
Farey Curves
Xavier Buff, Christian Henriksen, and John H. Hubbard

CONTENTS
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2. Yoccoz's Proof
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References Consider the family of quadratic polynomials PA :

C —> C, where A is a complex number with |A| < 1,
defined by

Px(z) = Xz + z2.
We will examine this polynomial from a dynamical
point of view; that is, we will be interested in its
behaviour under iteration.

The first observation is that the polynomial Px

has a fixed point at zero: P\(0) = 0. Schroder
[1871] proved that when 0 < A < 1, the polyno-
mial P\ behaves near 0 like its linear part: £ i-> A£.
More precisely, he proved that there exists a unique
analytic germ cpx : (C, 0) —> (C, 0) of the form

<px(z) = z + O(\z\2),

such that the following diagram commutes:

(C,o)—^—(c,o)

(Co)i^l(co).
We should think of £ = ip\(z) as a new variable
which is defined on a neighborhood of 0. Under the
change of coordinates, the expression of P\ simply
becomes the multiplication by A. This germ can be
extended to the basin of attraction

Ux = {z G C | lim P°x
n(z) = 0},

n—>-oo

using the formula
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Fatou [1906] proved that the basin of attraction Ux of attraction C/A, hence it is in the filled Julia set
always contains the critical point uox — —A/2, and K{PX), which is known to be inside the disk D(0,4).
this result arguably opened the entire field of holo- In particular,

morphic dynamics. |XA(0I < 4- 0-D
What remains of those results when |A| = 1? If

A = e2i7vp/q is a root of unity, then P is not lineariz- Since <p'A(0) = 1, we obtain x'A(0) = r){X). Now
able. Indeed, if it were linearizable, then Poq would we have seen that Xx is a univalent mapping from
be equal to the identity. Cremer [1932] proved that the unit disk to the disk D(0,4). Since XA(0) = 0,
if the Schroder equation Schwarz's Lemma shows that

(fix(Px(z)) = \<px(z) ^(A)! = |x^(0)| < 4. (1-2)

has a solution for |A| = 1, then the mapping Vx will T o g e e t h a t ^ ig a n a l y t i c 5 n o t i c e t h a t

extend to a simply connected region [ / A cC , called
a Siegel disk. Cremer probably believed that this p°n( \/2)
case could not occur for |A| = 1. The first existence ^n

result for such disks was found by Siegel [1942], in is a rational map of A, analytic on D*. It is not
one of the landmark papers of the twentieth century. difficult to see that the convergence is uniform on

In the late 1980's Yoccoz found an amazingly sim- compact subsets of D*. Hence, 77 is analytic in D*.
pie proof that for almost every A G S 1 , the polyno- Since by equation (1-2) it is bounded by 4, the re-
mial Px has a Siegel disk. His proof is based on the movability theorem shows that it is analytic in all D.
fact that a bounded nonconstant analytic function •
77 : D —> C (where D is the open unit disc) has radial ri. _ ^ . . . _ , . r

,. ., , , , i ̂ i x ̂ i v -j. omce 77 : D -» (L is a bounded analytic function
limits almost everywhere, and that the limit supe- . ' . . . _ . n . , , . - , , . .

r ^ T I P - i i r that does not vanish identically, it has radial limits
nor of the modulus of 77 vanishes only at a set of . . _ . ' „ , _ .

~ . , , L ^ , , almost everywhere, and the set of a G o such thatmeasure 0 as A tends to the boundary.
limsup|77(A)| = 0

1. THE FUNCTION 7/ x^
Let A be in D, and let I - | + \i ^ \ + ¥

be the linearizing map for P\(z) = Xz + z2 defined in jfS^ ̂  v ̂ ^ ' ^ "^^k,
the basin U\. The critical point u\ — —A/2 belongs M< " " 7 / / ^ ^ ^
to this basin, so we can define f | ^7 ^x^^^s^L (Z\ ' ^ ^ ^

ty(A) = VA(^)=Um-^Pr(-A/2). ^ ^ ' ^ ^ ̂  ^ ^ f l
Proposition 1.1. The function TJ(X) is analytic and @m^^ ^^ ~ ^ ^ " ^ ( 2 ) <? i l l
bounded in the unit disk. ^^^^r / ^\^ - - ^^li^ll

