
Computer Calculation of the Degree of Maps
into the Poincare Homology Sphere
Claude Hayat-Leg rand, Sergei Matveev, and Heiner Zieschang

CONTENTS
Let M and P be Seifert 3-manifolds. Is there a degree one map

1. Introduction f : M -> P ? The problem was completely solved by Hayat-
2. A Bit of Theory Legrand, Wang, and Zieschang for all cases except when P is the
3. How to Calculate the Boundary Cycle Poincare homology sphere. We investigate the remaining case
4. How to Calculate the Characteristic Cochain bY elaborating and implementing a computer algorithm that cal-

5. How to Calculate the Induced Chain Map c u l a t e s t h e d e§ r e e - A s a r e s u l t ' w e §et a n e x P l l c i t experimental
r ~ * • i * -. expression for the degree through numerical invariants of the
6. Computer Implementation ^ ° °

induced homomorphism f# : TTI(M) —> TT^P).
References

1. INTRODUCTION

Let M, P be closed oriented 3-manifolds such that
the fundamental group TTI(P) is finite of order n.
Let if : TTI(M) —> TTI(P) be a homomorphism. Using
elementary facts from obstruction theory, one can
easily show that

(1) (p is geometrically realizable; tha t is, there exists
a map / : M —> P such that /* — (p;

(2) deg( / ) mod n depends only on ip.

The paper is devoted to the elaboration of a com-
puter algorithm for calculating the degree. We ap-
ply the algorithm to maps into the Poincare homol-
ogy sphere P and under certain restrictions give an
experimental explicit formula for deg( / ) through nu-
merical invariants of (/?. The formula reduces the
problem of finding out degree one maps onto P to
purely number-theoretical questions. For additional
background see [Hayat-Legrand et al. 1997; Hayat-
Legrand and Zieschang 2000].

The calculation of the degree seems difficult to us,
AA/TO c u- * m •« *• TO • r r u o . c J trcTDccr even for conc re t e e x a m p l e s . For i n s t ance , P l o t n i c k
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20F38. [1982] constructed a self mapping of the Poincare ho-
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2. A BIT OF THEORY is, a 2-cochain in C2(P; Zn) ; this is the second item

Let / : M —>• P be a map between closed oriented
3-manifolds such that the fundamental group TTI(P) _. , , , _ , . . .
• a -x r J T x u xu r u u • J The Induced Chain Map
is finite 01 order n. Let both manifolds be equipped
with CW structures such that / is cellular. We also T h e t h i r d i t e m w e n e e d Pv t h e calculation is the
assume that both CW complexes have exactly one module homomorphism / , : C2(Af;Z[7Ti(Af)]) ->
vertex, and that P has only one 3-cell. Let p : P -> ^(P;Z[MP)])- : t c a n b e described as the chain

P, pt : M -»• M be the universal coverings and m a P induced by / and takes

/ : M -» P a lift of / to the universal coverings. C2(M;Z) = C 2 (M;Z[TTI(M)])

We describe three items needed for calculating the

d e g r e e _ to C2(P; Z) = C2(P; Z[TTI(P)]). It is easy to see that
/* preserves the module structures in the sense that
for all g € TTI(M), <T G C 2 (M;Z[7TI (M)] ) we have

The Bouncy Cycle / ( ( f f ( r) = / # ( ^ (.), w h e r e / # : . l ( M ) -> ^ ( P ) is
Let B l5 B 2 , . . . , Bk be the 3-cells of M and (3M G the induced homomorphism.
C3(M; Z) the corresponding 3-chain composed from
the 3-cells taken with the orientation inherited from Theorem 2.1. deg(/) = - £ P ( / * ( < ^ M ) ) mod n.
the orientation of M. For every 3-cell B{ we take a proo£ Let a1 G Ci(Q;Zn), a3 G C3(Q;Z) be two
lift Bi. Then the boundary cycle <9/3M = E t i ^ (say, singular) chains in an orientable 3-manifold
will be the first item needed for the calculation of Q [n general position; in particular, their bound-

the degree. a i y cycles are disjoint. Then the linking number

, _ H mi ^ (TTJT 17\ . j j Ykid^.da1) G Zn is well-defined. It can be calcu-
Remark 2.1. The group C2(M;Z) considered as a , , , . . , o o i

/7l/rN , T .,, , , ,, . T lated as the intersection number a D do as well
7Ti(M J-module with respect to the covering transla- . . . ^ o •, , . ,. , ,

T_ ., ,.n j .,, xl r /n^x j T as the intersection number aa fl a multiplied by
tions can be identified with the free 7Ti(M)-module , T , i n i 1OQ/1 n , , n 1 f

 J

/̂ » /7\/f i?\ CKjrw\ rp >r ,1 • i ,.n ,. (-1), see [Seifert and Threliall 1934, Chap. 101, for
C2(M;Z TTI(M)]). To specify the identification, one \ , Q ^ 1 ^ ^ i ^ ~
vT i j « A • 4. +- J û u • 4. r details. Thus^n^cr 1 = - S ^ f i a 1 . Taking Q = P,

should fix the orientations and the base points for „ - ~ ~ ~ ° ^ '
the attaching curves of all 2-cells, as well as a base ° = Y~ fnd a = f*^> w e g e t ^ * ^ ) n X =
point for M over the vertex of M. " a ^ « 0 n Y' T h e r i e h t s i d e o f t h e e ^ 1 ^ i s Ju s t

" ^ P ( / * ( ^ M ) ) J by the definition of £p. It remains to
show that the left part equals deg(/).

