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Abstract. In this paper we present a new computational record: the aliquot

sequence starting at 3630 converges to 1 after reaching a hundred decimal
digits. Also, we show the current status of all the aliquot sequences starting

with a number under 10000; we have reached at leat 95 digits for all of them.
In particular, we have reached at least 112 digits for the so-called “Lehmer

five sequences”, and 101 digits for the “Godwin twelve sequences”. Finally,
we give a summary showing the number of aliquot sequences of unknown end

starting with a number ≤ 106.

For a positive integer n, let σ(n) denote the sum of its divisors (including 1 and
n), and s(n) = σ(n) − n the sum of its proper divisors (without n). A perfect
number is a number n such that s(n) = n, and an amicable pair of numbers (n, m)
satisfies s(n) = m, s(m) = n. In a similar way, tuples of numbers (a1, a2, . . . , al)
such that s(ai) = ai+1 for 1 ≤ i ≤ l − 1 and s(al) = a1 are known as aliquot cycles
or sociable numbers.

Given n, the way to compute σ(n) (and then, s(n)) is as follows. We find the
prime decomposition of n = pa1

1 · · ·pad

d . Then

σ(pa1
1 · · ·pad

d ) = (1 + p1 + · · ·+ pa1
1 ) · · · (1 + pd + · · ·+ pad

d )(1)

=
pa1+1
1 − 1
p1 − 1

· · · pad+1
d − 1
pd − 1

.(2)

Indeed, if we expand de expression on the right in (1), all the divisors of pa1
1 · · · pad

d

appear as summands.
By iterating the function s, i.e., taking s0(n) = n and sk+1(n) = s(sk(n)), it

appears the so-called aliquot sequence {sk(n)}∞k=0. For each one of these sequences,
there are four possibilities:

(i) it terminates at 1 (the previous term being a prime number),
(ii) it reaches a perfect number,
(iii) it reaches an amicable pair or a cycle,
(iv) it is unbounded.

The Catalan-Dickson conjecture says that (iv) does not actually happen. But
other researchers disagree with this conjecture and think that there are unbounded
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sequences; in fact, the alternative conjecture from Guy-Selfridge [7] (see also [5])
states that there are many sequences that go to infinity, perhaps almost all those
that start at a even number (i.e., the proportion of even integers n such that
{sk(n)}∞k=0 is bounded tends to zero).

This new conjecture is based upon the existence of several multiplicative pat-
terns 2ap1 . . . pm that, when appearing in the factor decomposition of n, they show
up again, with a high order of probability, in the factor decomposition of s(n).
Following [7], these patterns are called drivers or guides.

By definition, a guide is of the form 2a, together with a subset of prime factors
of σ(2a) (= 2a+1 − 1). And a driver is of the form 2av with a > 0, v | σ(2a) and
2a−1 | σ(v). This last condition ensures that the power of the prime 2 tends to
persist, at least, as much as if the driver is 2, for which the condition is trivial.
Actually, drivers are much more stable than guides. As stated in [7], the only
drivers are 2, 23 · 3, 23 · 3 · 5, 25 · 3 · 7, 29 · 3 · 11 · 31, and the even perfect numbers.
Examples of guides that are not drivers are 2a (a > 1), 23 · 5, 25 · 3, 25 · 32, 25 · 32 · 7,
27 · 3 · 5, . . . .

Using (1), it is easy to observe the behavior of drivers (and guides). For instance,
let us take n = 23 · 3 · 5pq, with p and q prime numbers, p �= q, p, q > 5. The same
happens if we have more than two prime factors greater than 5 but, by simplicity,
let us see this example. We can check that s(n) = (1+2+4+8)·4·6(p+1)(q+1)−23·
3·5pq = 15·22·2·3(p+1)(q+1)−23·3·5pq = 23 ·3·5· [3(p+1)(q+1)−pq] = 23 ·3·5m,
with m an odd number that is not divisible by 3. Then, we get again 23 ·3 ·5 with 2
and 3 raised to the same power as before (however, it is possible that the power
of 5 changes; this may cause the loss of the driver at a later point). The behavior
is similar if the prime factors greater than 5 are raised to an odd power, because
1 + p + · · ·+ pa is even when a is odd. However, a factor pa with a a even number
does not contribute with a factor 2 in the first summand of m.

