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References application of the pentagram map will show a near copy of the

starting polygon appear infinitely often under various perspec-
tives.

1. INTRODUCTION

Given a convex n-gon, P, one can connect every
other vertex with a line segment, creating a star-like
figure called the pentagram. Part of the pentagram
defines a new convex n-gon, P', as shown (for n =
7) on the left. Iterating, one defines P", P'", etc.
As suggested by Figure 1 below, the map P —> P"

S\- "Z^HV defines a map between labelled n-gons. We call the
yy ^^><^^ \ \ map P —> P" the pentagram map. We studied the

J^J^^ ^^s. 1 \ P pentagram map in [Schwartz 1992].
/ V P' ^ v l \ The natural setting for the pentagram map is the

/ / \ 1\\ projective plane, RP2. (See Section 2 for back-
1/ \ I / / ground information on the projective plane.) Say
Ŝ ^̂  \ y I that two labelled strictly convex n-gons are equiva-

>T^^ \^^ / \ I lent if there is a projective transformation of MP2

N. x ^ ^ ^ ^ y ^ 1 / which takes one to the other. Let En denote the

2

FIGURE 1. Definition of the pentagram map.
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space of equivalence classes of strictly convex n- every point x G X is an accumulation point of the
gons. As we saw in [Schwartz 1992], the space S n is sequence {Tk(x) \ k G N}.
diffeomorphic to R2n~8.

The pentagram map commutes with real projec- Proof' F o r a n ^ e > °' l e t N< b e
 r

t h ? , B ^ S e t ° f p o i n t s

tive transformations, and so induces a mapping Tn : x e X s u c h t h a t t h e s e ( l u e n c e iT (x)\k^ N> a v o i d s

S n -> En , for all n > 5. We saw in [Schwartz 1992] t h e ^-neighborhood of x. If Ne has positive measure,
that the maps T5 and Tl act trivially on E5 and E6

 w e c a n find a *"ba11 B C X s u c h t h a t ^ = 5 n N*
respectively. For n > 7, the map Tn does not have h a s P o s i t i v e m e a s u r e ' H e r e w e ^ S< e' S i n c e

finite order. In this paper we verify Conjecture 4.1 X h a s finite v o l u m e ' t h e s e t s i n <T , (f )> a r e n o t a11

of our earlier paper: pairwise disjoint. Hence, T(/?) n T ' (/?) for some pair
ij EN. Setting ifc = j - i, we have T*(/?) H /? 7̂  0 .

Theorem 1.1. Tn is recurrent on En , /or a// n > 5. This contradiction shows that N£ has measure zero.

By recurrent, we mean that almost every point is an S i n c e £ i s ^ ^ a r y , we are done. •

accumulation point of its own forward orbit. Our re- Applying the Poincare Recurrence Lemma, we see
suit has the following geometric interpretation. Be- t h a t Tn i s reCurrent on f'^l.r] for almost every
gin with a random choice of convex polygon P , and c h o i c e o f r e a l r > 1. We choose a sequence ru r 2 , . . .
look at the sequence P, Tn(P), Tn

2(P), . . . . A near w h i c h increases unboundedly, such that Tn is recur-
copy of P appear infinitely often, from varying per- r e n t o n f-i^ rfc] for a l l fc> S i n c e t h e s e s e t s exhaust
spectives. 5]^ w e s e e ^ ^ jpn [s recurrent on S n .

Here is an outline of our proof of Theorem 1.1. In ^ A . , xl
_ . _ The recurrence property is more general than our

our earlier paper we constructed a smooth function ^ ^ T , ^ , ^ , £ . ^ .
„ _̂  r̂  N . . . p __ . result suggests. Let \ln be the set or proiective

/ : S n -> |l,oo) with the following properties: • 1 1 r r̂ i i
L » y & r equivalence classes of n-gons. These n-gons need

1. /~ 1 [1 , r] is compact for any real number r > 1. not be convex. Tn is defined on a full measure set of
2. / o Tn = / . fin. As we conjectured in [Schwartz 1992], it seems
,_ . . . . . i r , . , , , that Tn : fin —>• fin is also recurrent. Our proof here
To help keep this paper self-contained, and also to , ,, . u , ,, .

. , , r 1 -n has nothing to say about this,
set up some notation needed for later steps, we will ^ . ,. , . L.

p . . . . ' c . This paper relies on some basic projective geome-
construct f in a new way and sketch proofs of the T ~ t. . , , , . r_, . . . . z, try. In Section 2 we give some background mtorma-
two properties above. This is done in Section 3. ,. ,, . , . , , , . £ .. . ,.

