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1. INTRODUCTION

We consider the hypergeometric differential equa-
tion

x(l -x)u" + ( c - {a + b+l)x)v!-abu = 0

and (any) two linearly independent solutions ui and
u2. The (multi-valued) map

s : C-{0,1} 3 x i—>u1(x) : u2(x) E P1 :=CU{oc}

is often called a Schwarz map (or Schwarz's s-map).
The local behavior of this map can be determined
by the local exponents

{0, 1-c}, {0, c-a-b}, {a,b}

at 0,l,oo, respectively. What happens about the
map s when the exponents are real is well-known
(for the story of Schwarz's triangles refer to [Yoshida
1997]); much less known is the case of nonreal expo-
nents. Though F. Schilling [1894; 1895] studied the
map s for general exponents including purely imag-
inary ones, and pointed out that the map behaves
much differently from the real case, no further de-
tailed study has been made since.
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in the x-plane and a domain Fs in the «s-plane so These solutions are related by
that the restricted map / - , ns £ , . NN / - / n\ £ r \\n

(/o(x;O),/o(x;A)) = (/i(z;0),/i(z;//))P,
s\Fx '-FX^FS w h e r e

is conformally isomorphic and the whole s can be p — ( \
recovered by s\Fx through Schwarz's reflection along V /
the sides of Fx. By the help of these fundamental for
domains, we describe the map s restricted to the r(c)T(c — a — b) F(2 — c)T(c — a — b)
upper half x-plane. Though its image is bounded ^ ~ T(c — a)T(c — b)' = T(l — a)T(l — b) '
by three circles, it is not the complement of three
discs in P1; it covers the whole P1 infinitely many B = T(c)T(a + b-c) ^ = T(2-c)T(a + b-c)
times. On the contrary, the image of the upper half T(a)T(b) ' T(a — c+l)T(b-c+l)'
s-plane under the map s'1 is the complement of a n d where T denotes the Gamma function. Define
three topological discs in P1. t w o Schwarz maps

The domain Fs is bounded by three segments and £ ( \\ f ( • \
three semicircles, whereas the domain Fx is bounded s0 = °̂  '—!~ and Si = -1 —r-,
by three segments and three curves. These curves Jo\ , ) Ji\ i )
are not parts of circles as we prove; however, as which are related as
several numerical experiments shows they are very Asi + C Ds^ — C
close to (parts of) circles. We are eager to know ° ~~ Bsx + D x -Bso + A'
about these curves; in hope of getting a hint we N o t e t h e l o c a l behavior
numerically traced them. x _

s0 « x around x = 0,

2. LOCAL SOLUTIONS AND RELATIONS AMONG * ~ v ; ~
THEM

, i r 3- THREE CIRCLES
We recall some standard facts; see [Iwasaki et al.
1991, pp. 38, 39, 114], for example. For given a,b,c, From now on we assume that the exponents A,//,
put and v are purely imaginary (and distinct from zero,

of course). Changing the unknown u of the hyper-
A = 1 - c, // = c-a-b, v = a - o, geometric equation by multiplying a suitable power

and write °f x a n d 1 — x, we get the equation

(a,n) - a(a + l) • • • (a + n - 1 ) , u"+p{x)u = 0,

where n is a positive integer. The hypergeometric where
series F(a,6,c;x) is , M _ 1~A2 1~^ 2 l + ̂ 2 - A 2 - / / 2

oo X2 (1-Z)2 X(l-X)

r (a, o, c; x; — ̂ ^ . .. ,x . Note that the rational function p(x) is defined over
n=0 the reals. Thus for any real point x(^ 0,1), there

Around x — 0, local solutions of the hypergeometric are two linearly independent solutions of the hyper-
equation can be given by geometric equation such that their ratio takes real