It is easy to prove that, if m is a perfect number, or s(m) > m, and we have
m a proper divisor of n, then s(n) > n (of course, we are not considering the
trivial case n = perfect number). Thus, we have σ(m) ≥ 2m and n = lm with
l > 1. To prove the claim, we must check σ(lm) > 2lm. Let {1, d1, d2, . . . , dr}
be the divisors of m. Then, 1, l, ld1, ld2, . . . , ldr are divisors of lm. Therefore,
σ(lm) ≥ 1 + l + ld1 + ld2 + · · ·+ ldr > l(1 + d1 + d2 + · · ·+ dr) = lσ(m) ≥ 2lm.

As a consequence, all the drivers, with the exception of 2 (the “downdriver”, as
we show below), make s(n) > n. And, as the structure is preserved, it seems that
we can get an always increasing sequence. But a driver can, eventually, disappear.
Let us see again some examples; this time, with the driver 23 · 3. Here, and in what
follows, we will use p, q to denote distinct prime numbers, being p, q > 3.

When we have a number with the form n = 23 · 3p, it follows s(n) = (1+2+4+
8) · 4(p + 1) − 23 · 3p = 22 · 3 · [5(p + 1) − 2p]. Now, if p has the form p = 4r + 1,
then s(n) = 23 · 3 · [5(2r + 1) − p], and the expression between square brackets
is even, so the power of 2 in s(n) is at least 4. However, if p = 4r + 3, we get
s(n) = 23 · 3 · [5(2r+2)− p] and, this time, the expression between square brackets
is odd, so the power of 2 remains.

The driver 23 ·3 can also disappear with numbers of the form n = 23 ·32pq. Here,
s(n) = 15 · 13(p+1)(q +1)− 8 · 9pq. If p, q ≡ 1 mod 4, then the 23 disappears and,
in its place, 22 arises. If p, q ≡ 3 mod 4, the 23 persists. If p ≡ 1 and q ≡ 3 mod 4,
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then, at least, we have a factor 23; but the power of 2 goes up if 8 is not a divisor
of q + 1, i.e., if q ≡ 3 mod 8.

When the driver of the sequence is 2, the sequence usually decreases. For in-
stance, if n = 2pq, then s(n) = 3(p + 1)(q + 1) − 2pq = pq + 3(p + q + 1). When p
and q are big enough, 3(p + q + 1) is tiny compared with pq, and so s(n) < n.

As for the other drivers, the driver 2 can disappear. For instance, let n be n = 2p,
with s(n) = 3(p + 1) − 2p = p + 3. If p = 4r + 3, then s(n) = 2(2r + 3). But, if
p = 4r+1, then s(n) = 22(r+1) and so we have, at least, a factor 22. The behavior
is similar if n = 2p2q, or if n has more prime factors raised to even powers.

Guides in the form 2a for a > 1 make the sequence oscillate; we have s(n) < n
or s(n) > n according to the other factors. And these guides change very easily.

And, what occurs when n is odd? If n = p prime, s(n) = 1 and the sequence
finishes. Now, let us assume n = pq. Then, s(n) = (p+1)(q+1)− pq = p+ q+1 is
also odd (usually, s(n) < n). The same occurs, for instance, with n = p2q. But it
is also possible that n is odd but s(n) is even. This is what happens when n = p2;
indeed, in this case s(n) = (p2 + p + 1)− p2, that is even.

It is possible (but not very common) that an aliquot sequences reaches a per-
fect number, an amicable pair or a cycle; this is the end of the aliquot sequence.
Otherwise, to get a terminating sequence, it must reach an odd prime number.
Usually, most terms of a sequence are even. Let us see the way in which a
even term n changes to an odd term s(n). This occurs when n = 2ap2, with
a > 0 (or similar cases with p2b or more primes up to even powers). Indeed,
s(n) = (2a+1−1)(1+p+p2)−2ap2, an odd number. Only chance can say whether
this term is prime or not. Anyway, the sequence either reachs an even term (case
previously considered) or it continues with odd tems until a prime term appears,
where it stops.