The Characteristic Cochain L e t ^ b e ft d o s e d 3 ^ o f M D e n o t e b y fc.
Choose a point x0 in the interior of the unique 3- the degree of the restriction map f\ : (B^dBi) ->
cell B3 of P. The set X = ^"H^o) can be con- (B,dB). Then we have
sidered as a 0-dimensional cycle in P with coeffi-
cients in Zn . Since P is path connected and the Z = H3(Bi,dBi) ^ H3(B,dB) = Z
coefficients are in Zn , every 0-chain of P with co-
efficient sum divisible by n is a boundary. Hence
X, consisting of n points, bounds a 1-dimensional
chain Y in P with coefficients in Zn . Note that X •
and y are actually elements of the corresponding Zfc ^ iJ3(M,M (2)) — - H3(P,P{2)) ^ Z,
chain groups of i), where -D is the decomposition of
P dual to the one induced by the cell decomposi- where M(2) and P (2 ) denote the 2-skeletons of M
tion of P. Alternatively, one can consider X and Y and P, respectively. Here i* sends the generator of
as singular chains with the additional requirement H3{BudBi) to the z-th generator of H3(M,M^),
that y should be transverse to the 2-skeleton of P. considered as the 3-dimensional cellular chain group
Hence, for any 2-chain a G C2(P;Z), the intersec- of the CW-complexM. Denote this cellular chain by
tion number a fl Y G Zn is well-defined. Therefore {£»}; thus /*({!?»}) = fc»{J5}. For the fundamental
we get a homomorphism £p : C2(P;Z) —> Zn , that cycle of M we have {M} = Yli=1{Bi}. Clearly, the
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algebraic intersection number {J5}Pi{x0} is 1. It fol- (4) the attaching map hB is cellular and preserves
lows that ki coincides with the algebraic intersection the labels, base points, and orientations of the
number /*({.£;}) fl {x0}; after a deformation of / in edges and 2-cells.
Bi which does not alter / on M<2>, we may assume p i x a v e r t e x v o f g2 a g b a g e p o i n t for g2 & n d M

that this number is also the geometric intersection u g a s g i g n t Q e y e r y 2_ceU c rf s% t h e foUowing ^
number, which is to say that there are exactly ki
points in B{ which are mapped to x0. To calculate ( 1 ) t t i e s i § n £(c) = ±1tliat shows whether or not the
it, note that for any lifting B{ of B{ we have orientation of c agrees with the orientation of S2

B

~ ~ _1 induced by the fixed orientation of B C M;
/.({*,}) nx = / . ({* ,})nP - (x 0 ) (2) t h e e l e m e n t g{c) = [ / I B ( 7 ( C ) ) ] o f 7 r j ( M ) ) w h e r e

— f*\{Bif) H x0 — k{. ^(c) [s a p ^ ^ j n 5 | joining t; to the base point

Summing up, /*(/3M) nX = deg(/). D o f c a n d [ M T ( C ) ) ] denotes the element of TT^M)
that corresponds to the loop hB(^(c)) in K2

M\
Remark 2.2. It is important to have in mind that £P /o, ,, , ,. D u- u i u i

~ ^ ii (3) the relation ifyc) which labels c.
and <7/?M depend only on P and M, respectively, but
not on / . It is convenient to regard the chain group C2(M, Z)

as the 7r1(M)-module freely generated by the rela-
3. HOW TO CALCULATE THE BOUNDARY CYCLE t i o n s R^ '''' ***' T h e p r o o f o f t h e following s t a t e"

ment is evident.
3.1. The General Case ^ _~

Lemma 3.1.1. The contribution ops made by a 6-cell
Let M be an oriented CW 3-manifold such that its 2- B of M to ^ equds ^ e(c)g(c)R. where the

skeleton KM has exactly one vertex. We say that the mm is taken over M 2_cMs c in ^
presentation (o i , . . . , ar \ R%,... Rq) of TTI{M) corre-
sponds to Klf if 3.2. A Useful Example
(1) all edges of K2

M are oriented and correspond bi- We consider an informative example. Present the
jectively to the generators ax,... , o r ; torus T2 = S1 x S1 as a CW complex with one

(2) all 2-cells of K?M are oriented and correspond bi- v e r t e x > t w o e d § e s a = S' x {*>' t = W x 5 ' '
jectively to the relations R,,...,Rq;

 a n d o n e 2"ce11 r i t h a t corresponds to the relation
J " U ' " . . A Ri = at-^a-H of TT^T 2 ) = (a . t l i?! ) . Choose a

(3) the boundary curve of each 2-cell is equipped p a i r & o f c o p d m e i n t e g e r S ) a > 0 W e e x t e n d t h e

with a base point such that starting from this ^ d e c o m p o s i t i o n o f r 2 t o a c e l l d e c o m p o s i t i o n o f

point, the curve follows the edges mst so as they r , , T.̂  .,, Q w ^2 u u u- J.
^ ' & J J a solid torus M with <9M = T J by attaching two
are written in the corresponding relation. u o n J o n r> TVT J. xi. x J.I~

F & new cells: a 2-cell r2 and a 3-cell B. Note that the
Let ( a i , . . . a r I JRI, . . . Rq) corresponds to K2

M, and boundary curve m of r2 lies i n a U t and thus can
let B be a 3-cell of M. The simplest way to calculate be written as a word in generators a, t. To make
the contribution d/3B to the boundary cycle made the situation interesting, we require that m wraps
by the boundary of B is to construct a spherical totally a times around a and (3 times around t. In
diagram for the attaching map hB : £ | -» -K^ of B, other words, the corresponding word (denote it by
that is, a cellular decomposition 6B of 5 | such that: watp(a, t)) should determine the element aa + (3t in

, r rx . . i , T , T 1 . 1 the homology group i7i(a U t:Z). In general, we
(1) every edge of 0B is oriented and labeled with a , , , , ,, a,0 . ,, rv^/3

4 cannot take wa^(a,t) = a^v* since the curve a a ^
*' in a U t bounds a meridional disc in M with embed-

(2) every 2-cell of 6B is oriented and labeled with a d e d in t erior if and only if \a\ = 1 or \0\ = 1.
relation Rj; ^ye d e s c r i b e a simple geometric procedure for find-

(3) the boundary curve of each 2-cell is equipped ing out wa,p(a,t). Present a regular neighborhood
with a base point such that, starting from this TV of a U t in T2 as the union of a disc with two dis-
point, the curve follows the edges just so as they joint strips (handles of index one). The key observa-
are written in the corresponding relation; tion is that m, being the boundary of a meridional
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v a
disc of the solid torus, can be shifted in N to a sim- K *ZI ~/f
pie closed curve mi which is normal (in the sense of \ yR%) f
[Haken 1961]) with respect to the handle decompo- f\ Jfa ^_
sition of N. The normality of mx means that it can t

il
 S\/* ^ ^y

be constructed as follows: y& /C~\

1. Take a parallel copies of a and \fi\ parallel copies l̂— •» ^ —
of t in the strips such that the end points of them FIGURE 2. Spherical diagram for the 3-cell of M.
lie on the boundary of the disc around the vertex;

2. Join the copies inside the disc by disjoint arcs i n t e r i o r o f M ' w e §e t a c i r c l e t h a t i n t e r s e c t s ^
such that no arc has both end points at the same m e r i d i o nal disc r2 of the solid torus M positively
end of the same strip. This can be done in two i n e x a c t 1 ^ o n e Point- lt f o l l o w s t h a t ^ ) can be
ways, and the right choice depends on the sign Presented as a*t* G TT^M), where the integers x,y
of Q satisfy the equation ay — fix = 1 and thus serve as

the coordinates of a positively oriented longitude of
To get wa,/3, it only remains to read it off by travers- the torus. •
ing mi. See Figure 1 for the case a — 5, fi — 2, when
we get w = a3ta2t Remark 3.2.1. The following simple rules can be used

for recursive calculating of the word wa^:

IT t wh0(a,t) = a, wOi±i(a,t) = t±:L;

+ wa+frp(a,t) = waif3(a,at)',

waja+p(a,t) = waip(at,t).

