K∞. In the
same way as Q∞/Q, there is a unique prime ideal of K
which is ramified in K∞. One of the differences is that
the prime p of K is not always totally ramified in K∞.
We are led to the following problem.

Problem 1.1. If p is totally ramified in K∞ over K, do

the Iwasawa invariants µ(K∞/K) and λ(K∞/K) vanish?

We note that our situation can be also considered as an

analog to Greenberg’s conjecture which states that both

µ and λ vanish for the cyclotomic Zp-extension of any
totally real number field. Since an imaginary quadratic
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field has no nontrivial units, our situation is simpler even

in comparison with Greenberg’s conjecture for the real

quadratic case. We hope that studies of this problem

provide a somewhat new approach to the original conjec-

ture of Greenberg.

2. CRITERIA

We begin with some notation. Let k be an algebraic

number field. We denote by Ok the integer ring of k, by

Ik the ideal group of k, by Pk the principal ideal subgroup

of Ik, and by hk the class number of k. Let L be a Galois

extension of k. We denote by G(L/k) the Galois group

of L over k and NL/k the norm mapping of L over k.

Now, as mentioned before, let K be an imaginary

quadratic field and p an odd prime number which splits

into two distinct primes p and p̄ in k. We denote by

Kn = K(pn+1) the ray class field of K modulo pn+1

and put K∞ = ∪∞n=0Kn. Then there exists a unique

Zp-extension K∞ of K in K∞. We set Γ = G(K∞/K).
Let Kn be the n-th layer of K∞ over K, An the p-

primary part of the ideal class group of Kn, Bn = A
Γ
n =

{ c ∈ An | cσ = c for any σ ∈ Γ }, Bn the subgroup of
An consisting of ideal classes containing ideals invariant

under the action of G(Kn/K), and Dn the subgroup of

An consisting of classes which contain an ideal, all of

whose prime factors lie above p. Note that the definition

of Dn here is different from that in [Greenberg 76]. If

m ≥ n, we can define a homomorphism in,m : An → Am
by sending the ideal class cl(a) to cl(aOKm) for any ideal

a of Kn. We set Hn,m = Ker in,m. We also define a ho-

momorphism Nm,n : Am → An by sending the ideal class

cl(a) to cl(Nkm/kn(a)) for any ideal a of Km. Moreover,

we denote by λp and µp the Iwasawa invariants of the

Zp-extension K∞/K. It is well known that µp = 0 by

[Gillard 85] and [Schneps 1987]. On the other hand, few

results are known about λp.

We concentrate our attention on the case where p is

totally ramified in K∞. If hK is prime to p, then λp = 0

by Iwasawa’s theorem [Iwasawa 56]. So we are interested

in the case A0 = 0. We first note that the order of Bn is

explicitly known because K has no nontrivial units. The

following lemma is the direct consequence of the genus

formula ([Yokoi 1967]).

Lemma 2.1. Assume that p is totally ramified in K∞
over K. Then, |Bn| = |A0| for all n ≥ 0.

The following proposition is the fundamental criterion

for λp = 0. Though the proof is essentially the same as

in [Greenberg 76, Theorem 2], we include a proof as a

convenience.

Proposition 2.2. Assume that p is totally ramified in K∞
over K. Then µp = λp = 0 if and only if Bn = Dn for

some integer n ≥ 0.

Proof: Assume Bn = Dn and let m ≥ n. Since the prime
of kn lying over p is totally ramified in km, both Nm,n :

Am → An and Nm,n : Dm → Dn are surjective. Then

Lemma 2.1 implies the injectivity of Nm,n : Bm → Bn
and hence, the injectivity of Nm,n : Am → An, which

means |Am| = |An|. Hence, µp = λp = 0. Conversely,

assume µp = λp = 0. Then A0 = H0,n for some n ≥ 0
([Greenberg 76, Proposition 2]). Hence, the genus for-

mula yields Bn = Bn = i0,n(A0)Dn = Dn.

Corollary 2.3. Assume that p is totally ramified in K∞
over K. Then µp = λp = 0 if and only if every ideal

class of A0 becomes principal for some n ≥ 0. [Minardi
86]

Proof: Assume A0 = H0,n for some n ≥ 0. Then the

genus formula yields Bn = Bn = i0,n(A0)Dn = Dn.