Finally, let us also note that, althoug it seems unlikely that an always increasing
aliquot sequence exists (of course, this would refute Catalan-Dickson conjecture),
H. W. Lenstra proved that it is possible to construct arbitrarily long monotonic
increasing aliquot sequences (that is, for any k, we can found m such that s0(m) <
s1(m) < · · · < sk(m)); the proof can be found in [5].

1. The recent and present history

Many other people have been working with aliquot sequences, including P. Poulet,
D. H. Lehmer, P. Erdős, J. Godwin, H. Cohen, R. K. Guy, M. Dickerman, H. J. J. te
Riele, . . . . A extensive bibliography on this subject can be found in [6, B6].

The first sequence whose end was in doubt started with 138; Lehmer found its
end s177(138) = 1. For numbers n < 1000, Lehmer could not find the end of the
sequences starting from 276, 552, 564, 660, 840 and 966. Except for 840, which
finished with s747(840) = 1 (found by A. Guy and R. K. Guy), the end for the
others is still unknown; they are the “Lehmer five”. In a similar way, the doubtful
sequences starting between 1000 and 2000 are known as Godwin sequences; now,
“Godwin twelve”.

Regarding classifications of unknown sequences, let us note the following. Sup-
pose that, for two different numbers n1 and n2 (say, n1 < n2) there exist k1 and k2
such that sk1 (n1) = sk2(n2). Then, both sequences are the same from then on. In
this case, we say that n1 is the main sequence and n2 is a side sequence. Only the
main sequences are studied.
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Table 1. Aliquot sequences whose end is in doubt.

n
k

digits
guide

276
1284
117
2·3

552
818
118

25 ·3·7

564
3048
115
22 ·7

660
468
112
22(∗)

966
526
114
2·3

1074
1585
105
22 ·7

1134
2249
127

25 ·3·7

1464
1897
101
22 ·7

1476
1055
106

23 ·3·5
n
k

digits
guide

1488
824
103
22 ·7

1512
1632
101
22 ·7

1560
1336
101

25 ·3·7

1578
1109
104
22(∗)

1632
713
102

23 ·3·5

1734
1404
103
22 ·7

1920
1992
108
22 ·7

1992
985
102

23 ·3·5

2232
390
102
26(∗)

n
k

digits
guide

2340
471
99

23 ·3·5

2360
974
95

22 ·7

2484
796
97

23 ·3

2514
2866
105

23 ·3·5

2664
761
100
22 ·7

2712
1347
95

22 ·7

2982
826
97

24 ·31

3270
417
98

25 ·3·7

3366
1062
100
23(∗)

n
k

digits
guide

3408
840
95

23 ·3·5

3432
933
103

23 ·3·5

3564
779
100
23 ·3

3678
1201
98

22 ·7

3774
1193
98

27 ·3(∗)

3876
830
96

22 ·7

3906
704
100
22 ·7

4116
1192
105
23 ·3

4224
519
98

23 ·3·5
n
k

digits
guide

4290
953
106
22 ·7

4350
1165
97

22 ·7

4380
965
100
22 ·7

4788
2152
105

23 ·3·5

4800
1135
101

24 ·31

4842
473
98

22 ·7

5148
1545
95
2·3

5208
1710
96

23 ·3·5

5250
1567
100
24(∗)

n
k

digits
guide

5352
746
106
22 ·7

5400
2776
102
22 ·7

5448
1185
96

23 ·3·5

5736
1093
100
22 ·7

5748
1091
108
22 ·7

5778
742
95

24 ·31

6160
1630
96

22(∗)

6396
1272
105

23 ·3·5

6552
932
102
23 ·3

n
k

digits
guide

6680
1880
106

24 ·31

6822
1177
97

24 ·31

6832
885
104
23 ·3

6984
1764
96

24 ·31

7044
1113
102

24 ·31

7392
498
96

23 ·3·5

7560
846
97

23 ·5(∗)

7890
891
99

22 ·7

7920
1014
109

26 ·127
n
k

digits
guide

8040
2240
106

23 ·3·5

8154
647
96

22 ·7

8184
1241
102
22 ·7

8288
849
103
28(∗)