An alternative approach to the wa%p can be found

|—^> in [Osborne and Zieschang 1981; Lustig et al. 1995];
aV compare also [Gonzalvez-Acuna and Ramirez 1999].

3.3. Boundary Cycles of Seifert Manifolds
We restrict ourselves to Seifert manifolds fibered
over the 2-sphere with three exceptional fibers. Let

FIGURE 1. Simple closed curve of the type (a, /?). M = M((ai,/3i); (a2,/32); (a3,/33)) be an oriented
Seifert manifold, where the oti and fii are non-nor-

Lemma 3.2.1. Let K be a CW complex realizing the malized parameters of the exceptional fibers, with
presentation (a, t\RuR2), where Rx = at^a'H and a{ > 0, 1 < i < 3. The orientation of M is induced
#2 = w<xAail) f°r a Pair a> P °f coprime integers, by the standard orientation of S2 and an orientation
a > 0. Suppose that a solid torus Mis obtained of a regular fiber. Then TTI(M) can be presented by
from K by attaching a 3-cell B. ThendfiM = —Ri+ , . . - u - i ai,6- • i oo \
(l-a*ty)R2, where ay-f3x = l. ( a ^ a ^ a ^ H , at •** , = 1,2,3, aia2a3)

(t corresponds to the oriented regular fiber), but this
Proof. To compute the boundary cycle dfiM (which in p r e s e n t a t i o n d o e s n o t correspond to the 2-skeleton
our case coincides with the contribution dfiB made o f a c w s t r u c t u r e of M. To ameliorate this short-
by B), we construct a spherical diagram for B. It COming, we will use another presentation of the same
contains only three 2-cells cu c2, c3 labelled by Ru g r o u p w i t h t h e s a m e g e n e r a t o r s ? namely5

ii2, #2 and having signs —1,1,-1, respectively. We
choose the common base point of cuc2 as a global \ai> fl2, a3, i | i2j, 1 < j < 7),
vertex v\ see Figure 2. _ where i?2;-i = ait~

1a^1t,R2i = wa.p.(ai,t) for i =
By Lemma 3.1.1, we get dfiB = -Rx + R2 - 1,2,3, R7 = a1a2a3. The words wai(3i have been de-g(c3)R2, where g(c3) G TTI(M) corresponds to a path scribed above. The CW complex that realizes this7(c3) in S% joining v to the base point of c3. Note presentation embeds in M such that the complementthat if we push slightly the loop hB(j(c3)) into the consists of four 3-balls B{, 1 < i < 4. The first three
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of them correspond to solid tori containing excep- These rules describe actually nothing more than a
tional fibers, and the last corresponds to a regular sort of Fox calculus [Crowell and Fox 1963, Chap,
fiber. VII; Burde and Zieschang 1985, Chap. 9]. They
_, o o < „ , , , , / , o \ ( n \ ( Q w are sufficient for finding £w for any word w in the
Theorem3.3.1. If M = M((ai,/3i); (a2,/?2); (a3,/33)) .
, v } generators u{.

JL x Proposition 4.1. Let the words w0,... ,wn-i i>n 9en~
OPM — 2_^\^2i-1 "• v1 ~~ ai ^ j-ftzi) erators U{ present (without repetitions) all elements

i=1 +(R1 + a1R3 + a1a2R,-(l-t)R7), ofn^Xo). Then

where a{y{ - faxi = 1. n_1

Proof. The first three summands can be obtained by £p ~ Zs ^Wi moc* n

Lemma 3.2.1. The last summand can be obtained l=0

in a similar way. The only difference from the proof
£ T o r» i • , i x xi j - i - i ^ fl characteristic cochain for P.

of Lemma 3.2.1 is that the corresponding spherical J

diagram, instead of one 2-cell with one odd i?-label, Pmof E v i d e n t ? s i n c e t h e u n i o n o f t h e p a t h s g i v e n by
contains three positively oriented 2-cells with labels ^ for 0 < i < n - 1 presents a 1-chain Y such that
RUR3,R5. • QY is the union of all points in p~x(x0). D
4. HOW TO CALCULATE THE CHARACTERISTIC W e m a y conclude that all what we need for calcula-

COCHAIN tion is a sort of normal form for elements of TTI(P),
that is, a list of words in the dual generators that

Let P be a closed oriented 3-manifold with the finite , ., i , ,.,. n i ± r rr>\
present without repetitions all elements of 7Ti(P).

fundamental group TTI(P) of order n. We assume
that P is equipped with a CW structure such that
there is only one vertex v, only one 3-cell 5 , and 5. HOW TO CALCULATE THE INDUCED CHAIN MAP
the 2-dimensional skeleton K2

P of P defines a presen-
tation <6 1 , . . . , 6 8 |Q 1 , . . . , g 8 ) of 7n(P) = TT^P-V). 5.1. Taking Logs
We will identify generators and relations of TTI(P) Recall that M and P are closed oriented CW three-
with edges and 2-cells of K%, respectively. Fix a manifolds such that TTI(P) is finite of order n. Let
base point x0 in the interior of B and a base point {ai,.. .ar\Ri,... Rq) and (61 , . . . , bs \ Qi,..., Qs) be
x0 e p^ixo) in the universal cover P of P . For each presentations of their fundamental groups, corres-
i = l,...,s choose a loop u{ in P with end points in ponding to the 2-skeletons of M and P , respec-
x0 such that K2

