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"equidistribution of small points" proved by Szpiro, 2. NOTATION
Ullmo, and Zhang [Szpiro et al. 19971. The Manin- ^ , v' . . I , I , F° r anY scheme X over Zp, let Xs := X x F p denote
Mumiord conjecture has been generalized in many , . 1 ~K

r-r-v -t r\r\r\~\ «i tiie special tiDer.
directions; see roonen 1999 or the detailed survey ^ , , . . , ^ ^ , ,
r_ . ' _ ^ . . J J For any commutative group variety G over Fp , let
lzermias 2000 , lor instance. ,-, T - . I X . I T L I - J i • T ̂

L _ i . i M • i F = FG denote the Probenms endomorphism. Let
Our goal is to describe an algorithm for com- T/ T . , , Ar , . , ,, . -,

%r A , ^ . . , ,. . V = VQ denote Verschiebung, the unique endomor-
putinq X fl Ators, when A is presented by explicit , . ,- r • mr Tm • T ^ J ^ - ^
^ . tors ' 1 n i i i TTT i i , phism satisfying FV = F F = p in EndG. For in-
equations over a number held k. We make the al- , .£ ̂  . ... . , , ,. . , ,,H . _ _. . i . i 1 7 ^ stance, if G is a ̂ -dimensional abehan variety, then
gonthm explicit enough m the case that fe = O, „ , Tr . . r i n T r - ^ J ^

^ , „ . TTr . , ^ a n d V are isogenies of degree p9. It cp e EndG,
5 = 2, and Po is a Weierstrass point, that it can ,, ^ r •> , , ,, , , , - ,
f . . then GM denotes the group scheme kernel or (/9, and
be programmed in GP-PARI. The algorithm is in / / iOr n -, , ., , ,
, r , r r - - ^ i i -n* r # ^ M denotes its order as a group scheme,

the spirit of the proofs of Raynaud and Bumm: af-
ter using Coleman's study [1987] of ramified torsion
points on curves, we bound the residue classes mod- 3* G R E E N B E R G TRANSFORM
ulo p2 on the curve in which torsion points might Let fcbea perfect field of characteristic p > 0. The
lie. The technical ingredients include the Green- Greenberg functor Grn of level n takes a scheme X
berg functor [Greenberg 1961; 1963] and Coleman's locally of finite type over the ring Wn{k) of length n
p-adic abelian integrals [Coleman 1985]. Witt vectors, and associates to it a scheme X locally

Many effort shave been made to compute XDAtors of finite type over fc, such that X(Wn(L)) = X(L)
for various curves: modular curves [Coleman et al. for any fc-algebra L, functorially in X and L. We
1999; Baker 2000; Tamagawa 2001], Fermat curves call X the level n Greenberg transform of X. See
[Coleman 1986; Coleman et al. 1998], abelian etale [Bosch et al. 1990, p. 276] for a brief exposition, or
coverings of P1 \ {0,1, oc} [Coleman 1989] and other see Greenberg's original papers [1961; 1963] for more
isolated low genus curves [Voloch 1997; Boxall and details. Also see [Buium 1996], where the Greenberg
Grant 2000]. Our approach, which is partly inspired transform is related to "p-jet spaces." The construe-
by a calculation of Voloch [1997] for a special sit- tion is similar to that of "Weil restriction of scalars."
uation, has the advantage of being less reliant on If X is smooth of relative dimension d over Wn(fe),
special properties of the curve, so that it is easier then X is smooth of relative dimension nd over k.
to automate. Our computer program succeeded in Furthermore, Grn respects open and closed immer-
computing XnAtOTS for all curves attempted except sions. An example: if X is the curve f(x,y) = 0
one: see Section 14. Perhaps even that one would in A^a(fc), then X = Gr2(X) is the subscheme of
have succumbed if we had had a little more memory A£ defined by the two Witt coordinate equations in
at our disposal, or if we had used a package with ^ Xu ^ yi obtained when x and y are replaced
a more memory-efficient approach to factoring high by length-2 Witt vectors [xo,Xi] and [2/0,2/1], and
degree polynomials over small finite fields. /([xo,Xi], [2/0,2/1]) = 0 is expanded using the rules