_. . . i /._i r-i i . ^ l o n o n ^ 1 S subject. More information on proiective
Ihe two properties above show that f l , r is A , r , . r,.,.,, , 1^.1 ^rZ, . . m . , geometry can be found in Hubert and Cohn-vossen

a compact Tn-mvanant set. The mam step m the 1Orni f
lyoul, tor instance,

proof of Theorem 1.1 is: A11 ,, . , c £ £All the ideas tor our proof, save one, came from
Lemma 1.2 (Volume Lemma). There exists a smooth computer experimentation. In particular, we discov-
volume form \xn on S n which is preserved by Tn. ered all the computations in the paper numerically.
TT_ ... . . . _, On the negative side, some of our computations are
We will prove this in Section 4. , w , ,. „ , , , .,

n r, 15 ^ i j_ ! . r • ii unmotivated. We don t really understand why they
By bard s theorem, almost every choice of r yields , A n .,. . , , r J, J. . r , , . , , . T_ ,_1r i , are true. On the positive side, we know tor sure that

a smooth manifold-with-boundary A = f l , r . , , x n . j . # j l , . , , .
r̂ . _ _ . . they are true, î or instance, the mam thrust in this
Ihe map 1 = ln acts as a volume preserving map , , , . „ r , . ,

,^ ri , , . , , . . . . , paper is that a certain collection of matrices always
on A. To deal with this situation we invoke a spe- f J x . ^ w X J ^ U - J ^ • .
. . p T -n . ^T, T n- has determinant 1. We computed this determinant

cial case ot the romcare Recurrence Lemma, bmce .,,. r , , r 2l . r M ,
xl r • 1 • 1 T • 1 O T A i? i o n millions of random samples from this family and
the proof is short, we include it here, bee Arnold . ,, ,A , i . , ,
. _^OT . . ' .. L numerically it was as close to 1 as one could expect
1978 for more details. r n .* . . . , x.from a finite precision calculation.
Lemma 1.3 (Poincare Recurrence). Suppose that X C A key idea in this paper, which did not come from
E m is a smooth compact manifold-with-boundary. computer experimentation, is the notion of the cor-
Suppose T : X —> X preserves a smooth volume ner invariant /p , recalled here in Section 3A. We
form, defined in a neighborhood of X. Then almost originally learned about fp from John Conway.
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2. PROJECTIVE GEOMETRY x-axis in R2. Let Xj be the image of Pj under this
TI „ . A. nl identification. Then define
The Projective Plane
The real projective plane, RP 2 , is the space of one- , x _ (fli - x3)(x2 — x±)
dimensional subspaces of R3 . The ordinary plane, (xi — x2)(x3 — x±)
R2, can be considered as a subset of RP 2 in the fol-
lowing way: The linear subspace spanned by the vec- T h i s definition is independent of any choices used
tor (x,y, 1) is identified with the point (x,y) G R2. i n identifying L with the z-axis. x(pi,p2 ,p3 ,P4) is
Under this embedding, RP 2 is a compactification of invariant under projective transformations. That is,
R2. It is not hard to see that RP 2 naturally has the
structure of a smooth manifold. X(nPl),T(p2),T(p3),T(p4)) = xiPuP^Ps^)

A line in RP 2 is the union of all 1-dimensional „ _, o r^T /TnA
i J. • i • • o v • i i_ * O r 1 ^ rVjr-L3(K).

subspaces contained m a given 2-dimensional sub-
space. Lines in RP 2 are actually topologically equiv-
alent to circles. The set RP 2 - R 2 is exactly a line in T h e H i l b e r t M e t r i c

RP 2 , known as the line at infinity. Every ordinary We say that a set X C RP 2 is convex if there is
line in R2 extends to a line in RP 2 by adding in the a projective transformation T such that T(X) is a
point where it intersects the line at infinity. closed compact convex subset of R2.