Hence, µp = λp = 0 by Proposition 2.2. The converse

is a part of [Greenberg 76, Proposition 2].

As an application of Proposition 2.2, we have the fol-

lowing proposition. We note that for Proposition 2.4,

µp = λp = 0 even when p is not totally ramified in K∞.

Proposition 2.4. If hK = p, then µp = λp = 0.

Proof: If the initial layer K1 of K∞ over K is the ab-

solute class field of K, then λp = 0 by the genus formula.

Assume that p is totally ramified in K∞. Since hK = p,
there exists a prime number q with q ≡ 3 (mod 4) such
that K = Q(

√−q). Let χ be a Dirichlet character asso-
ciated to K. Then, since −1

q = −1, we have

p = hK =
1

q

q−1

ν=1

χ(ν)ν =
1

q

q−1
2

ν=1

χ(ν)ν − χ(ν)(q − ν)

=
1

q

q−1
2

ν=1

χ(ν)(2ν − q) ≤ 1
q

q−1
2

ν=1

(q − 2ν) = (q − 1)2
4q

<
q

4
.

We assume that p is a principal ideal of K. Then there

exist integers x, y ∈ Z with p = x+y
√−q
2 , which implies

that p = x2+y2q
4 < q

4 . This is a contradiction. Hence,

we have D0 = A0, and thus µp = λp = 0 by Proposition

2.2.
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In Sections 4 and 5, we apply Proposition 2.2 and

Corollary 2.3 for Kn constructed explicitly by computer

when p = 3. For that, the discriminant d(Kn) of Kn is

needed.

Lemma 2.5. d(Kn) = p
(pn−1)(n+1− 1

p−1 )+nd(K0)
pn .

Proof: Apply the conductor-discriminant formula for

Kn/K0.

3. CONSTRUCTION OF Kn

We use the same notation as in Section 2. We explain

a method for constructing Kn using complex multipli-

cation for an odd prime number p and an imaginary

quadratic field K different from Q(
√−1 ) and Q(√−3 ).

It is well known that an abelian extension of an imagi-

nary quadratic field is generated by a special value of the

j-function, but the j-function produces polynomials with

huge coefficients and is not useful in actual computations.

There are several methods to find polynomials which gen-

erate a ray class field of an imaginary quadratic field and

have small coefficients using Weber function or Weier-

strass σ-function ([Schertz 97], [Stevenhagen 2001]). We

shall provide a similar, but slightly different, approach

using Siegel functions.

First we define Siegel functions: Let a1, a2 be rational

numbers and τ a complex number with positive imagi-

nary parts. The Siegel functions are defined by

g(a1, a2)(τ ) = −q(1/2)(a
2
1−a1+1/6)

τ e2πia2(a1−1)/2(1− qz)

·
∞

n=1

(1− qnτ qz)(1− qnτ q−1z ),

where qτ = e2πiτ , qz = e2πiz and z = a1τ + a2. Then

g(a1, a2)(τ) is a modular function of some level and Kn

is generated using special values of g.

Let Ip be the subgroup of IK generated by the ideals

which are prime to p. We put Spn = { (α) ∈ PK | α ≡ 1
(mod pn) }. Let C be an element of the ray class group

Ip/Spn+1 . We call C a ray class modulo pn+1 in K. Let

c be an ideal of C and denote C by cln+1(c). Then there

exist elements ω1, ω2 in K with Im(ω1/ω2) > 0 such that

pn+1c−1 = Zω1+Zω2. Since (p) = pp̄, there exist integers
r, s ∈ Z with r

pn+1
ω1 +

s

pn+1
ω2 = 1. We set

gpn+1(C) = g
r

pn+1
,
s

pn+1
ω1
ω2

12pn+1

,

which depends only on C by [Kubert and Lang 81,

page 33, Proposition 1.3]. Then gpn+1(C) is in Kn =

K(pn+1) by [Kubert and Lang 81, page 234, Theorem

1.1] and (gpn+1(C)) = p 6p
n+1

n by [Kubert and Lang 81,

page 246, Theorem 3.2], where pn is the prime ideal of

Kn lying over p. Let S be a ray class modulo p
n+1 in K.

Then we have

gpn+1(C)
Kn/K

S = gpn+1(SC)

by [Kubert and Lang 81, page 234, Theorem 1.1], where
Kn/K
S

is the Artin symbol of S. In particular, if we set

σ =
Kn/K
1+p , then

gpn+1(C)
σ = g

r(1 + p)

pn+1
,
s(1 + p)

pn+1
ω1
ω2

12pn+1

.

