Computer Calculation of the Degree of Maps into the Poincaré Homology Sphere

Claude Hayat-Legrand, Sergei Matveev, and Heiner Zieschang

CONTENTS

1. Introduction

2. A Bit of Theory
3. How to Calculate the Boundary Cycle
4. How to Calculate the Characteristic Cochain
5. How to Calculate the Induced Chain Map
6. Computer Implementation

References

Let M and P be Seifert 3-manifolds. Is there a degree one map $f: M \rightarrow P$? The problem was completely solved by HayatLegrand, Wang, and Zieschang for all cases except when P is the Poincaré homology sphere. We investigate the remaining case by elaborating and implementing a computer algorithm that calculates the degree. As a result, we get an explicit experimental expression for the degree through numerical invariants of the induced homomorphism $\mathrm{f}_{\#}: \pi_{1}(\mathrm{M}) \rightarrow \pi_{1}(\mathrm{P})$.

1. INTRODUCTION

Let M, P be closed oriented 3-manifolds such that the fundamental group $\pi_{1}(P)$ is finite of order n. Let $\varphi: \pi_{1}(M) \rightarrow \pi_{1}(P)$ be a homomorphism. Using elementary facts from obstruction theory, one can easily show that
(1) φ is geometrically realizable; that is, there exists a map $f: M \rightarrow P$ such that $f_{*}=\varphi$;
(2) $\operatorname{deg}(f) \bmod n$ depends only on φ.

The paper is devoted to the elaboration of a computer algorithm for calculating the degree. We apply the algorithm to maps into the Poincaré homology sphere P and under certain restrictions give an experimental explicit formula for $\operatorname{deg}(f)$ through numerical invariants of φ. The formula reduces the problem of finding out degree one maps onto P to purely number-theoretical questions. For additional background see [Hayat-Legrand et al. 1997; HayatLegrand and Zieschang 2000].

The calculation of the degree seems difficult to us, even for concrete examples. For instance, Plotnick [1982] constructed a self mapping of the Poincaré homology sphere which has degree 49 and induces an automorphism of the fundamental group. Our approach requires vast manipulations with group presentations and calculations in group rings.

2. A BIT OF THEORY

Let $f: M \rightarrow P$ be a map between closed oriented 3 -manifolds such that the fundamental group $\pi_{1}(P)$ is finite of order n. Let both manifolds be equipped with CW structures such that f is cellular. We also assume that both CW complexes have exactly one vertex, and that P has only one 3 -cell. Let $p: \tilde{P} \rightarrow$ $P, p_{1}: \tilde{M} \rightarrow M$ be the universal coverings and $\tilde{f}: \tilde{M} \rightarrow \tilde{P}$ a lift of f to the universal coverings. We describe three items needed for calculating the degree.

The Boundary Cycle

Let $B_{1}, B_{2}, \ldots, B_{k}$ be the 3 -cells of M and $\beta_{M} \in$ $C_{3}(M ; \mathbb{Z})$ the corresponding 3 -chain composed from the 3 -cells taken with the orientation inherited from the orientation of M. For every 3 -cell B_{i} we take a lift \tilde{B}_{i}. Then the boundary cycle $\partial \tilde{\beta}_{M}=\sum_{i=1}^{k} \partial \tilde{B}_{i}$ will be the first item needed for the calculation of the degree.

Remark 2.1. The group $C_{2}(\tilde{M} ; \mathbb{Z})$ considered as a $\pi_{1}(M)$-module with respect to the covering translations can be identified with the free $\pi_{1}(M)$-module $C_{2}\left(M ; \mathbb{Z}\left[\pi_{1}(M)\right]\right)$. To specify the identification, one should fix the orientations and the base points for the attaching curves of all 2-cells, as well as a base point for \tilde{M} over the vertex of M.

The Characteristic Cochain

Choose a point x_{0} in the interior of the unique 3cell B^{3} of P. The set $X=p^{-1}\left(x_{0}\right)$ can be considered as a 0 -dimensional cycle in P with coefficients in \mathbb{Z}_{n}. Since \tilde{P} is path connected and the coefficients are in \mathbb{Z}_{n}, every 0 -chain of \tilde{P} with coefficient sum divisible by n is a boundary. Hence X, consisting of n points, bounds a 1-dimensional chain Y in \tilde{P} with coefficients in \mathbb{Z}_{n}. Note that X and Y are actually elements of the corresponding chain groups of \tilde{D}, where \tilde{D} is the decomposition of \tilde{P} dual to the one induced by the cell decomposition of P. Alternatively, one can consider X and Y as singular chains with the additional requirement that Y should be transverse to the 2-skeleton of \tilde{P}. Hence, for any 2 -chain $\sigma \in C_{2}(\tilde{P} ; \mathbb{Z})$, the intersection number $\sigma \cap Y \in \mathbb{Z}_{n}$ is well-defined. Therefore we get a homomorphism $\xi_{P}: C_{2}(\tilde{P} ; \mathbb{Z}) \rightarrow \mathbb{Z}_{n}$, that
is, a 2-cochain in $C^{2}\left(\tilde{P} ; \mathbb{Z}_{n}\right)$; this is the second item needed.

The Induced Chain Map

The third item we need for the calculation is the module homomorphism $\tilde{f}_{*}: C_{2}\left(M ; \mathbb{Z}\left[\pi_{1}(M)\right]\right) \rightarrow$ $C_{2}\left(P ; \mathbb{Z}\left[\pi_{1}(P)\right]\right)$. It can be described as the chain map induced by f and takes

$$
C_{2}(\tilde{M} ; \mathbb{Z})=C_{2}\left(M ; \mathbb{Z}\left[\pi_{1}(M)\right]\right)
$$

to $C_{2}(\tilde{P} ; \mathbb{Z})=C_{2}\left(P ; \mathbb{Z}\left[\pi_{1}(P)\right]\right)$. It is easy to see that \tilde{f}_{*} preserves the module structures in the sense that for all $g \in \pi_{1}(M), \sigma \in C_{2}\left(M ; \mathbb{Z}\left[\pi_{1}(M)\right]\right)$ we have $\tilde{f}_{*}(g \sigma)=f_{\#}(g) \tilde{f}_{*}(\sigma)$, where $f_{\#}: \pi_{1}(M) \rightarrow \pi_{1}(P)$ is the induced homomorphism.
Theorem 2.1. $\operatorname{deg}(f) \equiv-\xi_{P}\left(\tilde{f}_{*}\left(\partial \tilde{\beta}_{M}\right)\right) \bmod n$.
Proof. Let $\sigma^{1} \in C_{1}\left(Q ; \mathbb{Z}_{n}\right), \sigma^{3} \in C_{3}(Q ; \mathbb{Z})$ be two (say, singular) chains in an orientable 3 -manifold Q in general position; in particular, their boundary cycles are disjoint. Then the linking number $\operatorname{lk}\left(\partial \sigma^{3}, \partial \sigma^{1}\right) \in \mathbb{Z}_{n}$ is well-defined. It can be calculated as the intersection number $\sigma^{3} \cap \partial \sigma^{1}$ as well as the intersection number $\partial \sigma^{3} \cap \sigma^{1}$ multiplied by (-1), see [Seifert and Threlfall 1934, Chap. 10], for details. Thus $\sigma^{3} \cap \partial \sigma^{1}=-\partial \sigma^{3} \cap \sigma^{1}$. Taking $Q=\tilde{P}$, $\sigma^{1}=Y$ and $\sigma^{3}=\tilde{f}_{*}\left(\tilde{\beta}_{M}\right)$, we get $\tilde{f}_{*}\left(\tilde{\beta}_{M}\right) \cap X=$ $-\partial \tilde{f}_{*}\left(\tilde{\beta}_{M}\right) \cap Y$. The right side of the equality is just $-\xi_{P}\left(\tilde{f}_{*}\left(\partial \tilde{\beta}_{M}\right)\right)$, by the definition of ξ_{P}. It remains to show that the left part equals $\operatorname{deg}(f)$.

Let B_{i} be a closed 3 -cell of M. Denote by k_{i} the degree of the restriction map $f_{\mid}:\left(B_{i}, \partial B_{i}\right) \rightarrow$ $(B, \partial B)$. Then we have

where $M^{(2)}$ and $P^{(2)}$ denote the 2 -skeletons of M and P, respectively. Here i_{*} sends the generator of $H_{3}\left(B_{i}, \partial B_{i}\right)$ to the i-th generator of $H_{3}\left(M, M^{(2)}\right)$, considered as the 3 -dimensional cellular chain group of the CW-complex M. Denote this cellular chain by $\left\{B_{i}\right\}$; thus $f_{*}\left(\left\{B_{i}\right\}\right)=k_{i}\{B\}$. For the fundamental cycle of M we have $\{M\}=\sum_{i=1}^{k}\left\{B_{i}\right\}$. Clearly, the
algebraic intersection number $\{B\} \cap\left\{x_{0}\right\}$ is 1 . It follows that k_{i} coincides with the algebraic intersection number $f_{*}\left(\left\{B_{i}\right\}\right) \cap\left\{x_{0}\right\}$; after a deformation of f in B_{i} which does not alter f on $M^{(2)}$, we may assume that this number is also the geometric intersection number, which is to say that there are exactly k_{i} points in B_{i} which are mapped to x_{0}. To calculate it, note that for any lifting \tilde{B}_{i} of B_{i} we have

$$
\begin{aligned}
\tilde{f}_{*}\left(\left\{\tilde{B}_{i}\right\}\right) \cap X & =\tilde{f}_{*}\left(\left\{\tilde{B}_{i}\right\}\right) \cap p^{-1}\left(x_{0}\right) \\
& =f_{*}\left(\left\{B_{i}\right\}\right) \cap x_{0}=k_{i} .
\end{aligned}
$$

Summing up, $\tilde{f}_{*}\left(\tilde{\beta}_{M}\right) \cap X=\operatorname{deg}(f)$.
Remark 2.2. It is important to have in mind that ξ_{P} and $\partial \tilde{\beta}_{M}$ depend only on P and M, respectively, but not on f.