The lines and points in RP 2 are intimately re- If X C RP 2 is a convex set, we can define a canon-
lated. Given any two distinct points in RP 2 there ical metric dx on its interior X°. Given unequal
is a unique line which contains both of them. Like- points p2,p3 G X°, let L be the line containing p2

wise, given any two distinct lines in RP 2 there is and p 3 . Let px and p4 be the two points where L
unique point contained on both. intersects the boundary dX. We order these points

so that P I , P 2 ? P 3 J P 4 come in order on L. We define
Projective Transformations
Any invertible linear transformation of R3 maps one- dx ̂ 2' # 0 = log x O i , V2, Ps, PA)-
dimensional subspaces to one-dimensional subspaces, 7/ x

, . , ,.~ , . r ̂ 70)2 r^i- j .p Note that d(p2,p3) approaches 0 as p2 approaches p3and so induces a diffeomorphism of RP 2 . This dif- . _ u \ u \ mi • 1 • 1
r , . . „ , - .- . £ ±- a n d that d(p2,p3) — d(p3,p2). The triangle mequal-
feomorphism is called a projective transformation. . . _ \*-z->£-*> ^*^y , . i ,
-n - .- . r x- . • 1. , lty is also not hard to verify. dx is known as the
Pro ective transtormations act m sucn a way as to T̂ .77

r • iD)Tn)2 2. T • Tn)Tro2 Hubert metric.
map lines in RP 2 to lines in RP 2 . ^ n , . , . . x r ,. Ll TT.ni_ A

m i r . x. ^ r Denned as it is, in terms or cross ratios, the Hubert
Ine group 01 projective transformations is usu- . . _ . . _^.x ' x Tr __ .

n T ^ i i r .n r /irnx T̂  • o T - i metric is natural with respect to rGL3(]Ji). It A and
ally denoted by PGL3(R). It is an 8-dimensional ^r _ J; __ T^ :v J

T . TTT , 1 , 1 1 , . r • , . TnMn.9 ^ are convex sets and 1 : A -> Y is a proiective
Lie group. We say that a collection of points in RP r . _ _ . _ . .

, •.•-£,<* , . , . . 1 transformation mapping X to Y then T is an lsome-
IS in general position 11 no three are contained in the . , . , TTM1

v o î ^ T - 7 ^ 7 - n ,.- r try as measured relative to the two Hubert metrics,same line, bay that a quadrilateral is a collection 01
4 general position points in RP 2 . Each element of
PGL3(R) is determined by its action on a quadrilat- 3. THE INVARIANT FUNCTION
eral. Indeed, given two quadrilaterals, with points . ,. . .
1 u 11 A 4.-U - i 4. r D r«T na>\ ̂ u 4. 3A. Basic Definition
labelled, there is a unique element 01 PGL3(JR) that
maps one quadrilateral to the other in a label pre- L e t P b e a n n - g ° n ' a n d S i v e 'lt a n orientation. Let
serving way. p be a vertex of P and let a, 6 , . . . , h, i be the points

shown in Figure 2; note that a and b precede p under
The Cross Ratio t t i e S i v e n orientation. Set
Suppose that Pi,P2?P3)P4 a r e 4 points on a line L c O (P\ — ( h d\
RP 2 . One defines the cross ratio x(PiiPiiPziPi) i n P

the following way. First, use an element of PGL3(R) EP(P) = x{d, e, / , 3),
to identify L with (the one point extension of) the fp(P) — x(b,h,i,f).
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O
3B. Compactness Proof

In this section we prove that the level sets / - 1 [1, r] C
9 S n are compact. Our argument here is pretty much

a repeat of what we said in [Schwartz 1992]. Given
an n-gon P, the corner invariants fp(P) all lie in
[l,oo). Thus, if f(P) G [l,r] then fp(P) G [l,r] for
every vertex p of P.

Let PI,P2JP3JP4>P5 be 5 consecutive vertices of P:
FIGURE 2. Points in the definition of the corner in- ^^^^><^^P^I
variant fp(P) = x(6, ̂ » h /) and related quantities. p^^^C ^ " ^ Ps/A

The quantity /P(P) is what we called the corner \̂j
invariant of P at p in [Schwartz 1992]. Moreover, ^
s e^ T T The point p3 is confined to the shaded open triangle

J\P) — liJp{P)i A whose vertices are p2,P4 and q3. Here

£(̂ ) = n^(P) ' We set fj = fPj(P). Suppose that pi,p2,p4,P5 are

where the product is taken over all vertices of P . h e l d fixed a n d t h a t Pa (and possibly other points of

A short calculation shows that p) a r e moved around. One observes three things:

fp(P) = OP(P)EP(P). 1. If x G dA is not on the segment p^pl then / 3 ->

To simplify the calculation, one can use the projec- rr .' .
. . . . , ,. ,, , ,, . 2. It x G pop* is not equal to p2 then r2 —>• 00 as
tive in variance to normalize so that the 4 vertices J

a, 6, / , # form a unit square. We omit the details. IT " . 1 1 1 .
T 1 . ,, , , r ,, . . , ... n 3. It x G P2P4 is not equal to p4 then r4 —> 00 as
Taking the product of this identity over all ver- y y H ^ 4 </4