Proof. The critical values of cpx are the points r](X)/\n, ^ ^ ^ ^ ^ ^ ^ ^ ^ i\y(\) ^ ^~^^^^C^
for n > 0. Hence, the disk O(0, |r/(A)|) does not ^ ^ ^ ] / ) / ) \ \ ^ / " ^ \ ^ \^^y
contain any critical value of <px. Since it is simply \lihp/f~~~\/ I i r'^ ^-(^^^w
connected, there exists an inverse branch W / L / ) ' /j )\ \ ^ \ x A x l ^ ^ ^ ^

^ = ̂  : D(0, h(A)|) -> ̂  ^ ^ ^ P ^ ^ ^ ^
defined on D(0, |r?(A)|) and such that VA(0) = 0. 1 x . ^^^^^^0^ 1 _ 1.

Then, the function Xx(0 = i>\(€vW) i s a n injec- I ~ 3 ~ 32 . !—L_
tive analytic function on the unit disk, which van- FIGURE 1. The image of the circle |A| = .9999 by the
ishes at 0. Moreover, X\(0 belongs to the basin map »j(A), where 7(4) = ry(.9999e27rit).
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is of measure 0. This function rj(X) : D —> C is quite Theorem 2.2. Set A = e2lxie. The polynomial Px is

surprising. We will see that if rj(X) does not tend to linearizable if and only if 6 G R \ Q and

0 when A -> \i G S1, then the polynomial P(z) = oo ,
jiz + z2 has a Siegel disk. In particular, the limit V^ < oo, (2-1)
must be 0 when \x G S1 is a root of unity. On the n=i ^n

other hand, the radial limit must be positive on a set where pn/qn is the n-th convergent of the continued
of measure 1. In order to understand the boundary fraction of 9.
behaviour of the function 77, we have drawn the curve

SJ.\ ( c\c\c\c\ 2irit\ T^- i An angle 0 satisfying the condition (2-1) above is
'y(t) = 77(.9999ej7r**) on Figure 1. „ , n , J f v J

called a Brjuno number.
Even though the Brjuno numbers have full mea-

2. YOCCOZ'S PROOF sure on the circle, the complement is a dense un-
T L _ . rpi . . , o r- o\ £ i countable set (fat in the sense of Baire). Yoccoz's
Theorem 2.1. There exists a set S C S of measure 1 r _ , .r n - ^ . i

L ±i. J. -£ \ a J.-L J ±- 7 • i r» / \ proot shows that it v is not a Briuno number, then
such that it A G o, the quadratic polynomial P\(z) — /AN _ ^ , . ^ , o. fl m l .
x , 2 • I- • j.i • M. \ A / n r?(A) tends to 0 when A G B tends to e 2 ^ . This ex-
Az + 2T Z5 linearizable in a neighborhood ofi). i . i • i i T I T . r I r

plains the weird boundary behaviour or the function
Proof. We have seen (equation (1-1)) that the fam- ry(A) which appears on Figure 1.
ily {XA}AGP is uniformly bounded by 4. By Mon-
tel's theorem, the family {XA}A<ED

 ls normal. So 3. PICTURES
any sequence xxn w îth An -> // G 5 1 has a con- . , .

, i j xi. v -i. • -j.i -J Figure 2 shows the images of the circles A = .5,
vergent subsequence, and the limit X is either id«n- = = = = g g ^ =

tically 0 or miective on the unit disk. Notice that ' ' ' ' ' /AN
,> x D / \ u -r,i r -4.r .. .9999 under the map 7?(A).

X\{*z) = P\° X\(z)' Hence, if the limit function \ w . • ,-r ^ ^ • . j
. . . ,. .. x. n / \ r> / \ • - l We must justify how those pictures are drawn,
is mjective, it satisfies x(/^0 = P» ° x W . i-e., X R e c a l l t h a t
linearizes PM near 0.