£ ( n\ n/ L \ values alone small real interval near x. Since a(ny)
/o(z;0) = F(a,6,c;z), 6 • i /

linear fractional transformation takes circles (we re-
/o(x; A) = x F(a — c+l, 6 - c + l , 2 —c; #), garcj | j n e g a g c i r c i e s passing through oo) to circles,

and around x = 1 by the images under a(ny) Schwarz map of the intervals
f1(x;0) = F(a, b, a + b-c+1; 1 —re), (-oo,0), (0,1), (l,+oo)

fi(x\fjb) — (1—xYF{c—a, c—6, c+1—a—6; 1—x), are circles.
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I c | \ a \ I b | \ d \

F —> F

FIGURE 1. Two fans Fz and Fw, with 0 > 0.

We will determine these circles. Since, for exam- We will study the behavior of the Schwarz map on
pie, the map s0 is asymptotically equal to the power the upper half z-plane. Since this map takes the
function xx around the origin, we recall the behavior three real intervals to three circles, it is natural
of power functions. to ask the arrangement of the three circles. They

would not intersect. Then note that there are two
Maps Defined by Power Functions ways topologically to put three disjoint circles on
The behavior of the power function t h e sphere: like a dartboard and like a pig nose. See

Figure 2.
w := za = exp(cdogz),

where a = iO with 6 G R — {0}, can be described as / ^ \ / \^
follows. If we take log 1 = 0, then the real positive / y ^ \ \ / \
line is mapped to the unit circle, and the upper half / / x~~x \ \ I s^\ ^ \ \
plane is mapped on the ring domain bounded by I I V_y I I I \_y \^y I
the unit circle and the circle of radius exp(—On). \ \ / / \ /
Cut the image ring along the real axis and we get a \ / \ y
fan Fw. The inverse image is also a fan; call it Fz. ^ ^ ^ _ ^ ^ / ^^^^^^^^/
Then the oo-to-oo map z .-> w is made (through the F | C U R E 2 A d a r t b o r d a n d a p i g n o s e

reflection principle) by the one-to-one map Fz ->
Fw] the line segments are mapped to circular arcs We know that the images of the intervals (—oo,0)
and the circular arcs to line segments (Figure 1). and (0,1) are circles. On the other hand, in a suf-
Any small neighborhood of z = 0 in the upper half- ficiently small neighborhood of x — 0 in the up-
plane is mapped onto the ring domain above. per half-plane, the map s0

 c a n be approximated by
the power function xx as closely as we like. So we

Arrangement of the Three Circles conclude that any sufficiently small neighborhood
p u t of x = 0 in the upper half-plane is mapped under

\ _ -a _ -a _ -n SQ onto the ring of radii exp(—60TT) and 1; the unit
A — Z(7Q, [I — IV\, V — W 2 , . , . . , . r x i • j_ i / n i \

circle is the image ot the interval (0,1).
so that In the same way, any sufficiently small neighbor-

ed = | — 7;i(0o + 0i + 62), hood of x = 1 of the upper half-plane is mapped
I — 1_IJJ(Q i Q Q \ under $i to the ring of radii 1 and exp^Tr); the

unit circle is the image of the interval (0,1). This
°* is because the variable 1 — x is real positive on the

Convention. Unless otherwise stated we always take interval (0,1).
a branch of the logarithm function such that the log We would like to draw these two rings in the same
of a positive real number is real. plane. Note that, since a + b — c is purely imaginary,
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we have a = 1 — a, b = 1 — 6, and c = 2 —c, and that, Now we are ready to prove the proposition using the
since the Gamma function is a real function, A = D identities
and B = C Now it is easy to show the following. /1 2\\c\ n iti2i M<M2 21

lifl— R—l = { ) \ ^ \ ~ r \ j - ' ~ \ ^ \ l"~llsl ~ r 1
Lemma 3.1. / / s0 moves along the circle of radius r , | l £ | 2 ~ r 2 |
then s1 moves along the circle with center K and (i_r2\|£|_rQ_|£|2\_/i£|2_r2\
radius i?, where = TjTpTÎ rj