,. ,, , p 3 -> x.
tices, we see that ^

/('p') _ O(P)E(P) These observations establish the following claim: If
/ ( P ) G [ l , r ] , and Pi,P2,V^Pb are held fixed, then

Remark. Here is a geometric interpretation of / ( P ) . there is a compact set of positions, in the open tri-
Let P' be the pentagram of P . Let X be the convex angle A where p3 could be.
subset of MP2 whose boundary is P . Let dx be the T h e m a p P ^ {pup2,p3,p4,p5} gives a map from
Hilbert metric on X. Let p i , . . . ,p'n be the vertices s n -> S 5 . There are n of these maps, depending on
of Pf listed in order. By simply using the definition t h e choice of vertex p i . From what we have just seen,
of the Hilbert metric, we have the image of / ^ [ l , r ] , under each of these maps, is

-IL^ compact.
*°S / ( / ) — ̂ ^^x(Pi jPi+iJ? Suppose now that {P^} is a sequence of convex

i=1 n-gons in R P 2 such that f(Pk) G [ l , r ] . Suppose, by
where indices are taken modulo n. In other words, induction, tha t we can find a sequence of projective
l o g / ( P ) is the perimeter of P' as measured in the transformations {Tk} such that , on a subsequence,
Hilbert metric on the convex set bounded by P . t he first m > 5 points of Tk(Pk) converge. Then,
This interpretation shows that / ( P ) > 1. u s i n g t h e appropriate map into S 5 we see that , on a
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thinner subsequence, the (m + l)st points also con- Let P G Sn(l)- The vertices of P are labelled by
verge. Hence, the polygons Tk(Pk) converge, on a integers congruent to 1 mod 4. We coordinatize P
subsequence, to a fixed polygon. This proves that by the variables (xi,y2, • • • •>%2n-i,y2n)i where
/ " H l , ^ is compact. n (p\ ** — T? CP\
J L ' J ^ £(i+l)/2 = Vi\r), V(i-l)/2 — &i\")-

3C. Invariance Proof Here, for instance, O1(P) is the quantity, computed

Here we sketch the proof that foTn = f. This proof i n t h e P r e v i o u s secti™> f o r t h e v e r t e x i I n t h e s e

is different from what appears in [Schwartz 1992]. coordinates, O(P) = \[Xi and E(P) = UVi-
Let Sn(j) be the set projective classes of convex W e ™ordinatize P = An(P) by the variables

n-gons labelled by consecutive integers congruent x[i-i)/2 — Oi(P'), y[i+i)/2 = Ei(P').
to j mod 4. There is a canonical map from S n W e c o o r d i n a t i z e p« = Bn{F) e x a c t l y a s w e c o o r d i .
into Sn(l) . A polygon whose points are labelled n a t i z e d p u g i n g v a r i a b l e s j , a n d yn
by integers 1,2,3... is mapped to geometrically the A c a l c u l a t i o n s h o w s t h a t

same polygon whose points are labelled by integers • . _ x •.. _ \
1,5,9,.... We denote this map by En = * En(l). x'd= (.l~X^y^ \y.+u y> = I1 x^y^2\x.,1?

We denote the inverse map by Sn(l) = » En. V ^ " 2 ^ - 1 / V ^i+1%+2/
The map P -> P', formerly defined as a map on „//_ f^^j-^Vj-s\ , ,,_ f^-xf

H3y'j+2\f

unlabelled n-gons, can naturally be interpreted ei- \1~xi+22/i+i/ \1"~xi-i2/j-2/
ther as a map An : Sn(l) -+ Sn(3) or as a map Bn : The identities in Equation (*) follow immediately
En(3) -» En(l). The two interpretations are shown, from these equations,
for n = 7, in Figure 3. The map Tn : Sn ->> S n

factors in the following way: 4> T H E V O L U M E F O R M

En = ^ Sn(l) —^ Sn(3) - A Sn(l) =^> Sn . 4A> Framings and Volume Forms

5 Suppose that X is a smooth manifold. A framing
/yY^^i of X is a smoothly varying choice of basis for the

/ / ^ ^ ^ K tangent spaces of X. That is, for each x G X we
/\^f^^ >v/ \ have a basis i^ for the tangent space T^X. If F

§\^^ / 2 7 / \ \ ^s a framing o n X, then F canonically determines
\ / I J^ 25 a volume form /̂ i?. Namely, //^ is the volume form
Vy 11 3^/ / J^-^ which assigns the value 1, at each point, to the basis