P n ut is a point in Q{ and the inter- tively. Suppose that the homomorphism <p = f# :
section is transverse and positive. Clearly, the loops TTIC&O ^ ^(-P) i s g i v e n °y a s e t o f words hi in
Ui, 1 < i < s, generate the group TTI(P;X0) isomor- the generators bj that represent the elements iffa)
phic to 7Ti(P;v); we will call them dual generators. of TT^P) , 1 < i < r. We consider the chain group

Let w b e a loop in P written as word in the gen- C2(M,Z[n1(M)}) as a free Z[7r1(M)]-module gener-
erators n*. Denote by w the lifting of w to P with ated by the set Ru..., Rq; similarly, C2(P, Z[TTI (P)])
the initial point x0. Then the formula ^ ( c ) = cfltD, i s a f r e e module generated by Qu ..., Qa. Denote by
where c G C2(P; Z) and cDw is the intersection num- K the kernel of the quotient map F(bu ...,bs) ->
ber, determines a homomorphism &, : C2(P;Z) -»• T i ( p ) . w h e r e F = ^(61, - - - ,6.) is the free group
Z and hence a cochain ^ G C2(P; Z). It follows generated by blf..., bs.
from the construction that L e t R be one of the relations Rt. To calculate the

image /*(i?) € C2{P, Z[TTI(P)]) of the corresponding
0) &,,(Qi) = 5i w h e r e 5i i s the Kronecker symbol; 2_cell? o n e m a y d o t h e following:

(2)£Wlw2 = £W1 +w1£W2 where ^ € TT^P) corre-
sponds to Wi and the action of TTI(P) on cochains (1) Replace each generator of1 in R by the corre-
is given by g(£)(c) = ^(^(c)). sponding word hf1. We get a word w € K.
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(2) Present w as a product of conjugates of the defin- appropriate for later use. We will use essentially
ing relations, that is, in the form one basic transformation:

w — W^kQtl^k1 ^ M If wi — Wt* IS a r a t i o n , then uwiv — uw2v is a
k relation for any words u, v.

where Sb = ± 1 and vk G F. . _ ̂  H T ,, £ r7 7 ,. ,
_ * . „ * , , „ , Lemma 5.2.1. in TT, the following relations are true:

(3) Then the image /*(i?) is obtained by taking
logs": f*(R) = log w, where log w = ]Tfc

 ekVkQik C1) aca = c^ac"1, ac~xa = cac;
and vfc is the image of vk in TTI(P). (2) ac~2a = c"4ac2ac;

. . . . . . r . . (3) ac2ac2a = c^a^ac"1 ;
Note that logu? is a multivalued function since u? />,\ o 2 - 1 2 - 2

(4) ac ac CLC
 =: cac' ac CL'

can be presented as a product of conjugated rela- /c\ 10 __ 1
tions in many different ways. This corresponds to
the fact that ip can be realized by many different / ; Proof. The first three relations are easily obtained,
this arbitrariness does not affect the degree. One so we concentrate on the last two.
should point out that finding logw (actually, step (a) M u l t i p l y i n g g 2 = 1 b y c^ac'\ we get aca'1 =
(2) above) is a nontrivial procedure. The problem c-iac-^ w h i c h implies (1).
is to realize it algorithmically. We solve the prob-
lem for the case when P is the Poincare homology (b) U s i n g ( a) ' w e o b t a i n

sphere. ac~2a — cc~1ac~1 c~1ac~l c = caca~laca~1c
— cac2a~1c.

5.2. On the Fundamental Group of the Poincare Sphere
Henceforth we denote by P the Poincare sphere. It (c) L f w = ^ac~2a- A consequence of (b) and
is homeomorphic to the Seifert manifold a = c is

, , / , „ 1N /„ -s ,- .x\ we"1 = ac2ac~2ac~l = a(?a<?a~x — ac~~2ac2a
M((2,l), (3,1), (5,-4)).

= cac a c a = cw.
Its fundamental group n1(P) consists of 120 ele-
ments and is isomorphic to SL2(Z5) and to the bi- (d) It follows from (c) that
nary icosahedral group /*. We will denote it by TT. CIO _ c^ww-^c^ — wc^w^c6

We will use the presentation (a, c | Qi? Q2), where
Qx = c5a~2 and Q2 = aca^ca^c. This presen- O n t h e o t h e r h a n d ' t h e relation a2 = c5 allows
tation corresponds to the Heegaard diagram of P o n e t o Permute c~5 with any other word. Thus
shown in Figure 3. Therefore it corresponds to the c™ = wc *w l(? = ww ' c ^ = L D

2-skeleton of the natural CW structure of M. The following list L presents the 120 elements of TT:
y^^zir^ —"^-^ c% c^ac^ clac2ac*, clac2ac~2a, where 0 < i < 9 and

////^Z—^ c ' '"'•••. N A V \ 0 < j < 4. The words from L will be called normal
luwvS^y/ / / ( v ^ v / / II a Lemma 5.2.2. There exists an effective algorithm that
W\^^/ \^v/^ transforms any word in the generators a,c to a nor-

x ^ r = ^^^ mal form presenting the same element of ir.
FIGURE 3. Heegaard diagram of the Poincare homol- Proof. The normalizing algorithm works with re-
ogy sphere. duced words. Thus, before and after each step, one

_ _. . T O T should reduce the word we are working with. By
Remark 5.2.1. Looking at Figure 3, one can easily find ,, . r , . , ,,
. . _ / rf • .x the a-size of a word in generators a, c we mean the

the dual generators (see bection 4): Ui — c, u2 = , , , T £ r +i • ->
« v J total number of occurrences of a±l in it.

c~ a
Let w be a word in generators a,c. Steps 1-5

We now work a little with the relations c5a~2 = 1, below are based on the corresponding relations 1-5
aca~~xca~xc — 1. Our goal is to get new relations from Lemma 5.2.1.
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Step 0. Using the relation a2 = c5, we transform w to that any product of shadows can be replaced by a
the form w — ckl ack2 a... ckm ackm+1, where m > 0 product of pure shadows:

and hi — ±1 ,±2 for 1 < i < m + 1 and |fcm+i| < 2. i-rfc /> \ / i\rrk m \ / i\/n nk \

Step 1. If w contains the subwords aca or ac a, we
replace them by c^ac~l or cac, respectively. w e r e