The sections up to Section 4 outline the theoret- for Witt vector arithmetic.
ical basis for the algorithm. Sections 5 through 11 Now suppose that A is an abelian scheme of rela-
deal with making the method explicit and efficient. tive dimension g over Zp, and let As denote its spe-
Section 12 gives some general bounds for torsion cial fiber. (We could work with more general base
points on genus 2 curves in terms of only a prime rings5 but Zp will suffice for our intended applica-
of good reduction. The existence of such bounds in tion.) Let A = Gr2(A x Z/p2). The functoriality of
theory, for every genus, was already known to Ray- Gr2 gives A the structure of an algebraic group over
naud [1983, p. 208, bottom], and explicit bounds Fp , but A is not an abelian variety. Instead A fits
were given by Buium [1996], but the bounds are into an exact sequence of algebraic groups
enough improved here that they can actually be
used to simplify the computation; this is explained ~~̂  "^ ~~> s ~^
in Section 13. Section 14 gives a list of curves whose where L, the "kernel of reduction," is the vecto-
torsion packets were computed by our program. rial group associated to the pullback of the tangent
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bundle of As by the absolute Frobenius morphism. Lemma 4.1. If X is a curve of genus g over Qp with
(This is a special case of [Buium 1996, Proposi- good reduction and p > 2g, thenXnAtOTS is unram-
tion 2.4].) We have L = G9

a over F p , but the iso- ified, i.e., contained in -A(Qpnr)tors-
morphism depends on a choice of basis for Lie(As),
or dually, on a choice of basis for H°(As,n\ „ ). In L e m m a 4 ' 2 ' The restriction of * to A(®p ) t o r s is

\ s±s/vp/ injective
particular, dirndl = 2g. The exact sequence (3-1)
does not split in general, and the class of the exten- Lemma 4.3. There exists a surjective homomorphism
sion in Ext(A8,L) depends on A x Z/p2 , not only $ : A -> G9

a such that 7r(^(Q^nr)tors) C ker$.
on As.

Let Zu
p
nr denote the valuation ring of the maximal L e m m a 4 A V $ : A ~> Ga is a surjective homomor-

unramified extension Q^nr of Qp. Define the "mod Phism> then X n k e r $ is finite (over SpecFp).

p2 reduction homomorphism" n as the composition Lemma 4.2 follows from formal group considerations.

7T * A(Qunr) = A(Zunr) —> A(Znnr /v2) = A(¥ ) If p > 2, we have the well-known stronger result
(proved in the same way; see [Katz 1981, Appendix])

We obtain a similar function n : X(Qp
nr) -> X(FP) that the reduction map A(Qpnr) tors -» As(¥p) on un-

for any proper scheme X over Zp. ramified torsion is injective.
We will give a short proof of Lemma 4.3 here,

4. SUMMARY OF PROOF OF THE MANIN-MUMFORD u s i n § a n i d e a o f Hrushovski [> 2001]. This proof
CONJECTURE h a s the additional advantage of presenting $ very

explicitly. Later, for the sake of computational ef-
We now sketch a p-adic proof of the Manin-Mumford fiden(y> w e ^ r e p r o y e t h e l e m m a ( i n & m a n n e r

Conjecture, mainly following [Buium 1996]. The d o s e r t Q B u i u m , g p r Q o f ) ) g i y i n g a $ for w h k h t h e

Galois ingredient is a ramification-bounding result i n t e r s e c t i o n i n L e m m a 4A w i l l b e m u c h s m a l l e r .
of Coleman [1987]. Our treatment borrows also a
little from [Hrushovski > 2001] and we paraphrase Proof of Lemma 4.3. Let P{x) G Z[x] be the charac-
to suit our purposes. teristic polynomial of Frobenius acting on the Tate