Thus the unit circle is mapped to the unit circle, |£in_ r2\ rn_u\2\
and the circle in the «so-plane of radius e —\K\—H — e ^^ 2 ^^ 2

r = exp(-0O7r) = e^^_ (l-r|g|)(|^| + r)
iei2-r2

is mapped to the circle in the Si-plane with the cen- e<9l7r(|£| r*) — l + rl£|
ter and the radius given just above. The following = 1̂1 _r

proposition describes the arrangement of the three , 6i7r _^o7rx.̂ .. / (^-^o)^ -t\
circles. To make figure-drawing easier, we assume = — — -.
that the three purely imaginary exponents have pos- Is I r

itive imaginary parts.
Proposition 3.3. Let the three exponents be strictly

^ * * imaginary. Then the image of the upper half x-
ij^l—^—l > 0 exp(# 7r) — \K\—R > 0 plane under the Schwarz map s1 is bounded by the

three disjoint circles: the unit circle with center 0,
Proof. Recall the well-known formula the circle of radius R with center K, and the cir-

7T cle of radius exp(#i7r) with center 0. The third one
^ ' ^ ' ~ sinyrz' encircles the other two, making a pig nose.

which implies in particular Now rotate the Si-plane so that the second circle
Tj- has its center at — |JRT|. More precisely, define a new

l r ( | + W)\2 = c o g h , for V real. Schwarz map s as

On the other hand, by the definition of £, we have o . _ . . _^_o (~\

T(a) T(b)
1̂ ' T(a-\-i6 )r(b + i8 ) Then the three circles are as in Figure 3. Denote

Since the real parts of a and b are | , we can apply ^ - ^ ^
the formula above to get / ^ ^ x

2 = cosh((-go+g1+g2)7r/2)cosh((^-g1+^2)7r/2) / x \
'^ cosh({e0+e1+e2)7r/2) cosh{(e0+e1-e2)^/2) R \ ^ \

= coshg27r+cosh(g0-g1)7r M^\ ( J . ) ^ \
cosh(927r+cosh((9o+(91)7r' I V _ ^ | \^__J 6 J

So we can conclude that |^|, as a function of 62 > 0, \ /
increases monotonically to 1 and that \ /

1 > \£\e =0 = exP(^-go)7r + 1 > r (= e-^Y ^ ^ ^
exp(-^07r)+exp(^i7r) ' FIGURE 3. Three circles showing the pig nose TN.
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°0 b °1 d e a c

F —> F
•*- x ± s

FIGURE 4. The fundamental domains Fx and Fs

by yX the complement of the two small discs in the one of these circles, as in Figure 5. Next we ap-
big disc, and call it the pig nose. ply the reflection principle again through the three

intervals, and so on. Eventually we get:
Remark 3.4. The proposition does not mean that the
image of the upper half-plane under s is IPX. The Proposition 4.1. The whole image will cover the up-

image covers the whole plane infinitely many times. Per half S-Plane M - The mverse maP> defined on

"Ref to Section 4R ^ s ' ^s ^ng/e-?;a/ued', covers infinitely many times the
2-connected domain FxUFxU{the three intervals},
and qives the isomorphism

4. FUNDAMENTAL DOMAINS _
Us/A = FxUFxU{the three intervals},

Our Schwarz map s is doubly multivalued, that is,
oo-to-oo. The restricted map, as in the last subsec- where A is the monodromy group of the hypergeomet-
tion, on the upper half z-plane is still oc-to-one. We ric equation, forming a so-called Schottky group.

find domains Fx and Fs so that the restriction of the Remark 4.2. The shape of Fs tells us that A and s'1

Schwarz map on Fx gives a one-to-one correspon- t e n d ( s e e [icnikawa and Yoshida 2001]) to T(2) and
dence between Fx and F8, and that the restricted A? respectively, where T(2) is the elliptic principal
map reproduces the whole Schwarz map due to the congruence subgroup of level 2 and A is the Lambda
reflection principle. function.