Step 2. If the initial segment of w has the form /i = Ai + ^iA2 + • • • + WiW2 • • • wfc_iAfc.
cfclac~2a (that is, if k2 = - 2 and m > 2), we re- I n o t h e r w o r d s 5 o n e c a n purify t h e factors. Recall
place it by ckl~4ac2ac. t h a t t h e kernel K of the quotient map F -> n is
Step 3. If the initial segment of w has the form the normal subgroup of F generated by Q1? Q2. Let
cklac2ac2a, we replace it by c^+^ac^ac'1. §(-^0 denote the normal subgroup of S(F) generated

Step 4. If the initial segment of w has the form b ^ elements (-Q;,Q<), for i = 1,2. Note that the
c^ac2ac-2acfc% we replace it by ck^k^ac2ac-2a. l e f t Q* i n t h e a b o v e e x P r e s s i o n i s considered as a

generator of 3VC while the right Q^ is the word c5a 2

Step 5. We reduce the power ^ of the first term c^ Qr a m - i m - i c . W e d e f i n e t h e shadow group o f ,, a s

of w modulo 10.
A . A -u .i, i u T.r S(?r) = S(F)/S(iir).

Now we are ready to describe the algorithm. We
apply Steps 0-5 as long as possible to the given word Another way to get S(TT) is to take the quotient of
w. Since Steps 1-4 strictly decrease the a-size, the S(F) by the relations (0, Qi) — (Qu 1), for i = 1,2.
process terminates after a finite number of steps. It . _ o ^ / \ ^ c/ r^\ , , -̂ r̂  J
K r i i i T , Lemma 5.3.1. i—^w) G SLRT) 4 = ^ w e K and \i =
is easy to verify that the resulting word is in normal ,
form. •

Proof. Recall that an element of a group lies in the
5.3. Logs in the Case of the Poincare Sphere normal subgroup generated by some elements if and
The algorithm for calculating logs is similar to the only i f [t i s a P r o d u c t o f conjugates of the generators
one described in Lemma 5.2.2. The only difference a n d t h e i r i n v e r s e s - T h u s for s o m e (**>"*) ^ §( i ?)^
is that instead of operating with words in the free Sk = ± 1 ' a n d %k e ^ 2>> t h e c o n d i t i o n

group F = F{a,c) we will operate with their shad- (_^ ) l y) ^ S(K)
ows. . .

Let 3Vt be the free 7r-module generated by Qi, Q2-
We define the shadow group S(F) of F to be the (-»,w) = YliXk^^i-SkQi^Q^Ji-v^X^v^1)
semidirect product M xi F , where the operation of F k
on 3VC is induced by the action of n (recall that TT is _ T T / £ y n. VkQ£kv~l)
the quotient of F). In other words, §>(F) consists of k

pairs (/x,ty), where fi G JVC, w G F. The multiplica- / \
tion is given by the rule (z/,it)(/x,w) = {y+ufi, uw), = I ~ 2-j£kVkQik, i±vkQi*Vk )
where u is the image of u in n. Note that the unit k k

of the group §(F) is (0,1), and the inverse element = ("~ l o § ^ ' w)
of (/x, K;) is {-w'1^ w-1). by the definition of log (see Section 5.1). •
Remark 5.3.1. The above formula {u,u){^w) = (u+ To construct an algorithm for calculating logs, we
ufruw) is a formalization of the algebraic identity need a shadow counterpart of Lemma 5.2.1.
vu - jiw = VJIU • uw, where fjiu = u\xu~x and z/, JJL are
products of the relations Qf^Qf1 and their conju- L e m m a 5f2- One can calculate ^o, • • •, A5 € JVC such

, that in S(TT) the following relations are true:

T£ r- ?-> • / \ r Q(-n\ - n J L J §(1) (0,aca) = (An^ac"1), (0,ac~1a) = (Ai,cac);
If w G JF, any pair (/i,^) G S(F) is called a shadow v ' y v ' y' v ' y v ' y'
of w. The shadow (0,^) is called pure. Similarly, §(2) (0,ac~2a) = (A2,c~4ac2ac);
the pair (/i, 1) is the pure shadow of {i G M. Note S(3) (0,ac2ac2a) = (A3,c4ac2ac~1);
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§(4) (0, ac2ac~2ac-Y) = (A4, cac2ac~2!o); 6. COMPUTER IMPLEMENTATION

S(5) (0, c ) = (A5 ,1) . 5 j Description and Verification of the Program

Proof. The existence of A; is evident, since both sides Recall that calculation of the degree of a map / :
of each relation are shadows of the same element of M ~+ p requires knowledge of the three items: the
7T. The problem consists in calculating A*. To solve boundary cycle <9/3M, the characteristic cochain fP,
it, we repeat the proof of Lemma 5.2.1 in terms of a n d t h e induced chain map /*, see Section 2. For
shadows starting with the relations (0, Qi) = (Qu 1) M = M ( ( a l 5 ft); (a2 , /?2); (a3, ft)) an explicit ex-
instead of Qi = 1, i = 1,2. In particular, we apply pression for d/3M was obtained in Theorem 3.3.1.
the following shadow version of the basic transfer- Proposition 4.1 and the information on TT = TTI(P)

mation (*) of Section 5.2: obtained in Section 5.2 show how to calculate £P.
The authors did this by hand, without computers.

§(*) If (0, Wi) = (A, w2) is a relation, so is (0, uwiv) = It is the calculation of /* that requires a computer.
(u\,uw2v) for any words u,v. We assume that / is given by images r , ^ i , x 3 G

F = F(a, c) of the generators t, aua3 of TTI(M), re-
For example, the shadow versions of the items (a) s p e c t i v e l y ; t h e i m a g e ^ o f t h e generator a2 can be
and (b) in the proof of Lemma 5.2.1 look as follows: found from t h e r e l a t i o n ^ ^ = L W e d e s c r i b e t h e

(a) Multiplying (0, Q2) = (Q2,1) by (0, c^ac-1), we m a i n s t e P s o f t h e computer program.
get (0, accT1) = (Q2,c~1ac~1) or, equivalently, (1)For each relation i^, 1 < i < 7, of the presen-
(OjC"1^"1) = {-Q2,aca~1)\ tation of TTI(M) (see Section 3.3), the computer

(b) Using (a), we get determines its image wz in F.
(2) Then the computer works according to the al-