13\^^i9^^ / yw^^^^l g i v e n b y F'
\\ J^^-^^^ / / / / ^ ^ * \ l\ Suppose that X± and X2 are two smooth man-
17 21 /^^/v \ / \ ifolds, equipped with framings Fx and F2 respec-

11 \ ^ / 1 / \ \ tively. If a : X1 —> X2 is a diffeomorphism, and
\\ / //J 27 Xi G Xi is a point, we define the matrix Ma.̂  as
\Yi3 /l / follows: We have the differential map

15 \ h>^ \ / / da:TXxXx^Tx,X2.
19 23 Here x2 = a(xi). We wri te out this m a p with re-

FIGURE 3. Vertex labeling for A n (upper left) and s P e c t t o t h e b a s e s § i v e n b ^ F^ a n d F^ T h i s i s

Bn (lower right). o u r mat r ix . We say t h a t a is adapted to (F l 5 jF2) if
det(Ma.) = 1 for all x G X1. Note t h a t a is adap ted

Let E and O be the invariants defined in the pre- to (FUF2) if and only if the differential da maps fjbFl

vious section. To show t h a t / o Tn = f we will show t o /jJp2.
that Suppose now that G : X -> X is a smooth, free,

£/ o An — U, U o An = h, proper group action. [Free means that every ele-
E o Bn = O, O o Bn = E. ment of G acts with no fixed points, and proper
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means that {g G G \ g{K) D K ^ 0 } is com- G = PGL3(R). Note that G acts freely, properly
pact whenever K is compact.) Then the quotient and smoothly on S n , and that £ n / G = S n . Let
X = X/G is a smooth manifold, and any smooth fn : E n -> S n be the pentagram map, as it acts on
map T : X -^ X that commutes with G induces a S n . (Tn induces the map Tn : S n —>> En.)
map T : X -> X. Here is our main technical result. We define Sn( j ) as the space of strictly convex
. A H c n <y v - J.U £ n-gons in RP 2 , whose points are labelled by con-
Lemma 4.1. suppose G : X —> X is a smooth, free, ° •> r J

,. o rf, ^ v . secutive integers congruent to j mod 4. Just as we
proper group action, suppose 1 : X -^ X is a ° ° ^ r

,i irr L • T • 7 i .,, ,, factored the map Tn in Section 3C, we factor Tn as:
smooth aiffeomorphism which commutes with the ac- ^ '
tion ofG. Suppose there exists a smoothG-invariant ^ . ^ / ] \ ̂  ^ /g\ g^ ̂  / ^ ^ ̂
framing F on X such that T is adapted to (F,F).
Then there is a volume form /i on X = X/G which T h e d o u b l e a r r o w s indicate maps which just change
is preserved by the induced map T : X -+X. t h e l a b e l s * T h e factorization here forms an obvi-

ous commuting diagram with the one given at the
Proof. We begin with a fact from linear algebra. Sup- beginning of Section 3C
pose V is an n-dimensional vector space, equipped B e l o w w e w i n c o n s t r u c t G-invariant framings F(l)
with a volume form v. Suppose ^ c V i s a f c - a n d F ( 3 ) o n £ n ( 1 ) a n d ̂ ^ reSpectively. Then
dimensional subspace, equipped with a volume form w e w i n g h o w t h a t ^ i g a d a p t e d t o ( ^ ( 1 ) ^ ( 3 ) ) .
w. We shall denote the quotient map V -+ V/W by n follows from s y m m e t r y ( o r f r o m a s i m i l a r p r o o f )

x -> x. It is an elementary fact that there is a t h a t ^ i g a d a p t e d t o ( ^ ( 3 ) ^ ( 1 ) ) . The composi-
unique volume form q on V/W such that t i o n ^ Q ̂  .g t h e r e f o r e a d a p t e d t o ( ^ ( 1 ) ^ ( 1 ) ) .

(x A'-Ax ) = v(x^A'"Ax^-kAyiA'"Ayk) But this composition differs from fn only in the la-
w(yiA- • -Aj/fe) bels on the points of the polygons. So, there exists a

Here x l 5 . . . , xn_fc G F are vectors such that xx, . . . , G-invariant framing F on S n such that fn is adapted
xn_fc is a basis for F /W, and yu ..., yk is any basis t o ( ^ ^ ) - B y Lemma 4.1, there exists a volume form
for W. Mn o n ^n which is Tn-invariant.