Let X be a smooth, projective, geometrically in- module TtAs for some prime I ^ p. The fact that
tegral curve of genus g > 2 over a field k of char- P(FAS) = 0 implies that P{FA) G End .A maps A
acteristic zero. Suppose that X is embedded in its into L = G9

a. The composite map L ^ A —)> L is
Jacobian A using a basepoint Po G X(k). We write surjective, since if we write L as a product of fac-
X fl ^4tors for X(k) fl A(k)tors. and we wish to prove tors isomorphic to Ga, then P(FA) acts as a nonzero
that this set is finite. Eventually we hope to calcu- polynomial
l a t e [ t ' p29 2g-l

We may assume that k is finitely generated over x \-^ x + a^x + • • • + a2gx
Q. By specialization, we may assume that \k : O] <

« r .-. n i l i i I /Th r O I 1 e a C ' 1 O n e '

(X). We may then find a degree 1 place k -» Qn tor , . . x ^/Tn x TT / „ _ x

o* . , . , v , *j i .. P
T? We claim that $ := P{FA) G Hom(yi,G^) sat-

some p > 2#, at which X has good reduction. For . n . . ^ y^ . , ? ,
, r j l , r j l . , , , „ , isnes the requirements. Let J^rob denote the ab-

most ot the rest or this paper, we denote by X and . . . r A //r>unrx . ,
A t, ,,. T , m T t stract group endomorphism or AiQ^ ) induced by

A the resulting models over Zp. Let , r
 6, F , * \ . . p

l ^ u r / o , ^ J

^ the Frobenius automorphism mGal(QT /Qp). Then
X - Gr2(X x Z/p2), yi = Gr2(A x Z/p2). P(Frob) maps ^(Qpnr)tors into the kernel of reduc-

^ , . . . ,. ^ . . . tion. But p > 2 (we assumed p > 2a), so as re-
Thanks to the embedding X c-^ A and the functo- i J u +u • + • • i -a ^ 4.

° marked above, there is no nontnvial unrammed tor-
nality or Gr2 we can regard X as a closed subscheme . . ,, , i r i , • u n / r m - n

J ° sion in the kernel or reduction. Hence jr(rrob) kills
™! fl v f v n y. i i f ii f ^(QDtors, and P{FA) kills its image in A. U
The finiteness of X n 4̂tors clearly follows from p

the four lemmas below. The first, which is also the Lemma 4.4 should not be too surprising, since X and
hardest, is a special case of a theorem of Coleman ker $ are subschemes of dimensions 2 and g respec-
[1987]: tively, in a variety of dimension 2g.
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Proof of Lemma 4.4. Dimension of maximal con- 6. IMPROVED HOMOMORPHISMS
nected linear subgroup is additive in exact sequences A r , , n ., r . ,. ,

, , . , r As a measure ot the complexity ot a surjective nomo-
of commutative algebraic groups; hence from 0 —>• , . ^ A ma i + • //R\ A ± IL A

^ & & . ' morphism $ : A -> G9, we let size($) denote the de-
ker<3> —)> yi —>- G9 -y 0 we see that ker<3> is proper ~,u fi . . , . T A ma

_ _ . a . ^ gr^e ot the finite composite morphism L c-> >L —)> (UJ*.
over Fp . On the other hand, since g > 2, Propo- „ . . . , ~ • -4. -n i, i ± c J **

,. r~ n ' , ~ ^ rr» . ^ o r computational emciency, it will help to imd <£
sition 1.10 of Bumm 1996 shows that X is affine! - , . , . ,,-x . n .U1_ L. _. i i i r *o r which size(<P) is as small as possible.
Since ker $ and X are both closed subschemes of A, rm i ^• nm\ i • n £ £

. ine homomorphism P\r) used in the proof of
their intersection is proper and amne, hence nnite. T A o , 9n2 . .