We use the following lemmas for our computation.

Lemma 3.1. Let cl0(a1), cl0(a2), · · · , cl0(ar) be genera-
tors of A0, p

ei > 1 the order of cl0(ai) and K the ab-

solute class group of K. We suppose that there exists an

element αi in OK with ap
ei

i = (αi), such that αi ≡ 1

(mod pei+1). Then K ∩ Kn = K and there exist ideals

a1, a2, · · · , ar of K with cl0(ai) = cl0(ai), such that the

orders of cln+1(an) are p
ei , respectively.

Proof: Since αi ≡ 1 (mod pei+1) and since (1 + p)Spn+1
is a generator of Sp/Spn+1 , there exists an integer s ∈ Z
with (1 + p)p

sei
αi ≡ 1 (mod pn+1). We put ai = ai(1 +

p)s. Then cl0(ai) = cl0(ai) and the order of cln+1(ai) is

pei . If the order m of cl1(a) is prime to p for some ideal

a, then there exists an integer α of K such that the order

of cln+1(a(α)) is m. This shows that K ∩Kn = K.

Lemma 3.2. Let C0 be the ray class of modulo pn+1 with
C0 = cln+1(OK), σ =

Kn/K
1+p the Artin symbol and set

α = NKn/Kn
gpn+1(C0)

1−σ .

Then there exists a unique element β of Kn with β
3pn+1 =

α such that Kn = K(β). Furthermore, β is a unit of Kn.

Proof: Let ω1 and ω2 be a basis of p
n+1 over Z with

Im(ω1/ω2) > 0. Then there exist integers r, s ∈ Z, such
that

r

pn+1
ω1 +

s

pn+1
ω2 = 1. Hence we have

gpn+1(C0) = g
r

pn+1
,
s

pn+1
ω1
ω2

12pn+1

and

gpn+1(cln+1((1 + p))C0) =

g
r(1 + p)

pn+1
,
s(1 + p)

pn+1
ω1
ω2

12pn+1

.
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Since the quotient

f(τ )= g
r

pn+1
,
s

pn+1
(τ) g

r(1 + p)

pn+1
,
s(1 + p)

pn+1
(τ )

4

of Siegel functions is a modular function of level p2n+2

whose q-expansion at ∞ has coefficients in Z[ζp2n ],
f(ω1/ω2) is in K(p

2n+2) by [Stark 1980, Theorem 3].

We assume a = f(ω1/ω2)
3pm ∈ K(pn+1) and Xp − a

is irreducible over K(pn+1). Since K(pn+1)(f(ω1/ω2))

is an abelian extension of K, we have K(pn+1)

K(pn+1)(ζp) ⊂ K(pn+1)(f(ω1/ω2)
3pm−1) since ζp ∈

K(pn+1). This is a contradiction. Hence, we have

f(ω1/ω2)
3ζ ∈ K(pn+1) for some pn+1-th root of unity ζ.

Moreover, we have f(ω1/ω2)ζ ∈ K(pn+1) for some

3pn+1-th root of unity ζ since ζ3 ∈ K(pn+1).
We now make some comments about the numerical

calculation of Siegel functions. Let c be an ideal of a ray

class C. We choose a basis {ω1, ω2} of pn+1c−1 so that
ω1/ω2 belongs to the fundamental domain for SL2(Z) for
rapid convergence of g(a1, a2)(ω1/ω2). It is also impor-

tant to adjust ai so that 0 ≤ ai < 1 by
g(a1 + n1, a2 + n2)(τ ) =

(−1)n1n2+n1+n2eπi(n2a1−n1a2)g(a1, a2)(τ ) (ni ∈ Z).

4. COMPUTATION OF K2

For p = 3 and several Ks, we constructed K1 and K2 ex-

plicitly by computer and examined whether H0,n = A0
and whether Bn = Dn. Since all the computational

difficulties lie in K2, we explain how we pursued the

computations concerning K2. A typical example will re-

veal the essential features of the computation. We take

K = Q(
√−5219 ), p = Z3 + Z1+

√−5219
2 and explain sev-

eral techniques which were needed for our computation.