Let x £ X be a point. Let i G X be a point which
is mapped to X under the quotient map X -> X. 4 B- U n i t V e c t o r i n t h e H i l b e r t M e t r i c

Let V = T5X be the tangent space. Let LG be Suppose that L is a line in R2, and A, B,C e L
the Lie algebra of left invariant vector fields on G. are three points, with B separating A from C. We
We fix a left invariant volume form on LG. Each define
element of LG defines a G-invariant vector field on (C _ B)(B — A)
X. In this way, there is a canonical embedding of V ^ M ^ W — C — A '
LG into V. Let W be the image of LG under this ,, . . , , , , , ,c , x ,, ,.

. . _. __ to __ . this is to be understood as (for example) the ratio
embedding, at x. The tangent space to X at x is , , xl „. , ^ „ , ^ A

. 11
6 ' . , f ^. T r / T T r between the collmear vectors C - B and C - A,

canomcally isomorphic to the quotient V/W. ,,. ,. , , ^ .
i xr 1 , n r A 1 mul t ip l i ed by B — A.

Note that V has the volume form v = aF. Also, m l -r-r.,, , , . ,, v , N ^ .
T T r , , _ . , . . , . n • . i The Hilbert metric on the line segment LA, C\ is a
W has a volume form given by its identification with o . . , . T, . . , . . . u . ,

0 / Riemanman metric. It is just a pomtwise multiple
LG. We use the linear algebra tact above to get a c ,, ^ ,. , , . r A ^ ^i ., ,

. __ T r / T of the buclidean metric on A, G I. Ihus, it makes
volume form ax on T^A = V/W. This construction x x n u x x i i n r ^ x xx

, , , r- i sense to talk about the length of vectors tangent to
of ax does not depend on the choice of x, because r A ^ , . ^ T r i , , , . T, . ,

^ . . . . . . ^ . . _ . ' . A, C , as measured in the Hubert metric. It is not
everything in sight is G-mvanant. Let fi be the vol- , , , T / / . D ^x . ,

J
r.

 to ^ to , , . ! hard to see that VTA, S ,G) is the tangent vector,
ume form on X which restricts to ax at each point , I X T - > • , \ r A . ^ ^ - ̂  ^

^r __ 1 . . . ,. based at B, oriented from A to G, which has unit
x e X. The naturahty of our construction implies , ,, . ,, TJ.1U , , . r A rr\ ^u-

_ length in the Hilbert metric on A, G . 1ms geo-
that T preserves a. D . . . , . . . r ,r, A D ^x , ,i , ., •

^ ^ metric interpretation of V(A, S , G) shows that it is
To prove Theorem 1.1 it remains to prove the Vol- invariant under projective transformations.ume Lemma. Here is an outline of its proof. Let S n From the naturality of the construction, we seebe the space of strictly convex n-gons in RP 2 . Let that V(A, B, C) makes sense for any three collinear
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points in MP2, even if the formula breaks down— For j = 1 , . . . , n we define the motion vectors
which happens if one of the points is infinite, or,
more generally, if the segment [A,C] intersects the v^ = ^(P4j+5,P4j+i,P4j-i)> ( 4 _ ^
line at infinity. v2j+i = V(p4j-3,p4j^1,p

f
4j+3).

The construction for Sn(3) is similar. Let Q — g3,

4C. The Framings q7, qn^ . . . be a polygon in Sn(3). This time, define

To construct our framing in Sn(j) we need to con- the motion vectors

struct, for each point in Sn(?), a basis for the tan- ... _ T / ^ „ „' \
gent space at that point. A point in S n u ) is a poly- , (4-2)
gon in RP2. A tangent vector to the point is just a W2j~l = ^ ^ j + s , ?4j-i, 9^-3)-

collection of n vectors in the plane, one per vertex See examples of both conventions in Figure 4.
of the polygon. To avoid using the word "tangent"
too frequently, we will call the vectors in the plane 4D# Form of The Matrix
motion vectors. Thus, a tangent vector to a polygon N Q W c o n s i d e r p o l y g o n s p = (puPt.,...) € Sn(i)
is a collection of n motion vectors. The intuition is a n d = ^ { p ) = ( } € E B ( 3 ) a n d c o n .
that the collection of n motion vectors tells us how , , ,, ,. £ -nt-w t \ J

struct the respective framings b (1) = \V\,... j and
to move the polygon, to get a nearby polygon. p{?>) = ( } M ^ t h e preceding section. To