Now cut the pig nose TN along the real axis; the
upper half part with two-arched bridge shape will be O u r Schottky group A = A(a, 6, c) defines a curve
denoted by Fs. Its inverse image will be denoted by (Riemann surface) of genus 2,
Fx. Though this domain also has the shape of a two- R = Rfa b, c) := (domain of discontinuity)/A(a, 6, c)
arched bridge, it is a little distorted, being bounded .
, , , . , , , ,, ,° .x Since every such curve is hyperelliptic, our R must
by three real intervals and three curves (Figure 4). J

n . .. ' .
A , , .n , n j , / be the double cover of the projective line P branch-

Anyway, these two domains will be called funaa- . . . _ . . j _ j. , i ., , . r me at six points. It is natural to ask then whether
mental domains for s. ° ^ . . , . . ,n nwe can find the six points; these six points will tell

4A. Analytic Continuation I ^ ^ ^ ^ \ ^

We now see what happens if we repeatedly apply the yS ^ v

Schwarz reflection principle to the restricted map X \ ^

s\Fx :FX-^FS / \

through the three real intervals (the intersection of / .— <^ \
the real axis and the closure of Fx) to the (complex / f \^ \
conjugate) mirror image Fx of Fx. Since the images If >, / / ~ ~ " \ /*~*\ \ \
of the three intervals are semicircles, each image of J fr.^f A \ \lrs r\\ f,r\,,r\\ 1 1
Fx can be known by the reflection with respect to FIGURE 5. Action of a Schottky group on Ms.
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^^"^ ~~~~""\ dicularly, these two reflections are commutative and
f \ so the composite defines a holomorphic involution

/ \ on R° and so it induces an involution on R. The
/ \ fixed points of inv consists of six points in R°: the

/ \ intersections of the real axis and the three circles
/ ^ — ~ . ^ bounding pn (Figure 6). We already know the ex-
f / " " \ /•' %\^ A \ act coordinates of these six points by Lemma 3.1.

"il"2T" ^3 4T^\3 /£ W
\ V_^x v J j 4B. Analytic Continuation II

\ / We continue analytically the restricted map s\Fx :
\ / Fx h-> Fs to the upper half x-plane Mx, and obtain

\ / one of the main results of this paper:

\ . y Proposition 4.3. If we apply the reflection principle
\ . ^^ to the inverse map of S\FX through the real intervals

(the intersection of the real axis and the closure of
FIGURE 6. The curve of genus 2. pj tQ the (compkx conjugate) mirror image p s of

i l o j - - i r - i r i- ^s? back to Fs through the three intervals, and con-
where our real 3-dimensional family of curves lives * * . , 7 '
. ,, 1 1 / i o T • i\ I T tinue as we aid in the x-space in the previous sec-
ln the whole (complex 3-dimensional) moduli space ±. , , 7 7 T

r r o mi j i i r> rrai i twn. men trie whole imaqe under the inverse map,
of curves of genus 2. The double cover R -> P1 de- ' _-, /nvxrs , * 7 7 ,, ,
o I T 1 . . i ,. .^ , i . n i namely s (yN), does not cover the entire half-plane
fines a holomorphic involution with exactly six fixed i™ , f • , , , - ^ , ,

. , A v ., . r , , . . ,. .,, Jnla; but is trie complement of infinitely many disjoint
points. An explicit expression of this projection will * . . n .. . ^ J J y y J

u T T (topoloqical) discs in H.r.
be given elsewhere. v y

Reflect the pig nose CP3NT with respect to the unit Sketch of proof. We apply the reflection principle for s
circle, and we get a small pig nose pn in the unit disc. along the curve c bounding Fx and the line segment c
The Riemann surface R can be obtained by identify- bounding Fs. See Figure 4 and its detail in Figure 7.
ing the two pairs of corresponding circles bounding The line segments b and d are prolonged toward
the domain 1 and the semicircles b and d are prolonged to the