3. HOW TO CALCULATE THE BOUNDARY CYCLE

3.1. The General Case

Let M be an oriented CW 3-manifold such that its 2skeleton K_{M}^{2} has exactly one vertex. We say that the presentation $\left\langle a_{1}, \ldots, a_{r} \mid R_{1}, \ldots R_{q}\right\rangle$ of $\pi_{1}(M)$ corresponds to K_{M}^{2} if
(1) all edges of K_{M}^{2} are oriented and correspond bijectively to the generators a_{1}, \ldots, a_{r};
(2) all 2-cells of K_{M}^{2} are oriented and correspond bijectively to the relations R_{1}, \ldots, R_{q};
(3) the boundary curve of each 2 -cell is equipped with a base point such that, starting from this point, the curve follows the edges just so as they are written in the corresponding relation.

Let $\left\langle a_{1}, \ldots a_{r} \mid R_{1}, \ldots R_{q}\right\rangle$ corresponds to K_{M}^{2}, and let B be a 3 -cell of M. The simplest way to calculate the contribution $\partial \tilde{\beta}_{B}$ to the boundary cycle made by the boundary of B is to construct a spherical diagram for the attaching map $h_{B}: S_{B}^{2} \rightarrow K_{M}^{2}$ of B, that is, a cellular decomposition θ_{B} of S_{B}^{2} such that:
(1) every edge of θ_{B} is oriented and labeled with a generator a_{i};
(2) every 2 -cell of θ_{B} is oriented and labeled with a relation R_{j};
(3) the boundary curve of each 2 -cell is equipped with a base point such that, starting from this point, the curve follows the edges just so as they are written in the corresponding relation;
(4) the attaching map h_{B} is cellular and preserves the labels, base points, and orientations of the edges and 2 -cells.

Fix a vertex v of S_{B}^{2} as base point for S_{B}^{2}, and let us assign to every 2 -cell c of S_{B}^{2} the following data:
(1) the $\operatorname{sign} \varepsilon(c)= \pm 1$ that shows whether or not the orientation of c agrees with the orientation of S_{B}^{2} induced by the fixed orientation of $B \subset M$;
(2) the element $g(c)=\left[h_{B}(\gamma(c))\right]$ of $\pi_{1}(M)$, where $\gamma(c)$ is a path in S_{B}^{2} joining v to the base point of c and $\left[h_{B}(\gamma(c))\right]$ denotes the element of $\pi_{1}(M)$ that corresponds to the loop $h_{B}(\gamma(c))$ in K_{M}^{2};
(3) the relation $R_{i(c)}$ which labels c.

It is convenient to regard the chain group $C_{2}(\tilde{M}, \mathbb{Z})$ as the $\pi_{1}(M)$-module freely generated by the relations R_{1}, \ldots, R_{q}. The proof of the following statement is evident.
Lemma 3.1.1. The contribution $\partial \tilde{\beta}_{B}$ made by a 3 -cell B of M to $\partial \tilde{\beta}_{M}$ equals $\sum_{c} \varepsilon(c) g(c) R_{i(c)}$, where the sum is taken over all 2 -cells c in S_{B}^{2}.

3.2. A Useful Example

We consider an informative example. Present the torus $T^{2}=S^{1} \times S^{1}$ as a CW complex with one vertex, two edges $a=S^{1} \times\{*\}, t=\{*\} \times S^{1}$, and one 2 -cell r_{1} that corresponds to the relation $R_{1}=a t^{-1} a^{-1} t$ of $\pi_{1}\left(T^{2}\right)=\left\langle a, t \mid R_{1}\right\rangle$. Choose a pair α, β of coprime integers, $\alpha \geq 0$. We extend the cell decomposition of T^{2} to a cell decomposition of a solid torus M with $\partial M=T^{2}$ by attaching two new cells: a 2 -cell r_{2} and a 3 -cell B. Note that the boundary curve m of r_{2} lies in $a \cup t$ and thus can be written as a word in generators a, t. To make the situation interesting, we require that m wraps totally α times around a and β times around t. In other words, the corresponding word (denote it by $w_{\alpha, \beta}(a, t)$) should determine the element $\alpha a+\beta t$ in the homology group $H_{1}(a \cup t ; \mathbb{Z})$. In general, we cannot take $w_{\alpha, \beta}(a, t)=a^{\alpha} t^{\beta}$ since the curve $a^{\alpha} t^{\beta}$ in $a \cup t$ bounds a meridional disc in M with embedded interior if and only if $|\alpha|=1$ or $|\beta|=1$.

We describe a simple geometric procedure for finding out $w_{\alpha, \beta}(a, t)$. Present a regular neighborhood N of $a \cup t$ in T^{2} as the union of a disc with two disjoint strips (handles of index one). The key observation is that m, being the boundary of a meridional
disc of the solid torus, can be shifted in N to a simple closed curve m_{1} which is normal (in the sense of [Haken 1961]) with respect to the handle decomposition of N. The normality of m_{1} means that it can be constructed as follows:

1. Take α parallel copies of a and $|\beta|$ parallel copies of t in the strips such that the end points of them lie on the boundary of the disc around the vertex;
2. Join the copies inside the disc by disjoint arcs such that no arc has both end points at the same end of the same strip. This can be done in two ways, and the right choice depends on the sign of β.
To get $w_{\alpha, \beta}$, it only remains to read it off by traversing m_{1}. See Figure 1 for the case $\alpha=5, \beta=2$, when we get $w_{\alpha, \beta}=a^{3} t a^{2} t$.

FIGURE 1. Simple closed curve of the type (α, β).
Lemma 3.2.1. Let K be a $C W$ complex realizing the presentation $\left\langle a, t \mid R_{1}, R_{2}\right\rangle$, where $R_{1}=a t^{-1} a^{-1} t$ and $R_{2}=w_{\alpha, \beta}(a, t)$ for a pair α, β of coprime integers, $\alpha \geq 0$. Suppose that a solid torus M is obtained from K by attaching a 3 -cell B. Then $\partial \tilde{\beta}_{M}=-R_{1}+$ $\left(1-a^{x} t^{y}\right) R_{2}$, where $\alpha y-\beta x=1$.
Proof. To compute the boundary cycle $\partial \tilde{\beta}_{M}$ (which in our case coincides with the contribution $\partial \tilde{\beta}_{B}$ made by B), we construct a spherical diagram for B. It contains only three 2 -cells c_{1}, c_{2}, c_{3} labelled by R_{1}, R_{2}, R_{2} and having signs $-1,1,-1$, respectively. We choose the common base point of c_{1}, c_{2} as a global vertex v; see Figure 2.

By Lemma 3.1.1, we get $\partial \tilde{\beta}_{B}=-R_{1}+R_{2}-$ $g\left(c_{3}\right) R_{2}$, where $g\left(c_{3}\right) \in \pi_{1}(M)$ corresponds to a path $\gamma\left(c_{3}\right)$ in S_{B}^{2} joining v to the base point of c_{3}. Note that if we push slightly the loop $h_{B}\left(\gamma\left(c_{3}\right)\right)$ into the

FIGURE 2. Spherical diagram for the 3 -cell of M.
interior of M, we get a circle that intersects the meridional disc r_{2} of the solid torus M positively in exactly one point. It follows that $g\left(c_{3}\right)$ can be presented as $a^{x} t^{y} \in \pi_{1}(M)$, where the integers x, y satisfy the equation $\alpha y-\beta x=1$ and thus serve as the coordinates of a positively oriented longitude of the torus.

Remark 3.2.1. The following simple rules can be used for recursive calculating of the word $w_{\alpha, \beta}$:

$$
\begin{aligned}
& w_{1,0}(a, t)=a, w_{0, \pm 1}(a, t)=t^{ \pm 1} \\
& w_{\alpha+\beta, \beta}(a, t)=w_{\alpha, \beta}(a, a t) \\
& w_{\alpha, \alpha+\beta}(a, t)=w_{\alpha, \beta}(a t, t)
\end{aligned}
$$

An alternative approach to the $w_{\alpha, \beta}$ can be found in [Osborne and Zieschang 1981; Lustig et al. 1995]; compare also [Gonzálvez-Acuña and Ramírez 1999].