8352
1291
96

22 ·7

8760
2157
97

24(∗)

8844
1184
101

24 ·31

8904
963
95

22 ·7

9120
580
103
23 ·3

n
k

digits
guide

9282
556
106
23 ·3

9336
608
97

26 ·127

9378
2198
101
22 ·7

9436
638
102
2·3

9462
447
97

23 ·3·5

9480
1028
98
2·3

9588
1848
103

25 ·3·7

9684
643
101

25 ·3·7

9708
710
106
22 ·7

n
k

digits
guide

9852
669
105
22 ·7

According to (1) or (2), to compute an aliquot sequence, we have to decompose
m into factors to calculate s(m); and this, for many m’s. This is hard when the
number m is large. The discovery of better factoring methods and the increase
in the speed of computers lead to progress in the experimental knowledge of the
behavior of aliquot sequences.

Recently, different people have extended the range of aliquot sequences that have
been studied. In different ways, W. Bosma, J. Gerved, S. Wagstaff, P.-L. Mont-
gomery, H. J. J. te Riele, W. Lioen, A. Lenstra, and the authors have been con-
tributing in this subject. Let us cite some recent advances.

In [1], two of the authors, following previous work of A. Guy and R. K. Guy, show
a table with the status of doubtful main aliquot sequences starting at n < 10000.
In this paper we show an update: see Table 1.
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Table 2. Number of aliquot sequences of unknown status starting
with a number ≤ 106.

Interval Number of sequences Limits of computation

[1, 100000] 925 > 1080

(100000, 200000] 975 > 1080

(200000, 300000] 963 > 1060

(300000, 400000] 903 > 1060

(400000, 500000] 940 > 1060

(500000, 600000] 990 > 1060

(600000, 700000] 987 > 1060

(700000, 800000] 990 > 1060

(800000, 900000] 982 > 1080

(900000, 106] 987 > 1080

In the table, we include the number of decimal digits of the last term sk(n)
known for each sequence and the guide in that stage. Actually, all the sequences
have a driver in the current stage (a driver is more stable than a guide), except the
ones marked with (∗).

In [1], all the sequences in the table had been pursued up to, at least, 75 decimal
digits. Now, we have reached more that 95 digits for all of them; and 100 digits for
many of them. We have reached at least 112 digits for the Lehmer sequences and
101 digits for the Godwin sequences.

It is curious to note that the driver 29 · 3 · 11 · 31 has appeared in no place in any
of the sequences related in Table 1.

W. Creyaufmüller is leading a project to study all the aliquot sequences starting
at every n ≤ 106; of course, there are many of them, so they are been studied
up to less digits than in this paper. For a compilation of his work, see [4]. Here,
we summarize the present state of such aliquot sequences with unknown status in
Table 2.

We have not found new experimental evidences in favour of Guy-Selfridge conjec-
ture, because drivers and guides disappear from time to time. For instance, when
we increase the size of the last term reached for the sequences starting at every
n ≤ 106, the percentage of unknown sequences decreases in a significative way.

It seems feasible that Catalan’s conjecture is true. But the question is how big
are intermediate numbers that we need to factor to reach the end of the sequence?
As we see below, for n = 840, we had to go up to 49 digit numbers; for n = 1248,
up to 58 digit numbers; for n = 3630, up to 100 digit numbers. Perhaps we must
go up to 200 or 1000 digit numbers for n = 276, which would make this sequence
out of reach. Perhaps only 130 digits, which would make this sequence computable
with today’s computers and algorithms.

Theoretically speaking, it does not seem an easy question. How many time will
remain this problem open?

2. Maximum of a terminating sequence

With respect to the height of aliquot sequences that are known to terminate,
there has been considerable progress. When D. H. Lehmer found the end of the
aliquot sequence starting at 138 he found a maximum s117(138) of 12 decimal digits.
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Later, A. Guy and R. K. Guy found the end for 840 after finding a maximum
s287(840) of 49 digits; and M. Dickerman did the same for 1248, with a maximum
s583(1248) of 58 digits.