The function rj(X) - lim — PA
o nf—V

i2(/i) = lim sup |r/(A) | O n t h e o t h e r h a n d » w e k n o w t h a t

•K*)-^(-i)-^M-|)).
on the unit circle vanishes only on a set of measure 0. \ Z / A \ \ z / /
Since XA(0) = 7/(^)5 if M = e2wi0 1S m the complement Hence, we just need to control how close ipx is to
S of this set, then a sequence An converging to \i can the identity near 0. This can be done using classical
be chosen such that the sequence Xxn converges to distortion estimates for univalent functions in the
X, and unit disk.

, ,/^M u. , ^xi n , x ^ Lemma 3.1. The map (D\ is univalent on the diskTbn
\X (0)| = I l i r n , ^ X , n(0) | = R(») > 0, centered at Q Qf mdms

so that the limit is not constant. • R — inf{|A|/2,1 — |A|}.
The proof above gives little insight into the nature Proof- lt i s n o t difficult to show that PA(Dfl) C BR

of angles <9 for which the polynomial for all i? < 1 - |A|. This implies that BR C UXj

and so (px is analytic on D^. The polynomial Px is
P(z) — e27riez + z2 univalent on the half-plane Re(z/X) > — \ and in

particular it is univalent on D# for R < |A|/2. So,
is or is not linearizable. We will now give a result letting R — inf{|A|/2, 1—|A|}, every iterate Px

n for
which should bring out the arithmetic nature of such n > 0 is univalent on D^. Finally, the linearizing
angles. The first such result was obtained by Siegel map <px is locally univalent near the origin and the
in 1942. Brjuno [1971] and Yoccoz [1995] have since functional equation <pxoPx — X-(px yields the desired
completely solved the problem. univalence of <px. •
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(-1/3+1/3) (1/3+1/3) (-1/3+1/3) (1/3+1/3) (-1/3+1/3) (1/3+1/3)

o Q fj
(-1/3-1/3) (V3-1/3) H /3- i /3) (1/3-1/3) (_i/3-i/3) 0/3-1/3)

(-1/3+1/3) ^ ^ ^ ^ - ^ ^ ^ (1/3+1/3) (-1/3+1/3) , - < « • - " * \ ^ d/3+1/3) (-1/3+1/3) ^ , ^ | ^ ^ ^ ^ ^ _ (1/3+1/3)

(-1/3-1/3) ^ ^ ^ S l ^ / ( 1 / 3 . i / 3 ) (_1/3_ j /3) ^ - , r' (1 /3_ j / 3 ) (_1/3_ j /3) ^ ^ ^ ^ ^ ^ (1/3-1/3)

FIGURE 2. Images of the circles |A| = .5, |A| = .75, |A| = .9, |A| = .99, |A| = .999, and |A| = .9999 under ry(A).

Lemma 3.2. / / \z\ < R/2, where R is the lesser of The lemma gives rise to a method of computing ar-
|A|/2 and 1 — |A|, then bitrarily good approximations of 77(A). Since

M*)-*|<-|Ma. Pn-A/2)-^0
JrC

Proof. First notice that the function a

/W-^(«»), ^ = ̂ (^(-5))-
is univalent inD, /(0) = 0 and f'(0) = 1. The result w e c a n c h o o s e n = n (A ) s u c h t h a t lPA°n(-A/2)| <
is then a consequence of the distortion theorem ap- mf {JR/2, Re/6}. If we set

plied to / . Indeed, it is possible to prove that when Pon(—X/2)
\w\<r< 1, VW = Xn

\f(w)-w\<j^-\w\2. t h e n

(i-H2 1 6 o 2

For more details, see [Duren 1983]. In particular, if | r / ( A ) " ̂ A ) l " p ^ l | P r ( ~ A / 2 ) | 2 " 6 | ? ) ( A ) I '
\w\ < 1/2, then \f(w) — w\ < 6\w\2, and replacing w . . , , .
, IT) . Hence 7? approximates r\ with a relative error that
by z/R, we get ' f; TT '

is bounded by 6. Using this we have drawn the ap-
I / x , 6. 2 proximat ions of r]({ \ A| = p}), for increasing p shown