3.3. Boundary Cycles of Seifert Manifolds

We restrict ourselves to Seifert manifolds fibered over the 2 -sphere with three exceptional fibers. Let $M=M\left(\left(\alpha_{1}, \beta_{1}\right) ;\left(\alpha_{2}, \beta_{2}\right) ;\left(\alpha_{3}, \beta_{3}\right)\right)$ be an oriented Seifert manifold, where the α_{i} and β_{i} are non-normalized parameters of the exceptional fibers, with $\alpha_{i} \geq 0,1 \leq i \leq 3$. The orientation of M is induced by the standard orientation of S^{2} and an orientation of a regular fiber. Then $\pi_{1}(M)$ can be presented by

$$
\left\langle a_{1}, a_{2}, a_{3}, t \mid a_{i} t a_{i}^{-1} t^{-1}, a_{i}^{\alpha_{i}} t^{\beta_{i}}, i=1,2,3, a_{1} a_{2} a_{3}\right\rangle
$$

(t corresponds to the oriented regular fiber), but this presentation does not correspond to the 2 -skeleton of a CW structure of M. To ameliorate this shortcoming, we will use another presentation of the same group with the same generators, namely,

$$
\left\langle a_{1}, a_{2}, a_{3}, t \mid R_{j}, 1 \leq j \leq 7\right\rangle,
$$

where $R_{2 i-1}=a_{i} t^{-1} a_{i}^{-1} t, R_{2 i}=w_{\alpha_{i} \beta_{i}}\left(a_{i}, t\right)$ for $i=$ $1,2,3, R_{7}=a_{1} a_{2} a_{3}$. The words $w_{\alpha_{i} \beta_{i}}$ have been described above. The CW complex that realizes this presentation embeds in M such that the complement consists of four 3 -balls $B_{i}, 1 \leq i \leq 4$. The first three
of them correspond to solid tori containing exceptional fibers, and the last corresponds to a regular fiber.

Theorem 3.3.1. If $M=M\left(\left(\alpha_{1}, \beta_{1}\right) ;\left(\alpha_{2}, \beta_{2}\right) ;\left(\alpha_{3}, \beta_{3}\right)\right)$ then
$\partial \tilde{\beta}_{M}=\sum_{i=1}^{3}\left(-R_{2 i-1}+\left(1-a_{i}^{x_{i}} t^{y_{i}}\right) R_{2 i}\right)$

$$
+\left(R_{1}+a_{1} R_{3}+a_{1} a_{2} R_{5}-(1-t) R_{7}\right)
$$

where $\alpha_{i} y_{i}-\beta_{i} x_{i}=1$.
Proof. The first three summands can be obtained by Lemma 3.2.1. The last summand can be obtained in a similar way. The only difference from the proof of Lemma 3.2.1 is that the corresponding spherical diagram, instead of one 2-cell with one odd R-label, contains three positively oriented 2-cells with labels R_{1}, R_{3}, R_{5}.

4. HOW TO CALCULATE THE CHARACTERISTIC COCHAIN

Let P be a closed oriented 3-manifold with the finite fundamental group $\pi_{1}(P)$ of order n. We assume that P is equipped with a CW structure such that there is only one vertex v, only one 3 -cell B, and the 2-dimensional skeleton K_{P}^{2} of P defines a presentation $\left\langle b_{1}, \ldots, b_{s} \mid Q_{1}, \ldots, Q_{s}\right\rangle$ of $\pi_{1}(P)=\pi_{1}(P ; v)$. We will identify generators and relations of $\pi_{1}(P)$ with edges and 2-cells of K_{P}^{2}, respectively. Fix a base point x_{0} in the interior of B and a base point $\tilde{x}_{0} \in p^{-1}\left(x_{0}\right)$ in the universal cover \tilde{P} of P. For each $i=1, \ldots, s$ choose a loop u_{i} in P with end points in x_{0} such that $K_{P}^{2} \cap u_{i}$ is a point in Q_{i} and the intersection is transverse and positive. Clearly, the loops $u_{i}, 1 \leq i \leq s$, generate the group $\pi_{1}\left(P ; x_{0}\right)$ isomorphic to $\pi_{1}(P ; v)$; we will call them dual generators.

Let w be a loop in P written as word in the generators u_{i}. Denote by \tilde{w} the lifting of w to \tilde{P} with the initial point \tilde{x}_{0}. Then the formula $\xi_{w}(c)=c \cap \tilde{w}$, where $c \in C_{2}(\tilde{P} ; \mathbb{Z})$ and $c \cap \tilde{w}$ is the intersection number, determines a homomorphism $\xi_{w}: C_{2}(\tilde{P} ; \mathbb{Z}) \rightarrow$ \mathbb{Z} and hence a cochain $\xi_{w} \in C^{2}(\tilde{P} ; \mathbb{Z})$. It follows from the construction that
(1) $\xi_{u_{\imath}}\left(Q_{j}\right)=\delta_{i}^{j}$ where δ_{i}^{j} is the Kronecker symbol;
(2) $\xi_{w_{1} w_{2}}=\xi_{w_{1}}+\bar{w}_{1} \xi_{w_{2}}$ where $\bar{w}_{1} \in \pi_{1}(P)$ corresponds to w_{1} and the action of $\pi_{1}(P)$ on cochains is given by $g(\xi)(c)=\xi(g(c))$.

These rules describe actually nothing more than a sort of Fox calculus [Crowell and Fox 1963, Chap. VII; Burde and Zieschang 1985, Chap. 9]. They are sufficient for finding ξ_{w} for any word w in the generators u_{i}.

Proposition 4.1. Let the words w_{0}, \ldots, w_{n-1} in generators u_{i} present (without repetitions) all elements of $\pi_{1}\left(P ; x_{0}\right)$. Then

$$
\xi_{P}=\sum_{i=0}^{n-1} \xi_{w_{i}} \bmod n
$$

is a characteristic cochain for P.
Proof. Evident, since the union of the paths given by w_{i} for $0 \leq i \leq n-1$ presents a 1 -chain Y such that ∂Y is the union of all points in $p^{-1}\left(x_{0}\right)$.

We may conclude that all what we need for calculation is a sort of normal form for elements of $\pi_{1}(P)$, that is, a list of words in the dual generators that present without repetitions all elements of $\pi_{1}(P)$.

5. HOW TO CALCULATE THE INDUCED CHAIN MAP

5.1. Taking Logs

Recall that M and P are closed oriented CW threemanifolds such that $\pi_{1}(P)$ is finite of order n. Let $\left\langle a_{1}, \ldots a_{r} \mid R_{1}, \ldots R_{q}\right\rangle$ and $\left\langle b_{1}, \ldots, b_{s} \mid Q_{1}, \ldots, Q_{s}\right\rangle$ be presentations of their fundamental groups, corresponding to the 2 -skeletons of M and P, respectively. Suppose that the homomorphism $\varphi=f_{\#}$: $\pi_{1}(M) \rightarrow \pi_{1}(P)$ is given by a set of words h_{i} in the generators b_{j} that represent the elements $\varphi\left(a_{i}\right)$ of $\pi_{1}(P), 1 \leq i \leq r$. We consider the chain group $C_{2}\left(M, \mathbb{Z}\left[\pi_{1}(M)\right]\right)$ as a free $\mathbb{Z}\left[\pi_{1}(M)\right]$-module generated by the set $R_{1}, \ldots, R_{q} ;$ similarly, $C_{2}\left(P, \mathbb{Z}\left[\pi_{1}(P)\right]\right)$ is a free module generated by Q_{1}, \ldots, Q_{s}. Denote by K the kernel of the quotient map $F\left(b_{1}, \ldots, b_{s}\right) \rightarrow$ $\pi_{1}(P)$, where $F=F\left(b_{1}, \ldots, b_{s}\right)$ is the free group generated by b_{1}, \ldots, b_{s}.

Let R be one of the relations R_{i}. To calculate the image $f_{*}(R) \in C_{2}\left(P, \mathbb{Z}\left[\pi_{1}(P)\right]\right)$ of the corresponding 2-cell, one may do the following:
(1) Replace each generator $a_{i}^{ \pm 1}$ in R by the corresponding word $h_{i}^{ \pm 1}$. We get a word $w \in K$.
(2) Present w as a product of conjugates of the defining relations, that is, in the form

$$
w=\prod_{k} v_{k} Q_{i_{k}}^{\varepsilon_{k}} v_{k}^{-1}
$$

where $\varepsilon_{k}= \pm 1$ and $v_{k} \in F$.
(3) Then the image $f_{*}(R)$ is obtained by "taking $\operatorname{logs} ": f_{*}(R)=\log w$, where $\log w=\sum_{k} \varepsilon_{k} \bar{v}_{k} Q_{i_{k}}$ and \bar{v}_{k} is the image of v_{k} in $\pi_{1}(P)$.

Note that $\log w$ is a multivalued function since w can be presented as a product of conjugated relations in many different ways. This corresponds to the fact that φ can be realized by many different f; this arbitrariness does not affect the degree. One should point out that finding $\log w$ (actually, step (2) above) is a nontrivial procedure. The problem is to realize it algorithmically. We solve the problem for the case when P is the Poincaré homology sphere.