(Of course, if p is a prime number, s(p) = 1 so the sequence starting in p trivially
finishes. These trivial results are not considered in records.)

In [1], we show that the sequence starting at 4170 converges to 1 after 869
iterations, getting a maximum of 84 decimal digits at iteration 289; this was a new
record for the highest terminating aliquot sequence (found in December 22, 1996).

Later, in October 1999, W. Bosma broke this record: he found that the aliquot
sequence starting with 44922 terminates after 1689 iterations (at 1), after reaching
a maximum of 85 digits at step 1167. In December 3, 1999, he broke again the
record finding that the sequence starting at 43230 finished: it terminates (at 1)
after 4357 iterations, after reaching a maximum of 91 digits at step 967.

As of June 10, 2001, M. Benito and J. L Varona have found the end of the
aliquot sequence starting at 3630. It finishes at s2624(3630) = 1 after reaching a
maximum s1263(3630) with a hundred digits. It is the present record for the
highest known terminating aliquot sequence. In Figure 1 we show the shape
of the sequence: in the horizontal axis, the index k appears; and in the vertical
axis, log10(sk(3630)).

500 1000 1500 2000 2500

20

40

60

80

100

Figure 1. The aliquot sequence starting at 3630

Moreover, 3630 < 10000 so the present Table 1 has one fewer entry than the
table that appears in [1] (the aforementioned sequences found by W. Bosma start
in a number > 10000). Now, there are 82 main aliquot sequences (starting in a
number < 10000) whose end is still unknown.

For sequences of unknown status, the sequence 1134 has been extended by
P. Zimmermann up to 127 digits; this is the largest term of an aliquot sequence
computed so far.

We maintain the following web pages related to aliquot sequences:
http://home.t-online.de/home/Wolfgang.Creyaufmueller/aliquote.htm

http://www.unirioja.es/dptos/dmc/jvarona/aliquot.html
http://www.loria.fr/~zimmerma/records/aliquot.html
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In these pages, one can find links to the aliquot web pages of other authors (in
particular, from W. Bosma and J. Howell). Also, in the ftp server

ftp://mat.unirioja.es/pub/aliquot/00xxxx

the sequences of Table 1 can be found.

3. The method

As we already commented, to compute an aliquot sequence, we have to decom-
pose m into factors to calculate s(m), and iterate this procedure a lot of times. This
is hard when the number m is large. And we are dealing with numbers up to more
than a hundred of digits, so powerful algorithms are necessary. In particular, we
have used the elliptic curve method (ECM) and the multiple polynomial quadratic
sieve (MPQS); see a recent report (with many references) about the use of MPQS
in [2]. We have checked the primality of the factors with the Adleman-Pomerance-
Rumely (APR) primality test.

All our work has been done by using free packages available on internet. We
have run the programs on many computers from the authors and some collegues,
and their respective institutions. The work has been done mostly during nights and
weekends.

We have used the following packages, that are available at their corresponding
web pages (or anonymous ftp sites):

• UBASIC, ftp://rkmath.rikkyo.ac.jp/pub/ubibm/
• PARI-GP, http://www.parigp-home.de/
• KANT-KASH (see [8]), http://www.math.tu-berlin.de/algebra/
• MIRACL, http://indigo.ie/~mscott/
• GMP, http://www.swox.com/gmp/

UBASIC programs to get aliquot sequences can be downloaded in Creyaufmüller’s
web page. PARI-GP and KANT-KASH programs can be downloaded in Varona’s
web page. A implementation of ECM for GMP can be downloaded in Zimmer-
mann’s web page.

The authors began to investigate the behavior of aliquot sequences around 1985.
During this time, we have used many different kinds of computers, mainly PCs, but
also Unix workstations and Macintoshes. In total, we can estimate that we have
employed about 200 years of CPU time.

One of the most titanic efforts has been to factorize the 109-digit cofactor in
s1267(276). The computation time has been the equivalent to about 220 days of
CPU time on an 800Mhz Pentium III computer (actually, the sieving has been
carried out on a cluster of PCs). This kind of numbers is the reasonable limit
for the MPQS method. For bigger ones, it will be better to use a new method of
factorization: the number fields sieve (NFS); see, for instance [3].
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