Lemma 4.3 has size p ^ , which is too large once g > 1.
One can reduce this to p9 by using F~9P(F) G
End A instead. (The divisibility of P(F) by F9 in

5. OTHER MAPS TO THE JACOBIAN E n d A follows fr
V

om t h e p _ p Q w e r d i v i s i b m t y o f t h e

For the computations to come, we will want p to be low order coefficients of P(x) forced by the func-
as small as possible. Given X over Q, a smaller p tional equation of the zeta function.) But the size
can sometimes be used if we do not insist on the ex- can be reduced further, at least when g > 1. The
istence of a point Po G X(Qp). If instead we suppose following bounds the size of the best possible $:
an element D G Pic(X x Qp) of degree S prime to p L e m m a ^ ^ ^ by R ^ ZarisU dosure of ^
is given, we may use th_e morphism i : X -> A that mage ^(Q™)ton) in A. Then A/H - G*, and
sends a point Q G X(Qp) to the class of SQ - D. ^ ^ ^ map $ : A-+ A/H has size dividing p9.
Denote also by i the induced morphism X -> A.

We observe now that the proof of the previous sec- Proof- F i r s t we show that pA is a subgroup of fi-
tion can be adapted to this situation. By [Coleman nite index in H, and we bound the index by pk :=
1987, Main Theorem], the torsion packet ^ ( A ^ B ) #A\PK^TT)- Multiplication-by-p on A kills L, so
is contained in X(Q^nr): this is the needed exten- t h e subgroup pA of A is a quotient of the abelian
sion of Lemma 4 . l / Lemmas 4.2 and 4.3 do not variety As. On the other hand, pA surjects onto
need to be extended. We now extend Lemma 4.4 PAs = A8, so pA must be an abelian variety isoge-
by proving that (<J> o t ) " 1 ^ ) i s finite- S i n c e X n o u s t o As' T h e s u b s e t

 ^ ^ ( ^ P " ) * 0 ™ )
 o f p A i s

has good reduction, the Weil bounds and Hensel's Zariski dense, since by Lemma 4.2 it contains P9

Lemma produce Qp-rational divisors on X of any points of order dividing I for any integer I prime
sufficiently large degree, and in particular, we may t o P> namely the points in 7r(A[Z](Q£nr)). Any sub-
find A G Pic(X x Qp) of degree 1. The embed- group G C (Q/Z)2^ satisfies #{G/pG) < #G[p];
ding determined by L>i induces a closed immersion applying this to A(Q^nr) tors C A(Qp) tors shows that
/3 : X -> A. The composition $ o t equals * o /? M(Qpnr)tors has index at most / in A(Q^nr) tors.
where * is 5$ followed by a translation. But 5$ is Applying TT and taking Zariski closures, we find that
another surjective homomorphism A ->• G9

a, so the M is of index at most pk in iJ.
fibers of * are proper, as in the proof of Lemma 4.4, Next we bound # ker(L -> A/pA). Verschiebung
and we conclude as before that ($ o 0~X(O) is both is zero on Ga and on L. Hence connecting two rows
affine and proper, making it finite. of (3-1) with vertical maps equal to V and applying

. TTr ... n i . i . I T the Snake Lemma yields an exact sequence
Remark. We will eventually be interested in the hy-

perelliptic torsion packet T of a hyperelliptic curve 0 -^ L -^ A[V] -> AS[V] -^ L

X: T consists of the points P G -X"(Qp) such that -> A/VA -» AS/VAS = 0, (6-1)

the class of P - Po in A(Qp) is torsion, for (any) w h i c h ? t o g e t h e r w i t h VA = y(Fyl) = p A ? y i e l d s

fixed Weierstrass point Po on X. Then T also equals
^(Ators), where i is defined using the class D of #ker(L -* A/pA)
2P0, Because D is the pullback of the unique de- # ^ 4 M
gree 1 element of Pic(P1) under the canonical map #image(yi[F] -> A8[V])