5.2. On the Fundamental Group of the Poincaré Sphere

Henceforth we denote by P the Poincaré sphere. It is homeomorphic to the Seifert manifold

$$
M((2,1),(3,1),(5,-4))
$$

Its fundamental group $\pi_{1}(P)$ consists of 120 elements and is isomorphic to $\mathrm{SL}_{2}\left(\mathbb{Z}_{5}\right)$ and to the binary icosahedral group I^{*}. We will denote it by π.

We will use the presentation $\left\langle a, c \mid Q_{1}, Q_{2}\right\rangle$, where $Q_{1}=c^{5} a^{-2}$ and $Q_{2}=a c a^{-1} c a^{-1} c$. This presentation corresponds to the Heegaard diagram of P shown in Figure 3. Therefore it corresponds to the 2-skeleton of the natural CW structure of M.

FIGURE 3. Heegaard diagram of the Poincaré homology sphere.

Remark 5.2.1. Looking at Figure 3, one can easily find the dual generators (see Section 4): $u_{1}=c, u_{2}=$ $c^{-1} a$.

We now work a little with the relations $c^{5} a^{-2}=1$, $a c a^{-1} c a^{-1} c=1$. Our goal is to get new relations
appropriate for later use. We will use essentially one basic transformation:
(*) If $w_{1}=w_{2}$ is a relation, then $u w_{1} v=u w_{2} v$ is a relation for any words u, v.

Lemma 5.2.1. In π, the following relations are true:
(1) $a c a=c^{4} a c^{-1}, \quad a c^{-1} a=c a c$;
(2) $a c^{-2} a=c^{-4} a c^{2} a c$;
(3) $a c^{2} a c^{2} a=c^{4} a c^{2} a c^{-1}$;
(4) $a c^{2} a c^{-2} a c^{-1}=c a c^{2} a c^{-2} a$;
(5) $c^{10}=1$.

Proof. The first three relations are easily obtained, so we concentrate on the last two.
(a) Multiplying $Q_{2}=1$ by $c^{-1} a c^{-1}$, we get $a c a^{-1}=$ $c^{-1} a c^{-1}$, which implies (1).
(b) Using (a), we obtain

$$
\begin{aligned}
a c^{-2} a=c c^{-1} a c^{-1} c^{-1} a c^{-1} c & =c a c a^{-1} a c a^{-1} c \\
& =c a c^{2} a^{-1} c .
\end{aligned}
$$

(c) Let $w=a c^{2} a c^{-2} a$. A consequence of (b) and $a^{2}=c^{5}$ is

$$
\begin{aligned}
w c^{-1}=a c^{2} a c^{-2} a c^{-1} & =a c^{3} a c^{2} a^{-1}=a c^{-2} a c^{2} a \\
& =c a c^{2} a^{-1} c^{3} a=c w .
\end{aligned}
$$

(d) It follows from (c) that

$$
c^{10}=c^{5} w w^{-1} c^{5}=w c^{-5} w^{-1} c^{5}
$$

On the other hand, the relation $a^{2}=c^{5}$ allows one to permute c^{-5} with any other word. Thus $c^{10}=w c^{-5} w^{-1} c^{5}=w w^{-1} c^{-5} c^{5}=1$.

The following list L presents the 120 elements of π : $c^{i}, c^{i} a c^{j}, c^{i} a c^{2} a c^{j}, c^{i} a c^{2} a c^{-2} a$, where $0 \leq i \leq 9$ and $0 \leq j \leq 4$. The words from L will be called normal forms.
Lemma 5.2.2. There exists an effective algorithm that transforms any word in the generators a, c to a normal form presenting the same element of π.

Proof. The normalizing algorithm works with reduced words. Thus, before and after each step, one should reduce the word we are working with. By the a-size of a word in generators a, c we mean the total number of occurrences of $a^{ \pm 1}$ in it.

Let w be a word in generators a, c. Steps 1-5 below are based on the corresponding relations $1-5$ from Lemma 5.2.1.

Step 0. Using the relation $a^{2}=c^{5}$, we transform w to the form $w=c^{k_{1}} a c^{k_{2}} a \ldots c^{k_{m}} a c^{k_{m+1}}$, where $m \geq 0$ and $k_{i}= \pm 1, \pm 2$ for $1<i<m+1$ and $\left|k_{m+1}\right| \leq 2$.
Step 1. If w contains the subwords $a c a$ or $a c^{-1} a$, we replace them by $c^{4} a c^{-1}$ or $c a c$, respectively.
Step 2. If the initial segment of w has the form $c^{k_{1}} a c^{-2} a$ (that is, if $k_{2}=-2$ and $m \geq 2$), we replace it by $c^{k_{1}-4} a c^{2} a c$.
Step 3. If the initial segment of w has the form $c^{k_{1}} a c^{2} a c^{2} a$, we replace it by $c^{k_{1}+4} a c^{2} a c^{-1}$.
Step 4. If the initial segment of w has the form $c^{k_{1}} a c^{2} a c^{-2} a c^{k_{4}}$, we replace it by $c^{k_{1}-k_{4}} a c^{2} a c^{-2} a$.
Step 5. We reduce the power k_{1} of the first term $c^{k_{1}}$ of w modulo 10 .

Now we are ready to describe the algorithm. We apply Steps $0-5$ as long as possible to the given word w. Since Steps $1-4$ strictly decrease the a-size, the process terminates after a finite number of steps. It is easy to verify that the resulting word is in normal form.

5.3. Logs in the Case of the Poincaré Sphere

The algorithm for calculating logs is similar to the one described in Lemma 5.2.2. The only difference is that instead of operating with words in the free group $F=F(a, c)$ we will operate with their shadows.

Let \mathcal{M} be the free π-module generated by Q_{1}, Q_{2}. We define the shadow group $S(F)$ of F to be the semidirect product $\mathcal{M} \rtimes F$, where the operation of F on \mathcal{M} is induced by the action of π (recall that π is the quotient of F). In other words, $\mathcal{S}(F)$ consists of pairs (μ, w), where $\mu \in \mathcal{M}, w \in F$. The multiplication is given by the rule $(\nu, u)(\mu, w)=(\nu+\bar{u} \mu, u w)$, where \bar{u} is the image of u in π. Note that the unit of the group $\mathcal{S}(F)$ is $(0,1)$, and the inverse element of (μ, w) is $\left(-\bar{w}^{-1} \mu, w^{-1}\right)$.
Remark 5.3.1. The above formula $(\nu, u)(\mu, w)=(\nu+$ $\bar{u} \mu, u w)$ is a formalization of the algebraic identity $\nu u \cdot \mu w=\nu \mu^{u} \cdot u w$, where $\mu^{u}=u \mu u^{-1}$ and ν, μ are products of the relations $Q_{1}^{ \pm 1}, Q_{2}^{ \pm 1}$ and their conjugates.
If $w \in F$, any pair $(\mu, w) \in \mathcal{S}(F)$ is called a shadow of w. The shadow $(0, w)$ is called pure. Similarly, the pair $(\mu, 1)$ is the pure shadow of $\mu \in \mathcal{M}$. Note
that any product of shadows can be replaced by a product of pure shadows:
$\prod_{i=1}^{k}\left(\lambda_{i}, w_{i}\right)=(\mu, 1) \prod_{i=1}^{k}\left(0, w_{i}\right)=(\mu, 1)\left(0, \prod_{i=1}^{k} w_{i}\right)$, where

$$
\mu=\lambda_{1}+\bar{w}_{1} \lambda_{2}+\cdots+\bar{w}_{1} \bar{w}_{2} \ldots \bar{w}_{k-1} \lambda_{k}
$$

In other words, one can purify the factors. Recall that the kernel K of the quotient map $F \rightarrow \pi$ is the normal subgroup of F generated by Q_{1}, Q_{2}. Let $\mathcal{S}(K)$ denote the normal subgroup of $\mathcal{S}(F)$ generated by elements $\left(-Q_{i}, Q_{i}\right)$, for $i=1,2$. Note that the left Q_{i} in the above expression is considered as a generator of \mathcal{M} while the right Q_{i} is the word $c^{5} a^{-2}$ or $a c a^{-1} c a^{-1} c$. We define the shadow group of π as

$$
\mathcal{S}(\pi)=\mathcal{S}(F) / \mathcal{S}(K)
$$

Another way to get $\mathcal{S}(\pi)$ is to take the quotient of $\mathcal{S}(F)$ by the relations $\left(0, Q_{i}\right)=\left(Q_{i}, 1\right)$, for $i=1,2$.

Lemma 5.3.1. $(-\mu, w) \in \mathcal{S}(K) \Longleftrightarrow w \in K$ and $\mu=$ $\log w$.