Suppose we are given a polygon P, a vertex poiP, g h o w t h & t t h g m & p

and a single motion vector v. We can interpret v as
a tangent vector by setting all the other n — \ motion An : En(l) —> En(3)
vectors equal to 0. We call this process extension.
The extension process starts with a motion vector i s adapted to the pair of framings (F(1),F(3)), we
and promotes it to a tangent vector by including it w o r k o u t t h e m a t r i x dAm written with respect to
as the only nonzero vector in a collection of n motion t h e s e t w o framings. For ease of exposition, we will
vectors. This is what we will do in constructing our consider the case n = 7.
basis for the tangent space to tn(j). We will specify L e t Au b e t h e matrix entries of dAn. The expres-
a collection of 2n motion vectors vu...,v2n' Each s i o n ^ j i s a function on Sn(l) . Figure 5 shows what
motion vector is extended to a tangent vector. Thus, happens when we vary P along -v4, for example: as
the 2n motion vectors determine 2n tangent vectors, w e s l i d e Pv a l o n g t h e vector -v4, keeping the other
a basis for the tangent space. vertices of P fixed, we see that only four vertices of

Here is the construction for Sn(l) . Let P = pu Q m o v e : <?3 slides along -w2, and so on. In terms
p5, p9, . . . be a polygon in Sn(l) . Let o f t h e matrix, this means that X4j > 0 if and only if

j = 2,3, and X4j < 0 if and only if j = 6, 7. Likewise
A5j < 0 if and only if j = 2,3, and A5j > 0 if and

P'j+2 = Pj-^Pj n Pi+4Pj+8. only if j = 6, 7.

P9 qn

Ps _ Q5

FIGURE 4. Construction of v2j and V2J+1, for elements of E n ( l ) (left) and of En(3) (right).
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/f\— 3^H\ 4E* C o m P u t ' n § a B'ocl< ' n the Matrix

/ I j ^ ^ ^ ^ \ \ Denote by #i, 2/25 • • • > ^2n-i5 2/2n the invariant coor-
/J^Ji^^^ ^ \ ^ I \ dinates for P , defined in Section 3C. We also define

'o \ \J I \ ^ \ The entire structure of cL4n can be deduced from
\ 7K I 1 /V symmetry and from the following formula, which we

N
v / \ \ / will justify shortly:

\ / \ /I / A9'13 = [ -^ 4 5 ^45 1 . (4-3)
p > ) U \ ^ / / L-^52/6^89 ^ 8 9 J

/ \-—---\ZlZlIII^—~~^^/L \ That det A9'13 = 0 implies that the formulae for any
u: P9\Qi-\ /========y>Pi7 three entries determine the fourth. We will compute

\ V y / / A46 = — 5̂̂ 45 and omit the other two calculations,
r \ \ / / / which are similar.

\ \ /y/ In the following diagram, extracted from Figure 5,

FIGURE 5. A change in P along V4 leads to a change ^ ^ ~— \ T ^ ^ ^ \ Q11
in Q contained in the span of w2, W3, w6, and wj. e \ ^ V^—-^^__^

Define \ \ Pl7

A 9,5 ^42 A 5 2 A 9 13 A 4 6 A 5 6 \ \
A \ \ \ \ \ \ \ \

LA43 ^53 J [^47 ^57 J \ \
\Pl3

Variation along the vector u on the line from pi to p9

does not move q3 or q7. But u is a linear combination l e t e = IP9P9I a n d s = \QHQIII
 w h e r e t h e b a r s denote

of v4 and ^5; thus the linear transformation repre- Euclidean length. Basic plane geometry gives

sented by A9 5 has a nontrivial kernel, and therefore Ipi3(?ii| bi7^n|
det(A9-5) = 6. Likewise, det(A9>13) = 0. The same S = \Pl3p9\ \Pl7p9\

 £ + 0 ( e ^
picture occurs at each vertex. Shifting the indices in
a more or less obvious way, we obtain the following T o find A « w e n e e d t o w r i t e t h i s proportionality
^Vr.T.̂ oo^v, f ^ ^ I . constant in terms of v4 and w6 rather than in terms

of Euclidean lengths. From (4-2) we have

" 0 A5'1 0 0 0 0 A25-1 1 , bi3g7| A

A1-5 0 A9-5 0 0 0 0 Qu qn-\Pl3qil\\qnqr\ 6 '
0 A5 '9 0 A13 '9 0 0 0 , f u ,x ,
0 0 A 9 ' - o A " - " 0 0 . and from (4-1) we have
0 0 0 A13-17 0 A21-17 0 , _ = -IP13O7I
0 0 0 0 A17-21 0 A25-21 Pg P9 \o7p9\\P9Pl3\