R° — 9KU vn lower s-space. The inverse image under s of the line
segment e has one end on the line segment d and

Let inv be the composition of the two reflections de- the other end in Hx, not on the real axis. This is
fined on R° with respect to the real axis and the unit because the intervals (0,1) and (1, +oo) are mapped
circle. Since the axis and the circle intersect perpen- to the circles b and d, respectively, and so no part

b * d p^^~57A J c J

FIGURE 7. Analytic continuation through the curve/segment c.
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I U Y \ \ I / ^ N \ 1 1
/ 0 b I d

FIGURE 8. The inverse image of TN.

of these interval can be mapped to the other circle We are interested in the shape of the three curves
/ . Similarly the inverse image of the line segment bounding Fx. We show how they are near to and
a has one end on the line segment b and the other distorted from circles by numerical experiments,
end in Hx. (This is the essential difference from the Since these three curves can be equally treated,
Schottky case appeared in the previous subsection.) we mainly consider the boundary curve 786 (read
The completion of the proof is now immediate. • fake semicircle) surrounding the point x = 1. The

5-map is given by
The proposition above can be paraphrased as fol- ^ p
lows: the upper half-plane Mx covers under the map s\x) = r~\\^~x)c a TT>
s the whole s-sphere infinitely many times, and the
three real intervals bounding Mx are mapped to the wnere
three circles. (See Figure 8.) = T{a + b~c)T(l-a)T(l-b)

V r(a-c+l)r(6-c+l)r(c-o-6)'

Fo = F(a, 6, a + b-c+1; 1-z),
5. NUMERICAL EXPERIMENTS T? j?( u , , - , - , x

i<i = F(c — a, c — b, c — a — 6 + 1 ; 1 — x).
As we know, the fundamental domain Fs is bounded ^ ,, . , ,
by three line segments and three semicircles, and the
fundamental domain Fx is bounded by three line w — \ — x
segments and three curves. None of these curves a n d fix t h e b r a n c h o f t h e p o w e r f u n c t i o n

can be a part of any circle. Indeed, if one of a curve
is a part of a circle, it must be a semicircle, and by ( l-z) c~ a~6 by exp((c-a-6)(log |w|-arg(w)z)).
symmetry, all the three curves must be semicircles;
then the inverse map Fs -+ Fx has exactly the same 5A- F a k e Semicircles for Several [0O, #i, 02]
properties as s; This implies the inverse of a Schwarz For several choices of parameters, we draw the shape
map must be also a Schwarz map; of course, this can of the fake semicircles 786 surrounding the origin
not happen as we saw in the previous subsection. w = 0. Surprisingly enough, they all look like circles
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\i l n ^ — j ^^^ ri_ l l] ^-r——r~~~--^
I_2>2'4J ^^""^ - ^ * " " " " \ L2'2'2J ^*^\J.O1 ; ^ * " " " " \

/ °01 ^ \ / ^^\

0.01 -0.01 0.01 -0.01

0.08 -0.08 0.0008 -0.0008

[1,1,1] ^ ^ ^ T ^ ^ \ [2?2?2] ^ ^ ^ ^ ~ — ~ ~ ^ ^

0.1 -0.1 0.2 -0.2

FIGURE 9. Fake semicircles in w complex plane (Rew horizontal). The triple labeling each panel is [9Q, 61,62]'

(see Figure 9), though the size and the position of ~
"center" varies much depending on the parameters. ^ ^ ^ \ ^

5B. Fake semicircle for \\, \f ^] / x^

We obtain here a precise shape for the symmetric / \
case [#ch0i>#2] = [|515 \]- The shape of the domain /