R in Figure 2, with a precision e — 10~3.
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4. OBSERVATIONS AND QUESTIONS • The only rational number of depth 1 is 1/2, and
^ r , , ,, , ,, r i there is an edge between 1/2 and each number of
We have proved that the function r\ has a nonvan- '
ishing radial limit almost everywhere. Besides, if 9 T̂ . ' , . _ ,

, o . , , ,, , • Now if p/q is a rational number of depth n, we
is not a Briuno number, we have seen that _ / , / , , .

let pi/qi and P2/92 be the two rational numbers
lim^ rj(X) = 0. of depth less than n closest to p/q, such that

P1/Q1 < P/Q < Pi/qi- Then,
In fact, Yoccoz [1995] obtained a much stronger re-
sult. He proved that the radial limit ——- and ——-

/ o • flx
 q i + q q 2 + q

limr? (re2l7r6)
r->i v ; are rational numbers of depth n + 1 and there is

exists everywhere and is equal to the conformal ra- a n edge between p/q and each of them,

dius of the Siegel disk of Pe^e. In particular, the T h e F a r e y t r e e c o n t a i n s a l l r a t iOnal numbers in [0,1].
radial limit is positive when 0 is a Brjuno number; I t ig m u s t r a t e d i n F i g u r e 4 u p t o d e p t h 14# A r a t i o .
it is equal to 0 when 0 = p/q is rational. n a l n u m b e r p/q o f d e p t h n i s d r a w n i n t h e d i s k w i t h

Moreover, in Figure 2, we observe that as p in- a r g u m e n t 2-xp/q and radius r^n. We chose r = .65
creases, "bubbles" are formed and seem to reach to- t o g h o w t h e s i m i l a r i t y between the position of the
wards the origin. It is very natural to try to see c r i t i c a l p o i n t g a n d t h e s t r u c t u r e o f t h e F a r e y t r e e .
what those bubbles correspond to. We have seen F i g u r e 4 s u g g e s t s t h e following conjecture: for
that if 0 G Q is rational, then e a c h r a t i o n a l n u m b e r p/q, there is a gradient curve

lim rj(X) = 0. °f I7?! joining e27vip/q to a critical point of 77; these
x-^e2ind segments define a bijective correspondence between

One problem is to understand what relation there is Q/Z and the critical points of 77.
between the bubbles and rational angles 6.

A bubble is formed each time a curve of the fam- DCFFRF\irF<;
ily 77({| AI = p}), 0 < p < 1, passes through a critical
point of 77. Hence, understanding the relation be- [BrJuno 19711 A- D- Brjuno, "Analytic form of dif-
tween the bubbles and the rational angles amounts f e r e n t i a l e<luations> r'> T™dy Moskov. Mat Obsc.
to understanding the relation of the critical points p— -<t.. ,,o t —
of 77 and those rational angles. To study the critical ^ " ° **''*'**
points of 77, we must study 77'. The following limit tf-' %r **>.
is uniform on every compact subset of D: /* ^

So by choosing a large enough n for each A, we can / ^ ^ ^ ^ ^ B
estimate 77'. In Figure 3 we color pixels black if the ^ ^ ^ ^ ^ ^ ^ ^ B

corresponding A satisfies Re(77'(A)2) > 0 and oth- IB ^ ^ ^ ^ ^ ^
erwise we color the pixels white. A point A is a ^ ^ ^ ^ ^ ^
critical point of 77 of degree n if and only if 2n re- ^ ^ ^ ^ ^ ^ B V
gions of black and white meet in a sufficiently small \ ^^^^^V
neighborhood of A. That is, the critical points are * ^^^^Hf
the corner points in the figure; all of them appear \ ^ ^ ^
to be simple critical points. y J'

The position of the critical points seems to reflect \ ?
the structure of the Farey tree (see Figure 4). The ^ ^ <p '
Farey tree is defined by induction: 11 **ot» #m .9*"'"*' 1_i

• The rational numbers of depth 0 are 0/1 and 1/1. FIGURE 3. The critical points of rj are the corner points.
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3/7/y ^k / * \

^ o ^ i ^ ^ 1/2 0/1=l/l

FIGURE 4. The critical points of 77 and the Farey tree up to depth 14.
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