Proof. Recall that an element of a group lies in the normal subgroup generated by some elements if and only if it is a product of conjugates of the generators and their inverses. Thus for some $\left(\lambda_{k}, v_{k}\right) \in \mathcal{S}(F)$, $\varepsilon_{k}= \pm 1$, and $i_{k} \in\{1,2\}$, the condition

$$
(-\mu, w) \in \mathcal{S}(K)
$$

is equivalent to

$$
\begin{aligned}
(-\mu, w) & =\prod_{k}\left(\lambda_{k}, v_{k}\right)\left(-\varepsilon_{k} Q_{i_{k}}, Q_{i_{k}}^{\varepsilon_{k}}\right)\left(-\bar{v}_{k}^{-1} \lambda_{k}, v_{k}^{-1}\right) \\
& =\prod_{k}\left(-\varepsilon_{k} \bar{v}_{k} Q_{i_{k}}, v_{k} Q_{i_{k}}^{\varepsilon_{k}} \bar{v}_{k}^{-1}\right) \\
& =\left(-\sum_{k} \varepsilon_{k} \bar{v}_{k} Q_{i_{k}}, \prod_{k} v_{k} Q_{i_{k}}^{\varepsilon_{k}} v_{k}^{-1}\right) \\
& =(-\log w, w)
\end{aligned}
$$

by the definition of \log (see Section 5.1).
To construct an algorithm for calculating logs, we need a shadow counterpart of Lemma 5.2.1.

Lemma 5.3.2. One can calculate $\lambda_{0}, \ldots, \lambda_{5} \in \mathcal{M}$ such that in $\mathcal{S}(\pi)$ the following relations are true:

$$
\begin{equation*}
(0, a c a)=\left(\lambda_{0}, c^{4} a c^{-1}\right),\left(0, a c^{-1} a\right)=\left(\lambda_{1}, c a c\right) ; \tag{1}
\end{equation*}
$$

$\mathcal{S}^{(2)} \quad\left(0, a c^{-2} a\right)=\left(\lambda_{2}, c^{-4} a c^{2} a c\right)$;
S(3) $\left(0, a c^{2} a c^{2} a\right)=\left(\lambda_{3}, c^{4} a c^{2} a c^{-1}\right)$;
$\mathcal{S}(4)$

$$
\mathcal{S}(5)
$$

$$
\begin{aligned}
& \left(0, a c^{2} a c^{-2} a c^{-1}\right)=\left(\lambda_{4}, c a c^{2} a c^{-2} a\right) \\
& \left(0, c^{10}\right)=\left(\lambda_{5}, 1\right)
\end{aligned}
$$

Proof. The existence of λ_{i} is evident, since both sides of each relation are shadows of the same element of π. The problem consists in calculating λ_{i}. To solve it, we repeat the proof of Lemma 5.2.1 in terms of shadows starting with the relations $\left(0, Q_{i}\right)=\left(Q_{i}, 1\right)$ instead of $Q_{i}=1, i=1,2$. In particular, we apply the following shadow version of the basic transformation (*) of Section 5.2:
$\mathcal{S}(*)$ If $\left(0, w_{1}\right)=\left(\lambda, w_{2}\right)$ is a relation, so is $\left(0, u w_{1} v\right)=$ $\left(\bar{u} \lambda, u w_{2} v\right)$ for any words u, v.

For example, the shadow versions of the items (a) and (b) in the proof of Lemma 5.2.1 look as follows:
(a) Multiplying $\left(0, Q_{2}\right)=\left(Q_{2}, 1\right)$ by $\left(0, c^{-1} a c^{-1}\right)$, we get $\left(0, a c a^{-1}\right)=\left(Q_{2}, c^{-1} a c^{-1}\right)$ or, equivalently, $\left(0, c^{-1} a c^{-1}\right)=\left(-Q_{2}, a c a^{-1}\right) ;$
(b) Using (a), we get

$$
\begin{aligned}
\left(0, a c^{-2} a\right) & =\left(0, c c^{-1} a c^{-1} c^{-1} a c^{-1} c\right) \\
& =(0, c)\left(-Q_{2}, a c a^{-1}\right)\left(-Q_{2}, a c a^{-1}\right)(0, c) \\
& =\left(-\left(\bar{c}+\bar{c} \bar{a} \bar{c} \bar{a}^{-1}\right) Q_{2}, c a c^{2} a^{-1} c\right)
\end{aligned}
$$

Recall that each λ_{i} is an element of the free π module \mathcal{M} with two generators Q_{1}, Q_{2} and thus can be described by an array of 240 integers. We do not present here the values of λ_{i} since they are large (especially λ_{5}) in the sense that many of the 240 integers presenting each λ_{i} are not zeros. Nevertheless, the authors calculated them, and in the sequel we will think of them as known.

Proposition 5.3.1. There exists an effective algorithm that, given $w \in K$, calculates $\log w \in \mathcal{M}$.

Proof. The algorithm is a shadow twin of the one described in Lemma 5.2.2. Starting with the shadow $(0, w)$ of w, we apply shadow versions of Steps $0-5$ as long as possible. It means that we use the shadow relations $\mathcal{S}(1)-\mathcal{S}(5)$ from Lemma 5.3.2 instead of the relations (1)-(5) from Lemma 5.2.1. After each step we purify the words by taking nonzero lambdas to the beginning of the word. We terminate with a shadow $(\mu, 1)$ of 1 . By Lemma $5.3 .1, \log w=\mu$ since $(0, w)=(\mu, 1)$ in $\mathcal{S}(\pi)$ implies $(-\mu, w) \in \mathcal{S}(K)$.

6. COMPUTER IMPLEMENTATION

6.1. Description and Verification of the Program

Recall that calculation of the degree of a map f : $M \rightarrow P$ requires knowledge of the three items: the boundary cycle $\partial \tilde{\beta}_{M}$, the characteristic cochain ξ_{P}, and the induced chain map \tilde{f}_{*}, see Section 2. For $M=M\left(\left(\alpha_{1}, \beta_{1}\right) ;\left(\alpha_{2}, \beta_{2}\right) ;\left(\alpha_{3}, \beta_{3}\right)\right)$ an explicit expression for $\partial \tilde{\beta}_{M}$ was obtained in Theorem 3.3.1. Proposition 4.1 and the information on $\pi=\pi_{1}(P)$ obtained in Section 5.2 show how to calculate ξ_{P}. The authors did this by hand, without computers. It is the calculation of \tilde{f}_{*} that requires a computer.

We assume that f is given by images $\tau, x_{1}, x_{3} \in$ $F=F(a, c)$ of the generators t, a_{1}, a_{3} of $\pi_{1}(M)$, respectively; the image x_{2} of the generator a_{2} can be found from the relation $a_{1} a_{2} a_{3}=1$. We describe the main steps of the computer program.
(1) For each relation $R_{i}, 1 \leq i \leq 7$, of the presentation of $\pi_{1}(M)$ (see Section 3.3), the computer determines its image w_{i} in F.
(2) Then the computer works according to the algorithm described in Proposition 5.3.1 and finds the logs of all w_{i}. This is sufficient to obtain \tilde{f}_{*} since $\tilde{f}_{*}\left(R_{i}\right)=\log w_{i}$.
(3) To get $\tilde{f}_{*}\left(\partial \tilde{\beta}_{M}\right)$, the computer substitutes all relations R_{i} in the expression for $\partial \tilde{\beta}_{M}$ by the corresponding $\tilde{f}_{*}\left(R_{i}\right)$.
(4) The computer calculates the degree by evaluating ξ_{P} on $\tilde{f}_{*}\left(\partial \tilde{\beta}_{M}\right)$.
An extended version of the program calculates the degree for all possible homomorphisms $\pi_{1}(M) \rightarrow \pi$ by letting each one of τ, x_{1}, x_{3} run over all 120 elements of π and casting off the assignments that do not determine homomorphisms.

The program is written in PASCAL and occupies about 1000 lines (not including commentaries). It works sufficiently fast: the extended version requires a few seconds to run over all 120^{3} cases. The maximal range of α_{i}, β_{i} is about 1000 . The cause of the restriction is that for large α_{i}, β_{i} the words $w_{\alpha_{i} \beta_{i}}\left(a_{i}, t\right)$ can be too long, especially after substituting the generators by their images.

The program has passed several tests. In particular:

- It gives correct answers for obvious cases, in particular, for the identity homomorphism $\pi \rightarrow \pi$.
- It gives the same list of degrees for maps into P for many cases of differently presented homeomorphic Seifert manifolds.
- It gives the same degree for maps into P that differ by an inner automorphism of π. The multiplication of a degree d map $M \rightarrow P$ by a degree 49 map $P \rightarrow P$ inducing the unique nontrivial element of $\operatorname{Out}(\pi)$ produces a map of degree 49 d .
- The results of a vast computer experiment completely agree with all known facts about the degree of maps into P. In particular, the computer rediscovered the set of Seifert homology spheres that admit degree one maps onto P. By this we mean homology spheres $M\left(\left(\alpha_{1}, \beta_{1}\right) ;\left(\alpha_{2}, \beta_{2}\right)\right.$; $\left.\left(\alpha_{3}, \beta_{3}\right)\right)$ such that $\alpha_{1} / 2, \alpha_{2} / 3, \alpha_{3} / 5$ are integers and $\alpha_{1} \alpha_{2} \alpha_{3} / 30 \equiv \pm 1, \pm 49 \bmod 120$. They are the only known Seifert homology spheres with three exceptional fibers that admit degree one maps onto P; see [Hayat-Legrand et al. 1997].