4.1 Construction of K2

First we note that hK = 24 and p is totally ramified in

K∞. Set

fj(c) = g
r

27
,
s

27

ω1
ω2

g
4jr

27
,
4js

27

ω1
ω2

4

with an ideal c of K and 1 ≤ j ≤ 8, where p3c−1 =
Zω1+Zω2 and rω1+sω2 = 27. Note that fj(c) depends
only on c. Let C0 = cl3(OK) and c1, c2, · · · , c24 be rep-
resentatives of IK/PK such that c24i = (γi) with γ

2
i ≡ 1

(mod p4). Then we see that

NK2/K2
(gp3(C0)

1−σj ) =
24

i=1

fj(ci)
81,

where σ =
K2/K
4 . Set

βj = ζ81

24

i=1

fj(ci)

with a 81th root of unity ζ81. Lemma 3.2 implies that βj
is contained in K2 if we choose a suitable ζ81 for each j.

We determine ζ81 so that the coefficients of

8

i=0

(X − βσij )(X − βσ
iJ

j ),

which is the minimal polynomial of βj over Q, are close
to rational integers, where J is the complex conjugation

and the action of σ for ζ81 is given by ζ
σ
81 = ζ1681 . As a

result of these computations, we get ζ81 = 1 for each j.

Next we verify computationally that one of the 4th

roots of each βj is contained in K2 (4.5). We put ε =
4
√
β4. Then ε is a unit of K2 and the minimal polynomial

f(X) of ε over Q has the least discriminant among 4 βj .

Even though the coefficients of f(X) are large, we show

f(X) completely for readers who are interested in this

type of computation:

f(X) = X18 − 2737X17 + 169351307431X16

+ 3928242055446129X15 + 1116673438382601450882X14

− 797848048872200987503002X13

+ 14260371350698925012657372513X12

+ 6727443351204545237345329632872X11

+ 915274675664831410074802593822617X10

+ 1633312619603207976653110097584811X9

+ 1123545275437128223875406900453517X8

− 433121476304848342832840903771975X7

+ 23565623970778493517049315349313X6

+ 1799278132239867573207777918138X5

+ 31191572789333418743352081696X4

− 9611439809099451726571366X3

+ 1427400245427766872971X2 + 74348908961X + 1.

4.2 Integral Basis of K2

Now we compute an integral basis of K2 over Z. We first
try using KASH or PARI, however these packages cannot

compute an integral basis due to the huge discriminant

of f(X). So we construct OK2 in the following way.

We start with Z[ε]. By Lemma 2.5, we see that

(OK2 : Z[ε]) =
|d(f)|
|d(K2)| ≈ 2.1 · 10

394.
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Namely Z[ε] is a very small submodule of OK2 . We can

enlarge Z[ε] dramatically by adding a conjugate of ε. Set
M1 = Z[ε] + Z εσ. Then (OK2 :M1) = 3

6. Next we set

M2 = Z[ε] +
i,j

Z 4 βj
σi

.

Then we have (OK2 :M2) = 3. Now we examine whether

εa0+a1σ+a2σ
2+···+a7σ7

is a cube in K2 for integers 0 ≤ ai ≤ 2 using a method
which will be explained in Section 4.5. We find that

ε1 =
9
√
ε2+7σ+6σ2+8σ3+4σ4+3σ5+5σ6+σ7

is contained in K2. Finally we set M3 = M2 + Z ε1,
yielding OK2 =M3.

4.3 Unit Group of K2

The next task is a construction of the unit group EK2 of

K2. For all practical purposes, we only need a subgroup

E of EK2 with finite index prime to 3.

We start with E = ε, εσ, · · · , εσ7 . In many cases,
E becomes a subgroup of EK2

with a finite index. If the

index is infinite, we add 4 βj to E and obtain a subgroup

of finite index. It is easy to enlarge E to E with an index

prime to 3, because EK2 has a small free rank 8.

In the case K = Q(
√−5219 ), we see that E =

ε, εσ, · · · , εσ6 , ε1 is a subgroup whose index is prime

to 3.

4.4 D2 and H0,2

As we have seen in the proof of Corollary 2.3, H0,n = A0
imples Bn = Dn. Hence, the calculation of H0,n is not

needed to verify that λp = 0. But we are interested in

the least n which satisfies the equalities H0,n = A0 or

Bn = Dn.