(0, ac-2a) - (0, c c^ac'1 c^ac-1 c) gorithm described in Proposition 5.3.1 and finds
the logs of all W{. This is sufficient to obtain /*

= (0 ,c ) ( -Q 2 , aca- ){-Q2,aca~ )(0,c) g i n c e 1(R.) = \ogWi,
= ( - (c + cacaT1)Q2, cac2a~lc). (3) To get /*(d/3M), the computer substitutes all re-

^ n ,, , T A • i x r xi r lations R* in the expression for ddM by the cor-
Recall that each A; is an element of the free n- ~ , J

module M with two generators Q l 5 Q2 and thus can _, ^ lJ' . _ , _
, T M i l r r , ^ • , TTtr i (4) The computer calculates the degree by evaluating
be described by an array of 240 integers. We do ~ *? ~ . ° J

not present here the values of Â  since they are large ^p ^ '̂
(especially A5) in the sense that many of the 240 An extended version of the program calculates the
integers presenting each A; are not zeros. Neverthe- degree for all possible homomorphisms TTI(M) -» n
less, the authors calculated them, and in the sequel by letting each one of r , xu x3 run over all 120
we will think of them as known. • elements of TT and casting off the assignments that

do not determine homomorphisms.
Proposition 5.3.1. There exists an effective algorithm T h e p r o g r a m i s written in PASCAL and occu-
that, given weK, calculates logw e M. p i e s a b o u t 1 0 0 0 l i n e s ( n o t including commentaries).
Proof. The algorithm is a shadow twin of the one lt w o r k s sufficiently fast: the extended version re-
described in Lemma 5.2.2. Starting with the shadow ^ u i r e s a f e w s e c o n d s t o r u n o v e r a11 1 2 0 c a s e s - T h e

(0, ti;) of w, we apply shadow versions of Steps 0-5 m a x i m a l r a n § e o f a - ^ i s a b o u t 1 0 0 ° - T h e c a u s e

as long as possible. It means that we use the shadow o f t h e restriction is that for large au fr the words
relations S(l)-S(5) from Lemma 5.3.2 instead of the ™«*A(""* )

 c a n b e t o ° lonS> especially after substi-
relations (l)-(5) from Lemma 5.2.1. After each step t u t i n S t h e ^nemtovs by their images,
we purify the words by taking nonzero lambdas to T h e P r o § r a m h a s P a s s e d s e v e r a l t e s t s ' I n P a r t i c "
the beginning of the word. We terminate with a u ar*
shadow (/i, 1) of 1. By Lemma 5.3.1, logw — \i since - It gives correct answers for obvious cases, in par-
(0, iu) = (//, 1) in §(TT) implies (—fjb,w) G §(K). D ticular, for the identity homomorphism n -> TT.
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- It gives the same list of degrees for maps into 1,2,3,4 all 120 nontrivial homomorphisms TT(M) -»
P for many cases of differently presented home- n take the generator t to the unique nontrivial ele-
omorphic Seifert manifolds. ment c5 of the center of TT. Nevertheless, the next

- It gives the same degree for maps into P that example shows that the situation may be quite dif-
differ by an inner automorphism of TT. The mul- ferent.

tiplication of a degree d map M -> P by a degree E x a m p | e 2 Suppose that {aua2,a3) = (3,6,30) and
49 map P -> P inducing the unique nontrivial el- (ft, ft, ft) = (2,1,-1). Then the possible values of
ement of Out(?r) produces a map of degree 49d. d? corresponding numbers N(d), and corresponding

- The results of a vast computer experiment com- images of t are:
pletely agree with all known facts about the de-
gree of maps into P. In particular, the computer d 0 0 4 40 60 76 80
rediscovered the set of Seifert homology spheres N(d) 30 42 120 120 240 120 120
that admit degree one maps onto P. By this t H* 1 C5 C5 C5 C5 C5 1
we mean homology spheres M((ai , f t ) ; (a^jft);
(a3,/?3)) such that ai /2, a 2 /3 , a3 /5 are integers The main goal of the computer experiment was to
and a1a2a3/30 = ±1,±49 mod 120. They are investigate the following question:
the only known Seifert homology spheres with •* .• - T a. i_ -i.- • J. i

J
 n n i , 7 , Problem 1. Let a i , a 2 , a 3 be positive integers such

three exceptional fibers that admit degree one ,,
maps onto P; see [Hayat-Legrand et al. 1997].

(1) gcd (a2,a^) = 1 for i ^ j with 1 < i, j < 3, and
6.2. Results (2) 2 | au 3 | a2, 5 | a3.
Let M - M((ax, ft); (a2, ft); (a3, &)) be an ori- D o e s t h e r e e x i s t a d e g r e e o n e m a p o f a g e i f e r t m a n _
ented Seifert manifold and i f o l d M = M((a1 , /31); (a2,/32); (a3, ft)) onto P?

(aua2, a3,11 a^a,"1*- \ a f ^ , 1 < i < 3, a ^ ^ , } T h e c o n d i t i o n s 2 | a1? 3 | a2, 5 | a3, and gcd(a1,15) =

the standard presentation of TTI(M). Let d be an 1 are necessary for the existence of a degree one map
integer modulo 120. Denote by N(d) the number of M -» P, see [Hayat-Legrand et al. 1997, Corollary
all homomorphisms TTI(M) -> TT induced by degree 9.3]. Also, for the most interesting case when M is
d maps M ^ P. We present a few examples of a homology sphere we have
computations. _ _ _

«i«2/?3 + «i^s^2 + a2«s/5i = ±1,
Example 1. Suppose that (a i ,a 2 ) a 3 ) = (2,3,5) and
(ft? /32^3) = ( -1 ,1 , jfe), with 1 < k < 4. Then whence gcd(a,, a,) ^ 1 for z ^ J-
the possible values of d and corresponding numbers Remark 6.2.1. It is known that every homomorphism
N(d) are: cp : m(M) -> TT induced by a degree one map / :

1 1 1 1 1 M -> P must be surjective. Moreover, every map
k 1 2 3 4 / : M ^ P can be lifted to a map / : M -+ P,
d 0 1 49 0 7 103 0 13 37 0 19 91 where P is the covering of P corresponding to the

N(d) 1 60 60 1 60 60 1 60 60 1 60 60 subgroup G = / # (TTI (M)) C TT. Note that deg(/) =
[TT: G] deg(/) where [TT: G] is the index of G in TT. For