6.2. Results

Let $M=M\left(\left(\alpha_{1}, \beta_{1}\right) ;\left(\alpha_{2}, \beta_{2}\right) ;\left(\alpha_{3}, \beta_{3}\right)\right)$ be an oriented Seifert manifold and

$$
\left\langle a_{1}, a_{2}, a_{3}, t \mid a_{i} t a_{2}^{-1} t^{-1}, a_{i}^{\alpha_{i}} t^{\beta_{i}}, 1 \leq i \leq 3, a_{1} a_{2} a_{3}\right\rangle
$$

the standard presentation of $\pi_{1}(M)$. Let d be an integer modulo 120 . Denote by $N(d)$ the number of all homomorphisms $\pi_{1}(M) \rightarrow \pi$ induced by degree d maps $M \rightarrow P$. We present a few examples of computations.

Example 1. Suppose that $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(2,3,5)$ and $\left(\beta_{1}, \beta_{2}, \beta_{3}\right)=(-1,1, k)$, with $1 \leq k \leq 4$. Then the possible values of d and corresponding numbers $N(d)$ are:

k	1	2	3	4
d	$\begin{array}{ll}0 & 149\end{array}$	$\begin{array}{lll}0 & 7 & 103\end{array}$	01337	01991
$N(d)$	16060	16060	16060	16060

The case $k=1$ corresponds to maps $P \rightarrow P$. There exist exactly 60 inner automorphisms of π. They determine degree 1 maps. Multiplying them by an exterior automorphism of π (which exists by [Plotnick 1982]), we get 60 automorphisms that induce maps of degree 49. In the cases $k=2,3,4$ we have similar situations: there are two nonzero degrees related by multiplication by 49. For each $k=$
$1,2,3,4$ all 120 nontrivial homomorphisms $\pi(M) \rightarrow$ π take the generator t to the unique nontrivial element c^{5} of the center of π. Nevertheless, the next example shows that the situation may be quite different.

Example 2. Suppose that $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(3,6,30)$ and $\left(\beta_{1}, \beta_{2}, \beta_{3}\right)=(2,1,-1)$. Then the possible values of d, corresponding numbers $N(d)$, and corresponding images of t are:

d	0	0	4	40	60	76	80
$N(d)$	30	42	120	120	240	120	120
$t \mapsto$	1	c^{5}	c^{5}	c^{5}	c^{5}	c^{5}	1

The main goal of the computer experiment was to investigate the following question:

Problem 1. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be positive integers such that
(1) $\operatorname{gcd}\left(\alpha_{2}, \alpha_{j}\right)=1$ for $i \neq j$ with $1 \leq i, j \leq 3$, and (2) $2\left|\alpha_{1}, 3\right| \alpha_{2}, 5 \mid \alpha_{3}$.

Does there exist a degree one map of a Seifert manifold $M=M\left(\left(\alpha_{1}, \beta_{1}\right) ;\left(\alpha_{2}, \beta_{2}\right) ;\left(\alpha_{3}, \beta_{3}\right)\right)$ onto P ?
The conditions $2\left|\alpha_{1}, 3\right| \alpha_{2}, 5 \mid \alpha_{3}$, and $\operatorname{gcd}\left(\alpha_{1}, 15\right)=$ 1 are necessary for the existence of a degree one map $M \rightarrow P$, see [Hayat-Legrand et al. 1997, Corollary 9.3]. Also, for the most interesting case when M is a homology sphere we have

$$
\alpha_{1} \alpha_{2} \beta_{3}+\alpha_{1} \alpha_{3} \beta_{2}+\alpha_{2} \alpha_{3} \beta_{1}= \pm 1,
$$

whence $\operatorname{gcd}\left(\alpha_{i}, \alpha_{j}\right)=1$ for $i \neq j$.
Remark 6.2.1. It is known that every homomorphism $\varphi: \pi_{1}(M) \rightarrow \pi$ induced by a degree one map $f:$ $M \rightarrow P$ must be surjective. Moreover, every map $f: M \rightarrow P$ can be lifted to a map $\hat{f}: M \rightarrow \hat{P}$, where \hat{P} is the covering of P corresponding to the subgroup $G=f_{\#}\left(\pi_{1}(M)\right) \subset \pi$. Note that $\operatorname{deg}(f)=$ $[\pi: G] \operatorname{deg}(\hat{f})$ where $[\pi: G]$ is the index of G in π. For $[\pi: G]>1$ this reduces the calculation of the degree for f to that for \hat{f} which is simpler.
Let $M=M\left(\left(\alpha_{1}, \beta_{1}\right) ;\left(\alpha_{2}, \beta_{2}\right) ;\left(\alpha_{3}, \beta_{3}\right)\right)$ be a manifold such that
(1) $\operatorname{gcd}\left(\alpha_{i}, \alpha_{j}\right)=1$ for $i \neq j, 1 \leq i, j \leq 3$;
(2) $2\left|\alpha_{1}, 3\right| \alpha_{2}, 5 \mid \alpha_{3}$;
(3) all β_{i} are odd.

Under these assumptions the rules
$t \mapsto a^{2}, a_{1} \mapsto a, a_{2} \mapsto a^{-1} c, a_{3} \mapsto c^{-1}$ if α_{1} is not divisible by 4 ,
$t \mapsto 1, a_{1} \mapsto a, a_{2} \mapsto a^{-1} c^{-4}, a_{3} \mapsto c^{4}$ if α_{1} is divisible by 4 ,
yield a surjective homomorphism $\varphi_{0}: \pi_{1}(M) \rightarrow \pi$, which we call standard. Denote by ext ${ }_{a}$ the external automorphism of π that takes a to a and c to $\operatorname{cac}^{2} a c^{-1}$. It is induced by a map $P \rightarrow P$ of degree 49; see [Plotnick 1982].

Remark 6.2.2. Assumption (5) can be easily achieved by transformations $\beta_{i} \mapsto \beta_{i}+\alpha_{i}, \beta_{j} \mapsto \beta_{j}-\alpha_{j}$ for $i \neq j$, which preserve the manifold.

Lemma 6.2.1. Let α_{i} and β_{i} satisfy the above assumptions. Then for any homomorphism $\varphi: \pi_{1}(M) \rightarrow \pi$ the following conditions are equivalent:
(1) φ is surjective.
(2) φ has the form $\varphi=\psi \varphi_{0}$, where $\psi: \pi \rightarrow \pi$ is either an inner automorphism of π or the product of ext ${ }_{a}$ and an inner automorphism.
(3) $\varphi(t)=a^{2}$ if α_{1} is not divisible by 4 , and $\varphi(t)=1$ if it is.

Proof. Let $\alpha_{1}=2 p_{1}, \alpha_{2}=3 p_{2}, \alpha_{3}=5 p_{3}$. Then p_{1} is not divisible by 3 or 5 . We assume that p_{1} is odd; the case p_{1} is even (that is, α_{1} is divisible by 4) is similar. Denote $\varphi(t)$ by $\tau, \varphi\left(a_{i}\right)$ by x_{i}, and the order of x_{i} by $k_{i}, 1 \leq i \leq 3$. If τ is in the center $\left\{1, a^{2}\right\}$ of π, then it follows from $x_{1}^{2 p_{1}} \tau^{\beta_{1}}=1$ and $\tau^{2 \beta_{1}}=1$ that k_{1} divides $4 p_{1}$. Note that all possible orders of elements of π are contained in the following list: 1 , $2,3,4,5,6,10$. Recall that p_{1} is not divisible by 3 or 5 . It follows that k_{1} divides 4 . Similar arguments show that k_{2} divides 6 and k_{3} divides 10 and that $\operatorname{gcd}\left(p_{2}, 2 \cdot 5\right)=\operatorname{gcd}\left(p_{3}, 3 \cdot 3\right)=1$.
(1) \Rightarrow (2). Step 1. Since φ is surjective, τ is in the center of π and, as shown above, k_{1} divides 4 . It follows that $k_{1}=4$. Indeed, the relation $x_{1} x_{2} x_{3}=$ 1 shows that for $k_{1}=1,2$ the image of φ would be generated by τ, x_{2} and possibly a^{2}, the unique element of π having order 2 . In this case the image would be abelian, contradicting the surjectivity.

Note that all order 2 elements of the icosahedral group $I=\pi /\langle t\rangle$ are conjugate. It follows that every element of order 4 in π is conjugate to a or a^{-1}. Since for $x=c^{3} a c^{2} a c^{-2}$ we have $x a x^{-1}=a^{-1}$, we
can conclude that all elements of order 4 in π are conjugates of a (we learned this first by means of a computer program). Thus, after a multiplication of φ by an inner automorphism of π, we may assume that $x_{1}=a$. Since p_{1} and β_{1} are odd, the relation $x_{1}^{2 p_{1}} \tau^{\beta_{1}}=1$ implies that $\tau=a^{2}$.
Step 2. Recall that k_{2} divides 6. Just as above, we cannot have $k_{2}=1,2$ because of the surjectivity of φ. Since $x_{2}^{3 p_{2}} \tau^{\beta_{2}}=1, \tau=a^{2}, \operatorname{gcd}\left(p_{2}, 2\right)=1$, and β_{2} is odd, we have $k_{2} \neq 3$. The only remaining case is $k_{2}=6$. Similarly, $k_{3}=10$.