We present a method which is applicable to the case

|A0| = 3. It is easy to modify this for other cases. If

|D0| = 3, then λ3 = 0 from Proposition 2.2. So we

assume |D0| = 1.
Let ph = (α) with h = hK/3 and let A0 = cl(q)

with q3 = (β). Furthermore, let E = ε1, ε2, · · · , ε8
be a subgroup of EK2 with index prime to 3. Then we can

determine |D2| and |H0,2| using the following lemmas.

Lemma 4.1. If

α

8

i=1

εeii
1/9

(4—1)

is contained in K2 for some 0 ≤ ei ≤ 8, then |D2| = 1.
Otherwise, |D2| = 3.

Lemma 4.2. If

β

8

i=1

εeii
1/3

(4—2)

is contained in K2 for some 0 ≤ ei ≤ 2, then |H0,2| = 3.
Otherwise, |H0,2| = 1.

Remark 4.3. The number of trials for Lemma 4.2 is at
most 38. We note that the number of trials for Lemma

4.1 is not 98. We can reduce it to 2 · 38 by expressing
ei = ei,0 + 3ei,1 (0 ≤ ei,j ≤ 2).

For an integer α of K2, we can get
3
√
α explicitly if it is

contained in K2 by a method explained in the next para-

graph. But this method requires a factorization of poly-

nomials whose calculation needs a few seconds. There-

fore, we will need several hours for the calculation given

in Lemma 4.2. We use the next lemma to avoid wasteful

trials.

Lemma 4.4. Let { 1, 2, . . . , r} be a finite set of prime
numbers which split completely in K2 and take rational

integers aj and aij, such that β ≡ aj (mod lj) and εi ≡
aij (mod lj), where lj is a prime factor of j in K2. If

aj

8

i=1

aeiij + jZ

is not a cube in (Z/ jZ)× for some j, then (4—2) is not
contained in K2.

We use a similar criterion for (4—1) and also for E .

4.5 Cubic Root

We explain how to calculate 3
√
α for an integer α of K2.

We need a submodule of OK2 with small index (e.g.,

M1, M2 in (4.2)). Though a submodule of small index is

enough for our purpose, we explain using OK2 for sim-

plicity.

Let { v1, v2, · · · , v18 } be an integral basis of K2. If
3
√
α ∈ K2, then we can get the coefficients of

3
√
α by

solving approximately simultaneous equations:

18

i=1

xiv
ρ
i =

3
√
αρ (ρ ∈ Emb(K2,C)). (4—3)

If (4—3) does not have integral solutions, then 3
√
α ∈

K2. This is a well-known method; it works well in the
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m hK |H0,1| |D1| |H0,2| |D2| λ3

−2081 60 1 3 3 3 0

−2138 42 1 1 1 3 0

−2183 42 1 1 1 1 ?

−2186 42 1 3 3 3 0

−3206 60 1 1 1 3 0

−3614 60 1 3 3 3 0

−4574 96 1 1 1 3 0

−4637 78 1 1 1 1 ?

−4835 30 1 3 3 3 0

−5219 24 1 1 1 3 0

−5579 30 3 3 3 3 0

−5813 78 1 3 3 3 0

−5897 48 1 1 1 3 0

−6077 48 1 1 1 3 0

−6269 114 1 3 3 3 0

−6761 132 1 1 1 1 ?

−6983 57 1 3 3 3 0

−7862 78 1 3 3 3 0

−7907 21 1 1 1 1 ?

−8459 42 1 3 3 3 0

−9113 96 3 3 3 3 0

TABLE 1. A0 ∼= Z/3Z.

totally real case. However, in our case, since K2 is totally

imaginary, we have to consider a difference by cubic root

of unity for each 3
√
αρ. Namely, we need 318 trials, which

is computationally intensive even for a modern computer.

We use the following method. First, we construct the

minimal polynomial f(X) of α over Q. The degree of
f(X) is often 18. Next we factorize f(X3). If it is ir-

reducible over Q, then 3
√
α ∈ K2. If f(X

3) has a factor

g(X) of degree 18, then 3
√
α ∈ K2. Furthermore, we

choose approximate values of 3
√
αρ so that g( 3

√
αρ) = 0

and get coefficients of 3
√
α by solving (4—3).