 4"
A 1,25 0 0 0 0 A21,25 Q

L u J Comparing the last three displayed equations we get

Each 0 stands for the 2 x 2 zero matrix. The in- A46 = J P ^ I I P ^ T I |gnPi7l;

dividual 2 x 2 blocks A^ have determinant 0. The l° 7 P l 3 ' l ^ 1 1 ' \pirP9\
general pattern should be clear from the case n = 7. which a short calculation identifies with —x5z45.
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4F. Computing the Determinant represented by lightly colored squares, uniquely de-
The arrangement of the blocks A5'9, A13'9, A9'5 and termine the variables in the below-diagonal blocks
^9,13 j g A-7'4^, which are represented by black squares. The

\ \ monomials are signed, so that Z is a positive sum
A42 A52 . -,
\ \ over all these monomials.

\ \ n n \ \ We can encode each one of these monomials by
A24 A34 U U AQ4 A74 J

\ \ n n \ \ * a pair of binary strings (a, b). Both a and b have
A25 A 3 5 U U A 6 5 A 7 5 ^ , , i I T

\ \ length 6. The 1 bits in a indicate the columns in
A46 A56 °
\ \ which the light shaded square is on the right half

TTT , n of the 2 x 2 block. The 1 bits in b indicate the
\A/p define

] rows in which the light shaded square are on the

det I X<24 A ? 41 t o P h a l f o f the 2 x 2 block. For instance, the first
v = H = LA^ A75 J picture is encoded by (000000,000000). The second

A42A57 ' 2 A24A75 ' picture is encoded by (010100,010010). Note that
and D2 = A56A65; moreover we define H2+i, V2+i and (000000,000000) = f[ Dk.
D2+i by adding 2i to all of the indices in the Xjk. For If a has a 0 in the fcth position, let ak be the string
instance, D\ = A34A43. Equation (4-3) gives obtained by changing this bit to a 1. For instance

TT \r M n (010010)3 = (011010). We do not define ak if a has a
n2 — v2 — 1 /245; ^ 2 — ^45^67- ; . ,, 7 , u . . . ^T -, ,1 , n . . .

1 in the fetn position. We make the same definition
Hence [ I # ^ A = 1- T o finish t h e P r o o f o f t h e for b. We have the following basic identity, which
Volume Lemma we show an auxiliary result: u s e s t h e fact t h a t d e t tfj = 0 .
Lemma 4.2. det(dAn) = f l ^ i HiviA-

(a, b) + (a*., b) — (a, 6 ) ^ ;
Proof. For ease of exposition, we take n = 6. The (4-4)
polynomial Z = det(dJi6) has n\ signed monomials. (a, b) + (a, bk) = (a, 6)T4.
The monomials in Z are only nonzero when all vari-
ables have been chosen from the nonzero 2x2 blocks. Let * stand for either a 0 or a 1. Let Si:j be the set
Say that a monomial in Z is bad if it contains two of monomials of the form (* • • • 0, * • • • 0), such that
variables picked from the same nonzero block, and there are i copies of * in the first slot, and j copies
otherwise good. The bad monomials cancel in pairs, of * in the second slot. For example, 525 consists of
since the determinant of each block is 0. the set of all monomials having the form

Figure 6 illustrates a coding for the good mono-
mials. Each good monomial is specified by choosing (**0000, *****0).
one variable arbitrarily from each of the 6 above-
diagonal blocks A-7'-7"4. These choices, which are Obviously, 566 is the set of all monomials.

0 0 0 0 0 0 0 1 0 1 0 0
0 hn zH ° rn zn

FIGURE 6. Coding for the good monomials.
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Formula (4-4) gives REFERENCES

det(dA6) = Y^(a,6) = i?5y^(a,&) [Arnol'd 1978] V. I. Arnol'd, Mathematical methods
s&6 356 o/ classical mechanics, Graduate Texts in Math. 60,

E
-p-p -̂̂ v Springer, New York, 1978. Second edition, 1989.

(a,6) = ••• = j | # ; 2 ^ ( a , & )
4̂6 s06 [Hilbert and Cohn-Vossen 1950] D. Hilbert and S. Cohn-

_ y TT JJ W a b) = Vossen, Geometry and the Imagination, Chelsea, New
5 1 1 * Z ^ v , ; ••• Y o r k^ 1 9 5 Q

= Y[ViY[Hi^2(a,b) = Jl^HiViDi. D [Schwartz 1992] R. Schwartz, "The pentagram map",
s00 Experiment. Math. 1:1 (1992), 71-81.
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