Step 3. There are only four elements x of π such that x has order 10 and $a^{-1} x^{-1}$ has order 6: $c^{-1}, a c^{-1} a^{-1}$, and their images under ext_{a}. Certainly, this fact could be theoretically obtained, but the authors got it by letting a simple computer program run over all elements of π. It implies easily (2).
(2) \Rightarrow (3). Since the center $\left\{1, a^{2}\right\}$ is fixed under all automorphisms of π, this implication is evident.
(3) \Rightarrow (1). Since $\tau=a^{2}$ is in the center, k_{1}, k_{2}, and k_{3} divide 4,6 , and 10 , respectively (see above). The equations $x_{1}^{2 p_{1}} a^{2 \beta 1}=x_{1}^{2 p_{1}} a^{2}=1$ imply that $k_{1}=1,2$ is impossible. Thus $k_{1}=4$. We cannot have $k_{2}=1,2$, since then $x_{3}=x_{2}^{-1} x_{1}^{-1}$ would have order 4 , which is impossible. Thus k_{2} is divisible by 3 . Similarly, k_{3} is divisible by 5 . It follows that the order of the subgroup $G \subset \pi$ generated by x_{1}, x_{2}, x_{3} is divisible by 4,3 and 5 . Since π contains no subgroup of order $60, G=\pi$.

To a great extent, Lemma 6.2.1 facilitates the computer search for new degree one maps of Seifert manifolds onto P : under above conditions on α_{i}, β_{i}, it suffices to check only standard maps $M \rightarrow P$, that is, those that correspond to the standard homomorphisms $\pi_{1}(M) \rightarrow \pi$. The result of the corresponding computer experiment was negative: no new examples of degree one maps. Nevertheless, a manual analysis of the output had shown that the degrees of the standard maps are periodic with respect to any of the parameters $p_{1}=\alpha_{1} / 2, p_{2}=\alpha_{2} / 3, p_{3}=\alpha_{3} / 5$, and β_{i}. This observation allows one to suggest explicit artificial formulas for the degrees of standard maps. Since we do not have a theoretical proof of the periodicity, we present the formulas in a form of a conjecture. By $[x]_{k}$ we denote the residue of x modulo k. In other words, $[x]_{k}$ is the integer sat-
isfying the conditions $x-[x]_{k}$ is divisible by k and $0 \leq[x]_{k}<k$.
Conjecture 6.2.1. Let

$$
f_{0}: M\left(\left(2 p_{1}, \beta_{1}\right) ;\left(3 p_{2}, \beta_{2}\right) ;\left(5 p_{3}, \beta_{3}\right)\right) \rightarrow P
$$

be the standard map, where all β_{i} are odd.
(a) If p_{1} is even then

$$
\operatorname{deg}\left(f_{0}\right) \equiv 30\left[\frac{1}{2} p_{1} \beta_{1}\right]_{4}+40\left[p_{2} \beta_{2}\right]_{3}+96\left[p_{3} \beta_{3}^{3}\right]_{5}
$$

(b) if p_{1} is odd then $\operatorname{deg}\left(f_{0}\right) \equiv A_{1}+A_{2}+A_{3}+39$ $\bmod 120$, where

$$
\begin{aligned}
& A_{1}=30\left(\left[\frac{p_{1}+\beta_{1}}{2}\right]_{2}\left[\frac{\beta_{1}-p_{1}-2}{2}\right]_{4}+\left[\frac{p_{1}+\beta_{1}+2}{2}\right]_{2}\left[\frac{\beta_{1}+p_{1}+4}{2}\right]_{4}\right), \\
& A_{2}=10\left(\left[\frac{1+\beta_{2}}{2}\right]_{3}\left[\beta_{2}+p_{2}-1\right]_{12}+\left[\frac{1-\beta_{2}}{2}\right]_{3}\left[\beta_{2}-p_{2}+1\right]_{12}\right), \\
& A_{3}=12\left(\left[\frac{1+\beta_{3}^{2}}{2}\right]_{5}\left[\frac{1+p_{3} \beta_{3}}{2}\right]_{10}+\left[\frac{1-\beta_{3}^{2}}{2}\right]_{5}\left[\frac{11-p_{3} \beta_{3}}{2}\right]_{10}\right) .
\end{aligned}
$$

6.3. Degree One Maps of Homology Spheres

In this section we characterize (modulo Conjecture 6.2.1) all homology spheres of the type

$$
M=M\left(\left(2 p_{1}, \beta_{1}\right) ;\left(3 p_{2}, \beta_{2}\right) ;\left(5 p_{3}, \beta_{3}\right)\right)
$$

that admit a degree one map onto P. The question was posed in [Hayat-Legrand et al. 1997].
Lemma 6.3.1. Let a, b be integers such that $0<b<$ 1001 and $\operatorname{gcd}(a, b)$ is not divisible by 2,3 , or 5 . Then for any $m, 0 \leq m \leq 6$ the set $\{a+120 i \mid 0 \leq i \leq m\}$ contains at most two numbers which are not relatively prime to b.

Proof. Denote $a+120 i$ by a_{i} and $\operatorname{gcd}\left(a_{i}, b\right)$ by d_{i}, for $0 \leq i \leq m$. Let d be a positive common divisor of $d_{i}, d_{j}, i \neq j$. Then d divides a_{i}, a_{j} and $a_{i}-a_{j}=$ $120(i-j)$. Since $|i-j| \leq 6$ and $\operatorname{gcd}\left(a_{i}, b\right)$ is not divisible by 2,3 , or 5 , we may conclude that $d=$ 1. Thus all d_{i} are relatively prime. It follows that not more than two of them differ from 1 , since the product of the three smallest values $7,11,13$ of $d_{i} \neq$ 1 is equal to 1001 and cannot divide $b<1001$.
Lemma 6.3.2. Let p_{1}, p_{2}, p_{3} be integers such that, for $1 \leq i<j \leq 3, \operatorname{gcd}\left(p_{i}, p_{j}\right)$ is not divisible by $2,3,5$. Then there exist positive integers $\bar{p}_{1}, \bar{p}_{2}, \bar{p}_{3}$ such that
(1) $\bar{p}_{i} \equiv p_{i} \bmod 120$;
(2) $\bar{p}_{1}<600, \bar{p}_{2}<360, \bar{p}_{3}<120$;
(3) $\operatorname{gcd}\left(\bar{p}_{i}, \bar{p}_{j}\right)=1$ for $i \neq j$.

Proof. Reducing p_{i} modulo 120 , we get q_{i} such that $q_{i} \equiv p_{i} \bmod 120$ and $0 \leq q_{i}<120,1 \leq i \leq 3$. Set
$\bar{p}_{3}=q_{3}$. Applying Lemma 6.3 .1 to $a=q_{2}, b=\bar{p}_{3}$, and $m=2$, we see that at most two of the numbers $q_{2}, q_{2}+120, q_{2}+240$ are not relatively prime to \bar{p}_{3}. Hence at least one of them (denote it by \bar{p}_{2}) is relatively prime to \bar{p}_{3}. Consider now five numbers $q_{1}+120 i$, where $0 \leq i \leq 4$. Applying Lemma 6.3.1 twice to $a=q_{1}, m=4$ and $b=\bar{p}_{2}, \bar{p}_{3}$, we find among them at least one number \bar{p}_{1} relatively prime to \bar{p}_{2} and \bar{p}_{3}. By construction, $\bar{p}_{1}, \bar{p}_{2}, \bar{p}_{3}$ satisfy the conditions (1)-(3) of Lemma 6.3.2.
Remark 6.3.1. Any Seifert manifold fibered over S^{2} with three exceptional fibers of orders $\alpha_{1}, \alpha_{2}, \alpha_{3}$ with $\alpha_{2} \equiv \alpha_{3} \equiv 1 \bmod 2$ can be presented in the form $M=M\left(\left(\alpha_{1}, \beta_{1}\right) ;\left(\alpha_{2}, \beta_{2}\right) ;\left(\alpha_{3}, \beta_{3}\right)\right)$ with $\beta_{2} \equiv \beta_{3} \equiv$ $1 \bmod 4$. Indeed, any presentation can be transformed to one with $\beta_{2} \equiv \beta_{3} \equiv 1 \bmod 4$ by transformations $\beta_{1} \mapsto \beta_{1}+\alpha_{1}, \beta_{2} \mapsto \beta_{2}-\alpha_{2}$ and $\beta_{1} \mapsto$ $\beta_{1}+\alpha_{1}, \beta_{3} \mapsto \beta_{3}-\alpha_{3}$ that preserve M.