5. EXPERIMENTATION FOR p = 3

We show the result of the calculations which we have

done in the case p = 3. Let K = Q(
√
m ) with negative

square free integer m. There exist 2282 m in the range

−10000 < m < 0 such that (4-3) splits into pp̄ in K2.

The distribution of m is as follows:

number of m λ3

|A0| = 1 1483 0

hk = 3 4 0

hk > 3 , |A0| = 3 522 ?

|A0| = 9 214 ?

|A0| = 27 51 ?

|A0| = 81 8 ?

If |A0| = 1 or hK = 3, then λ3 = 0. So we concentrate
our attention on 522 m where hK > 3 and |A0| = 3. Let
A0 = cl(q) with q3 = (β). Then p is totally ramified in

K∞ if and only if β2 ≡ 1 (mod p2). When p is unramified
inK1/K, the genus formula implies |An| = 1 for all n ≥ 1
and consequently λ3 = 0. Furthermore, when p is totally

ramified in K∞, then |A0| = |D0| implies λ3 = 0. The

situation is summarized in the following table.

p number of m λ3

unramified in K1 398 0

totally ramified in K∞, |D0| = 3 103 0

totally ramified in K∞, |D0| = 1 21 ?

The number of targets for our experiments is 21. We

show the results of the calculations for K1 and K2 in Ta-

m hK |D0| |H0,1| |D1| |H0,2| |D2| λ3

−7265 72 3 1 9 3 9 0

−17786 234 3 3 3 3 3 ?

−19238 90 3 1 9 3 9 0

−19466 234 3 1 9 3 9 0

−19862 126 3 1 9 3 9 0

−23231 234 3 1 9 3 9 0

−23666 180 3 1 9 3 9 0

−29402 144 3 3 3 3 9 0

−34319 279 3 1 9 3 9 0

−39335 198 1 3 3 3 9 0

−41927 171 3 1 9 3 9 0

−43415 144 3 1 9 3 9 0

−45893 126 3 1 9 3 9 0

−48266 198 1 1 3 1 9 0

−48470 144 3 1 9 3 9 0

−50846 360 3 1 9 3 9 0

−54602 180 3 3 9 3 9 0

−55067 90 3 1 9 3 9 0

−65105 288 3 1 9 3 9 0

−70223 315 1 3 3 9 9 0

−76307 72 3 1 9 3 9 0

−76469 396 3 3 3 9 9 0

−78341 306 3 1 9 3 9 0

−82442 342 1 1 3 1 9 0

−83147 72 3 1 9 3 9 0

−85019 144 3 1 9 3 9 0

−88709 360 3 1 9 3 9 0

−91895 288 1 1 3 1 9 0

−92654 396 1 1 3 1 9 0

−94631 414 3 1 9 3 9 0

−97946 414 1 1 3 1 9 0

−98009 252 1 1 3 1 9 0

−99041 504 3 3 3 3 9 0

TABLE 2. A0 ∼= Z/9Z.
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ble 1, which seem to support a positive answer to Prob-

lem 1.1.

Our next trial is an experiment for K with |A0| = 9.
Since the treatment for K with noncyclic A0 is delicate,

we restricted our targets to cyclic cases. There exist 197

m such that A0 ∼= Z/9Z and p is totally ramified in K∞
in the range −100000 < m < 0. We see λ3 = 0 for 164 m

verifying that |D0| = 9. Data for the 33 m with |D0| ≤ 3
is summarized in Table 2. This also suggests a positive

answer to Problem 1.1.

Remark 5.1. Problem 1.1 is related to GGC (Generalized
Greenberg Conjecture). Indeed, Minardi proved that if

p is totally ramified in K∞/K and λp = 0, then GGC

holds for K ([Minardi 86], [Ozaki 01]). So our examples

are also examples for which GGC holds.

All the calculations in this paper were done by

TC, which is available from ftp://tnt.math.metro-

u.ac.jp/pub/math-packs/tc/. The Alpha 21264 667 MHz

needed 2 minutes form = −5219, which is the easiest and
114 minutes for m = −99041, which is the hardest.
It is a natural question to ask the growth of the order

of An in the cases of Table 1 and 2. PARI succeeded in

computing A1 for small m. We report that |A1| = 9 for
all K in Table 1. It is difficult to compute A2 or |A2|
using PARI. Note that the proof of Lemma 2.2 implies

|An| = 9 (n ≥ 1) for K in Table 1 with |D1| = 3.
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