The case k = 1 corresponds to maps P -> P. [n: G] > 1 this reduces the calculation of the degree
There exist exactly 60 inner automorphisms of TT. for / to that for / which is simpler.
They determine degree 1 maps. Multiplying them T , _ , W / „ \ , „ \ , „ w -,
i . . . 6 ^ r , u -if -4. u Let Af = M((ai , f t ) ; (a 2 , f t ) ; (a 3 , f t ) ) be amaiu-
by an exterior automorphism of n (which exists by r . . . . vv 1 J^X / ' v *^*n \ oi^*j;
roi x • i -moon 4- ̂ n 4- u- , L i - fold such tha t
[Flotnick 1982J), we get oO automorphisms that in-
duce maps of degree 49. In the cases k — 2,3,4 we (1) gcd(a^aj) = 1 for i ^ j , 1 < Z,JI < 3;
have similar situations: there are two nonzero de- (2) 2 | a i5 3 | a2, 5 | a3;
grees related by multiplication by 49. For each k = (3) all ft are odd.



506 Experimental Mathematics, Vol. 10 (2001), No. 4

Under these assumptions the rules can conclude that all elements of order 4 in TT are
, o - i -i -£ conjugates of a (we learned this first by means of a
t \-> a2, ax H-» a, a2 H> a xc, a3 H> C if ax is not & v *.
H* ' 'hi h 4 computer program), lnus, after a multiplication of

., ' - 1 - 4 4 -r • <£ by an inner automorphism of TT, we may assume
t 4 1, ^ 4 a, a2 4 a ! c 4, a3 i-> c4 if ax is ; ; K ' J

v . M i i A that #i = a. bmce Vi and px are odd, the relation
divisible by 4, 2oi * i / 9J ' XiP lr^ = 1 implies that r - a2.

yield a surjective homomorphism <p0 : 7rx(M) —>• TT, r x _ ^ n ,, , 7 ,. .-, n 7 , ,
J . . . J „ 7 7 ^ , \ Step 2. Recall that fc2 divides 6. Just as above, we
which we call standard. Denote by exta the exter- , , 7 1 o i~ m . - x - ^ r

J cannot have k2 = 1,2 because of the surjectivity of
nal automorphism of TT that takes a to a and c to o . 3»2 tfo 1 2 J / o\ 1 J O

2 -1 T+ . , , u D D CA V* Since x / V ^ 2 - 1, r = a2, gcd(p2 ,2) - 1, and/3 2cac ac . It is induced by a map Jr —> .r of degree , -, n 7 y o m l 7
r_. . _ , J to is odd, we have fc2 7̂  3. The only remaining case is

49; see Plotnick 1982 . 7 ' . ., , , m
' L J k2 = 6. Similarly, fc3 = 10.

Remark 6.2.2. Assumption (5) can be easily achieved S t e p 3 T h e r e a r e Q n l y four e l e m e n t s x o f n s u c h t h a t

by transformations A ^ A + <*, A ^ ^ - ^ for x h a g Q r d e r 1 Q a n d a _ i x - i h a g Q r d e r 6 . c - i ? a c - i a - i 5

t ^ j , which preserve the manifold. a n d t h d r i m a g e s u n d e r e x t a C e r t a i n l y ? t h i s f a c t

Lemma 6.2.1. Let a{ and fa satisfy the above assump- could be theoretically obtained, but the authors got
tions. Then for any homomorphism cp : TTI(M) -> n it by letting a simple computer program run over all
the following conditions are equivalent: elements of TT. It implies easily (2).

(1) ip is surjective. @) => (3). Since the center {l,a2} is fixed under all

(2) if has the form cp - ^ ^ 0 , where ip : TV -> TT is automorphisms of TT, this implication is evident.

either an inner automorphism of IT or the product (3) => (1). Since r = a2 is in the center, kuk2,

of exta and an inner automorphism. and k3 divide 4,6, and 10, respectively (see above).

(3) (p(t) = a2 ifax is not divisible by A, and <p(t) = 1 The equations xlPla2f31 = xlPla2 = 1 imply that

if it is- fci = 1,2 is impossible. Thus fex = 4. We cannot
Proof. Let a, = 2P l , a2 = 3p2, a3 = 5p3. Then P l is h a v e k2 = X' 2 ' s i n c e t h e n x* = x ^ x ^ w o u l d h a v e

not divisible by 3 or 5. We assume that Pl is odd; o r d e r 4 ' w h i c h i s impossible. Thus k2 is divisible by
the case Pl is even (that is, a, is divisible by 4) is 3 ' Similarly, k3 is divisible by 5. It follows that the
similar. Denote <p{t) by r, V(a{) by xu and the order o r d e r o f t h e subgroup Gen generated by xux2, x3

of x, bykul<i< 3. If r is in the center {1, a2} i s d i v i s i b l e b ^ 4 ' 3 a n d 5 ' S i n c e n c o n t a i n s n o s u b "
of 7T, then it follows from X\PIT* = 1 and r 2 ^ = 1 § rouP o f o r d e r 6 0 ' G = 7r' D

that fcx divides 4px. Note that all possible orders of T o a g r e a t extent, Lemma 6.2.1 facilitates the corn-
elements of 7T are contained in the following list: 1, p u t e r s e a r c h for n e w degree one maps of Seifert man-
2, 3, 4, 5, 6, 10. Recall that px is not divisible by 3 ifolds o n t o p. u n d e r ab0Ve conditions on au0u it
or 5. It follows that fex divides 4. Similar arguments suffices to check only standard maps M -> P, that
show that k2 divides 6 and k3 divides 10 and that ^ t h o s e t h a t correspond to the standard homomor-
gcd(p2,2 • 5) = gcd(p3,3 • 3) = 1. phisms TTX(M) -* n. The result of the corresponding
(1) => (2). Step 1. Since </? is surjective, r is in the computer experiment was negative: no new exam-
center of 7T and, as shown above, ki divides 4. It pies of degree one maps. Nevertheless, a manual
follows that fci = 4. Indeed, the relation xxx2x3 = analysis of the output had shown that the degrees of
1 shows that for ki — 1,2 the image of 99 would the standard maps are periodic with respect to any
be generated by r, x2 and possibly a2, the unique of the parameters p\ = ax /2, p2 = a 2 /3 , p3 = a3 /5,
element of n having order 2. In this case the image and $ . This observation allows one to suggest ex-
would be abelian, contradicting the surjectivity. plicit artificial formulas for the degrees of standard