Fs can be seen by / \

e°in «4 .8 , \K\ « 2.3, R w 0.76. / \

The rough shape of Fx is shown in Figure 10. ( \ ( \ '>
The whole fake circle ^C, the connected compo- -95 -0.01 6 0.01 0.99 i 1.01 95

nent of
r , T / \ m FIGURE 10. Rough shape of Fx.
{w = 1 — x : Ims(x) = 0}

surrounding the origin u> = 0, looks like a circle (see
Figure 11). Schwarz's reflection principle), the fake circle $Q is

Since the images under s of the intervals — 00 < symmetric with respect to the real axis; the upper
w < 0 and 0 < w < 1 are genuine circles (thanks to half is the fake semicircle 9^86.
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^ — - ^ ^ for w with \w\ < y ^ .
/ ^ ^ \ . Let A — (7n,0) and B — (rw ,0) denote the right-

/ : ^ ^ most and the leftmost points of the fake circle 3^6
/ : \ on the u-axis as shown in Figure 11. By a numerical

/ \ experiment, we get the estimate

/ i \ -0.0106390151470973 <lu< -0.0106390151470972,

/ ; \ 0.0105270180426873 <ru< 0.0105270180426874.
g,, |.... | . . , , , , , , . , . , , , | . . . ,

: , , , . , . . . . , . , , , |.... |.,,,, U
o.oi -o.oi Let C — (mu, 0) be the midpoint of the line segment
\ - 1 AB; then, mu = -0 .000055998552205±10-1 4 . The
\ ; / length AC = BC is

\ / rad = 0.01058301659489 (±10" 1 4 ) .

\ ^ : y Compute the ^-coordinate ht of the point on the
\ ^ : // curve with real value mu:

^ ht - 0.01058323446332 (±10~ 1 4) .
FIGURE 11. The fake circle ^C.

Hence*Due to this shape, we can restrict the variable w
to the area {|tu| < I § 5 } . Define polynomials ip0 and Fact. The fake circle J S is not a circle; it is a little
<Pi of degree 15 that are truncations of Fo and Fu longer in v-direction, though the difference is only
respectively. Since

(a+k)(b+k) < x
 r a d / h t - 0.9999794.

(a+b-c+l + k)(l + k) ' The distance r between the midpoint C and points
/ , / \/ L , 7 \ on 5TC is plotted in Figure 12 as a function of the
(c—a+k)(c—b+k) ^ - ^

v^ ;— , w — T T < 1 height v.
(c-a-b+l + k)(l + k) 6

for any k > 0, we have

\<PoW-FoW\ < lO"2 5 , \iPl(w)-F1(w)\ < 10~25 /

for \w\ < j | ^ ; similarly, 0.032 /
96 ^ I 771 I I 771 I . 100 /

100 < F0 | , l^ll < -gg". /
Since /

exp(-7r/2) < -P-wi/2 < exp(7r/2), /
im /

we have 0 031 /
10"2 < \s{x)\ < 102. /

Now define /

and let tc(w) be numerical value of t(w) to the pre- __—-^-"""^^
cision 10~20. Summing up the estimates above, we ^ Q ^ 1

see that ^ FIGURE 12. Distortion of the radii from C. The
\s-tc\ < 10 17 vertical axis represents 104(r-0.01058).
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^ ^ ^ ^ ^ ._ _0_01 : 1

s^ °'1 '• ^^\ i i

I r":"1 1 0.()l " " "~~ -0101

0.1 -0 .1 L J

FIGURE 13. Left: The mirror image of Fx through the the fake semicircle c. Right: Zoom near the origin.
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circle ^C? Is this an algebraic curve, or maybe a baden, 1997.
trajectory of some differential equation? We hope [Zapp m4] M> Z a p p 5 Abbildungseigenschaften allge-
that the numerical experiments we made here will meiner Dreiecksfunktionen, Diplomarbeit, Universitat
help understand this misterious curve in the future. Frankfurt, 1994.
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