Proposition 6.3.1. For any homology sphere $M_{1}=$ $M\left(\left(2 p_{1}, \beta_{1}\right) ;\left(3 p_{2}, \beta_{2}\right) ;\left(5 p_{3}, \beta_{3}\right)\right)$ with $\beta_{2} \equiv \beta_{3} \equiv 1$ mod 4 there exists a homology sphere

$$
M_{2}=M\left(\left(2 \bar{p}_{1}, \bar{\beta}_{1}\right) ;\left(3 \bar{p}_{2}, \bar{\beta}_{2}\right) ;\left(5 \bar{p}_{3}, \bar{\beta}_{3}\right)\right)
$$

such that
(1) $\bar{p}_{i} \equiv p_{i} \bmod 120$;
(2) $\bar{p}_{1}<600, \bar{p}_{2}<360, \bar{p}_{3}<120$;
(3) $\bar{\beta}_{1} \equiv \beta_{1} \bmod 8, \quad \bar{\beta}_{2} \equiv \beta_{2} \bmod 12$, and $\bar{\beta}_{3} \equiv \beta_{3}$ $\bmod 20$.

Proof. Since the group $H_{1}(M ; \mathbb{Z})$ is trivial, its order

$$
\left|6 p_{1} p_{2} \beta_{3}+10 p_{1} p_{3} \beta_{2}+15 p_{2} p_{3} \beta_{1}\right|
$$

is equal to 1 . It follows that p_{1}, p_{2}, p_{3} satisfy the assumption of Lemma 6.3.2. Therefore, one can find $\bar{p}_{1}, \bar{p}_{2}, \bar{p}_{3}$ satisfying conditions (1)-(3) of Lemma 6.3.2. Since $\operatorname{gcd}\left(\bar{p}_{i}, \bar{p}_{j}\right)=1$ for $i \neq j$, there exist $\bar{\beta}_{1}, \bar{\beta}_{2}, \bar{\beta}_{3}$ such that $6 \bar{p}_{1} \bar{p}_{2} \bar{\beta}_{3}+10 \bar{p}_{1} \bar{p}_{3} \bar{\beta}_{2}+15 \bar{p}_{2} \bar{p}_{3} \bar{\beta}_{1}=$ $6 p_{1} p_{2} \beta_{3}+10 p_{1} p_{3} \beta_{2}+15 p_{2} p_{3} \beta_{1}$. Using transformations $\bar{\beta}_{1} \mapsto \bar{\beta}_{1}+2 \bar{p}_{1}, \bar{\beta}_{2} \mapsto \bar{\beta}_{2}-3 \bar{p}_{2}$ and $\bar{\beta}_{1} \mapsto \bar{\beta}_{1}+2 \bar{p}_{1}$, $\bar{\beta}_{3} \mapsto \bar{\beta}_{3}-5 \bar{p}_{3}$, one can achieve $\bar{\beta}_{2} \equiv \bar{\beta}_{3} \equiv 1 \bmod 4$. Note that the conditions (1), (2) of Lemma 6.3.2 are fulfilled by the construction of \bar{p}_{i}. To prove (3), consider the expression

$$
\begin{aligned}
S=6\left(\left(p_{1} p_{2}\right.\right. & \left.\left.-\bar{p}_{1} \bar{p}_{2}\right) \beta_{3}+\bar{p}_{1} \bar{p}_{2}\left(\beta_{3}-\bar{\beta}_{3}\right)\right) \\
& +10\left(\left(p_{1} p_{3}-\bar{p}_{1} \bar{p}_{3}\right) \beta_{2}+\bar{p}_{1} \bar{p}_{3}\left(\beta_{2}-\bar{\beta}_{2}\right)\right) \\
& +15\left(\left(p_{2} p_{3}-\bar{p}_{2} \bar{p}_{3}\right) \beta_{1}+\bar{p}_{2} \bar{p}_{3}\left(\beta_{1}-\bar{\beta}_{1}\right)\right) .
\end{aligned}
$$

The definition of $\bar{\beta}_{i}$ and a simple calculation show that $S=0$. Reducing the expression S modulo 8 and taking into account that $p_{i}-\bar{p}_{i} \equiv 0 \bmod 120$ for $1 \leq i \leq 3$ and $\beta_{j}-\bar{\beta}_{j} \equiv 0 \bmod 4$ for $2 \leq j \leq 3$, we get $\bar{p}_{2} \bar{p}_{3}\left(\beta_{1}-\bar{\beta}_{1}\right) \equiv 0 \bmod 8$. It follows that $\bar{\beta}_{1} \equiv \beta_{1} \bmod 8$. Reducing $S \operatorname{modulo} 3$, we get

$$
\bar{p}_{1} \bar{p}_{3}\left(\beta_{2}-\bar{\beta}_{2}\right) \equiv 0 \bmod 3
$$

which, together with $\beta_{2}-\bar{\beta}_{2} \equiv 0 \bmod 4$, gives us that $\bar{\beta}_{2} \equiv \beta_{2} \bmod 12$. Similarly, reducing S modulo 5 , we get $\bar{\beta}_{3} \equiv \beta_{3} \bmod 20$.

Corollary 6.3.1. If Conjecture 6.2 .1 is true, a Seifert homology sphere $M\left(\left(2 p_{1}, \beta_{1}\right) ;\left(3 p_{2}, \beta_{2}\right) ;\left(5 p_{3}, \beta_{3}\right)\right)$ admits degree one map onto P if and only if $p_{1} p_{2} p_{3} \equiv$ $\pm 1, \pm 49 \bmod 120$. (Compare [Hayat-Legrand et al. 1997].)

Proof. Assuming that Conjecture 6.2.1 is true and taking into account that the first formula from Conjecture 6.2 .1 always gives an even number, we can reduce the problem of degree one maps onto P to the question when the second formula gives 1 . Note that $\operatorname{deg}\left(f_{0}\right)$ given by the formula is preserved under the replacements $p_{i} \mapsto p_{i} \pm 120, \beta_{1} \mapsto \beta_{1} \pm 8$, $\beta_{2} \mapsto \beta_{2} \pm 12, \beta_{3} \mapsto \beta_{3} \pm 20$.

Thus Proposition 6.3.1 reduces the question to checking a finite number of possibilities. For each triple $p_{1}<600, p_{2}<360, p_{3}<120$ one should check whether $\operatorname{gcd}\left(p_{i}, p_{j}\right)=1$ for $i \neq j$, find some $\beta_{1}, \beta_{2}, \beta_{3}$ such that $\beta_{2} \equiv \beta_{3} \equiv 1 \bmod 4$ and

$$
6 p_{1} p_{2} \beta_{3}+10 p_{1} p_{3} \beta_{2}+15 p_{2} p_{3} \beta_{1}= \pm 1
$$

and calculate $\operatorname{deg}\left(f_{0}\right)$. It turned out that in all cases $\operatorname{deg}\left(f_{0}\right)= \pm 1$ if and only if $p_{1} p_{2} p_{3} \equiv \pm 1, \pm 49 \bmod$ 120.

REFERENCES

[Burde and Zieschang 1985] G. Burde and H. Zieschang, Knots, de Gruyter, Berlin, 1985.
[Crowell and Fox 1963] R. H. Crowell and R. H. Fox, Introduction to knot theory, Graduate Texts in Math. 57, Springer, New York, 1963. Reprinted 1977.
[Gonzálvez-Acuña and Ramírez 1999] F. GonzálvezAcuña and A. Ramírez, "A composition formula in the rank two free group", Proc. Amer. Math. Soc. 127 (1999), 2779-2782.
[Haken 1961] W. Haken, "Theorie der Normalflächen", Acta Math. 105 (1961), 245-375.
[Hayat-Legrand and Zieschang 2000] C. Hayat-Legrand and H. Zieschang, "Exemples de calcul du degré d'une application", pp. 41-59 in XI Brazilian Topology Meeting (Rio Claro, 1998), edited by S. Firmo et al., World Scientific, River Edge, NJ, 2000.
[Hayat-Legrand et al. 1997] C. Hayat-Legrand, S. Wang, and H. Zieschang, "Minimal Seifert manifolds", Math. Ann. 308:4 (1997), 673-700.
[Lustig et al. 1995] M. Lustig, E.-M. Thiele, and H. Zieschang, "Primitive elements in the free product of two finite cyclic groups", Abh. Math. Sem. Univ. Hamburg 65 (1995), 277-281.
[Osborne and Zieschang 1981] R. P. Osborne and H. Zieschang, "Primitives in the free group on two generators", Invent. Math. 63:1 (1981), 17-24.
[Plotnick 1982] S. Plotnick, "Homotopy equivalences and free modules", Topology 21:1 (1982), 91-99.
[Seifert and Threlfall 1934] H. Seifert and W. Threlfall, Lehrbuch der Topologie, Teubner, Leipzig, 1934. Reprinted Chelsea, 1965; translated as A Textbook of Topology, Academic Press, New York, 1980.

Claude Hayat-Legrand, Laboratoire Emile Picard, UMR-5580, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse, France (hayat@picard.ups-tlse.fr)
Sergei Matveev, Chelyabinsk State University, Kashirin Brothers street, 129, 454021 Chelyabinsk, Russia (matveev@cgu.chel.su)

Heiner Zieschang, Fakultät für Mathematik, Ruhr - Universität Bochum, 44780 Bochum, Deutschland (marlene.schwarz@ruhr-uni-bochum.de)

Received December 14, 1999; accepted in revised form February 28, 2001