Note that all order 2 elements of the icosahedral maps. Since we do not have a theoretical proof of
group J = 7r/(t) are conjugate. It follows that every the periodicity, we present the formulas in a form
element of order 4 in n is conjugate to a or a"1. of a conjecture. By [x]k we denote the residue of x
Since for x = c3ac2ac~2 we have xax'1 = a"1, we modulo A:. In other words, [x]k is the integer sat-
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isfying the conditions x — [x]k is divisible by k and p3 = q3. Applying Lemma 6.3.1 to a = g2, b = p3,
0 < [x]k < k. and m = 2, we see that at most two of the num-
_ . . _ _ H T , bers g2, q2 + 120, q2 + 240 are not relatively prime to
Conjecture 6.2.1. Let - u <• I * f n (A ± -1 l> - \ •

p3. Hence at least one ot them (denote it by p2) is
/o : M((2p1?/?i); (3p2,/32); (5p35/33)) —> P̂ relatively prime to p3. Consider now five numbers

be the standard map, where all fa are odd. 9i + 120z, where 0 < i < 4. Applying Lemma 6.3.1
twice to a = #i, ra = 4 and 6 = p2^p3, we find among

(a) A/ Pi 25 even men them at least one number pi relatively prime to p2

deg(/o) = 30[|pi/3i]4 + 40[p2/32]3 + 96[p3/?f]5.
 a n d Pa- By construction, p1,p2,Ps satisfy the condi-

, „ , „ „ „ tions (l)-(3) of Lemma 6.3.2. •
(b) if px is odd then deg(/0) = A1 + A2 + A3 + 39

mod 120, where Remark 6.3.1. Any Seifert manifold fibered over S2

A —or\(\pi+0i] r^i-Pi-2] rp1+/31+2i r^+^+41 \ with three exceptional fibers of orders a1? a2, a3 with
' " ^ 2 j 2 L 2 j 4 [ _ 2 j 2 L 2 J ^ ' a2 = a3 = 1 mod 2 can be presented in the form

^ 2 - 1 0 ( [ ^ ] 3 [ ^ + p 2 - i ] 1 2 + [ ^ ] 3 [ / 5 2 - p 2 + i ] 1 2 ) , M = M((a1,/31);(a2,/32);(a3,/33)) with (32 = /?3 =
/I —19/flt^al [i±£3&l i FizMl rii-P3/33i \ 1 mod 4. Indeed, any presentation can be trans-

formed to one with p2 = p3 = 1 mod 4 by trans-
6.3. Degree One Maps of Homology Spheres formations fa *-> Pi + au fc ^ P2 - OL2 and px H->
In this section we characterize (modulo Conjecture Pi + <*u fo ̂  Ps - a* that preserve M.
6.2.1) all homology spheres of the type Proposition 6.3.1. For any homology sphere Mx =

M = M((2p1,/31);(3p2,/32);(5p3,/?3)) M((2p1,/31); (3p2,&); (5p3,/?3)) ^ ' ^ /?2 = /33 = 1
mod 4 ^/iere exz5̂ 5 a homology sphere

that admit a degree one map onto P . The question
was posed in [Hayat-Legrand et al. 1997]. M2 = M((2pu ft); (3p2, ft); (5p3, ft))

Lemma 6.3.1. Let a, 6 &e integers such that 0 < b < such that
1001 and gcd(a, b) is not divisible by 2, 3, or 5. Then Q \ - _ m O ( j 120*
/or any m, 0 < m < 6 the set {a + 120i \ 0 < i < m} ( 2 ) ^ ^ g0Q ^ < 3g0 j ft < UQ.
contains at most two numbers which are not rela- ( 3 ) ^ _ ^ m o d 8? ^ = ^ m o d 12? a n d ^ ^ ^
iive/y prime to 6. m o d 2 0 .

Pfoo/1 Denote a + 120t by a, and gcd(a,,6) by * , PfDo/ ; S i n c e t h e g r Q u p j y l ( M ; Z ) i s t r i v i a ! 5 i t s o r d e r

for 0 < i < m. Let d be a positive common divisor
of dudj,i ^ j . Then d divides auaj and ô  - ô - = |6pip2/33 + 10pip3/?2 + 15p2p30i
120(» - j ) . Since 11 - j | < 6 and gcd(ai, b) is not ig e q u & 1 t o L I t followg t h a t p i j P 2 ) P 3 s a t i s f y t h e

divisible by 2,3, or 5, we may conclude that d = a s s u m p t i o n o f L e m m a 6 . 3 . 2 . Therefore, one can
1. Thus all dt are relatively prime. It follows that &ndpuP^p3 satisfying conditions (l)-(3) of Lemma
not more than two of them differ from 1, since the g 3 2 g i n c e gcd{PhP) = 1 for i + j ? t h e r e e x i s t

product of the three smallest values 1 11, 131 of d2 # ^ ^ ^ s u c h ^ g - ^ + 1 Q f t f t A + ^ - ^ ^ =

1 1S equal to 1001 and cannot divide b < 1001. • ^ ^ + ^ ^ ^ f 1 5 p ? ? 3 ) S l . Us ing_ t ransforma-

Lemma 6.3.2. Letpi,p2,P3 be integers such that, for tions ^ i-> /?i+2pi, (32 ̂  /92-3p2_and^i i-> /5i+2pi,
1 < « < J < 3, gcd(pi,pj) is not divisible by 2, 3, 5. P3 ̂  03 ~ 5p3, one can achieve (32 = f33 = 1 mod 4.
T/ien i/iere exist positive integers p1,p2,p3 such that Note that the conditions (1), (2) of Lemma 6.3.2

_ are fulfilled by the construction of pi. To prove (3),
; ; ' consider the expression
(2) pi < 600, p2 < 360, p3 < 120;
(3) gcd(pi,pj) = lfori^j. S = 6((p!p2 - Pip2)(33 + PxPiifo - &))
Proof. Reducing Pi modulo 120, we get ft such that + 10((PiP3 - PtPs)/% + PiPs(/32 - ^2))
% = Pi mod 120 and 0 < q{ < 120,1 < * < 3. Set + 15({p2p3 -MsWi +P2P3W1 - A))-



508 Experimental Mathematics, Vol. 10 (2001), No. 4
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