X -» P1, i is defined over Qp even though Po might p9

not be. = #image(>l[y] -+ A8[V])' ( 6~2 )
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Reduction mod p is injective on torsion, so the com- and hence the p49 in Buium's bound can be im-
position proved to p3g. In Section 12 we will obtain an even

AW(QD ^ -AfeKF,) = *&]<?,) -* A.[V] ^ ^ * ^ ""* ' = *
is injective, and hence #image(.A[F] -+ AS[V}) > 7> R E L A T ,N G T H E HOMOMORPHISM AND

pk. Thus (6-2) gives #ker(L -> A / M ) < Ps *• COLEMAN'S INTEGRALS
Combining the results of the previous two para-

graphs we see that # ker(L -»• .A/tf) < pkp^k =p». L e t e : Z ~> A d e n o t e t h e zero-section of A, so Z
Also, since pL = 0, the order of the kernel must be i s a c l o s e d subscheme of A isomorphic to SpecZp.
a nower of n ^et ̂  — ®A denote the ideal sheaf of Z. Since A is

Finally, since #ker(L -> .A/pA) < oo and since s m o o t h o v e r Z*>' £*n\/zP = W = &, where M is
L and A/pA both have dimension g, the map L -+ t h e f r e e ^z-module associated to a free Zp-module
A/pA is an isogeny (surjective with finite kernel). M o f r a n k 9- Fix a system of local parameters;
Since pA is of finite index in H, L -> A/ i f is an Le-> a ^ u P l e o f s e c t i o n s *i, • • •, tg of J over an open
isogeny too. Over a perfect field, any geometrically neighborhood of Z whose images in 3/J2 form a Zp-
integral group variety isogenous to G9

a is isomorphic oasis tor
to G9 so A/H — G9 • Since 4̂ is an abelian scheme, the map

Corollary 6.2. There exists a homomorphism of al- H (A, fiA/Zp) —>• fl" (Z, s*OA/Zp)
</e6m«c 5roWp5 $ : .A -> G» whose kernel contains ig a n i s o m o r p h i s m . T h e Z p . b a s i s £*dtu... ^ £*dt o n

7r(^(QDto rs), and wfttcft has size exactly p». t h e p i g h t c o r r e s p o n d s t o s o m e Z p . b a s i s Cju... ,Cogiov

Proof. Compose the $ given by Lemma 6.1 with an ^ ° ( A ^ A / Z P ) -

endomorphism of A/H = G9
a of suitable degree. • The functions U are regular on a dense open sub-

set of As C A, so the rational map U : A --* A%
Remark. We now indicate why the bound in Lemma . . , x - i A A2 • I P

/ gives rise to a rational map A —> Af. ; i.e., to a
6.1 cannot be reduced further for general abelian . £ >. ^ £ ,. i . n i p - . ^ J

_ ° pair of rational functions which may be interpreted
varieties of dimension q. The deformation theory ,, n , , TTT.,, J- J. T ^ T X J

, , , as the first two Witt coordinates of t{. Let ^ denote
of p-divisible groups and abelian varieties lets one ,, , TTr.xx j . , r . o- n ^
... _. ,. . _ 1 _. . . the second Witt coordinate of £;. hmce the ti are
lift an ordinary g'-dimensional abelian variety As to n . n , n -, r ^ ,, n

. _. f A ^ , , I regular in a neighborhood of Z, the z{ are regular
an abelian scheme A over Lv such that the map T T r , / N r ^^ .
, r T n T . /^ . x . ,. i N o n iv . m t a c t , (zi,... .ZQ) : L —> (br^ i s a n l s o m o r -

A j y -> L in (6-1) coming from the extension (3-1) , . , • .. w - ., , . ,
. .L J

 T -, . phism of group varieties over Fp , since the t» induce
is miective. In this case, r , . -, . T .

J functonal isomorphisms
#ker(L _ >IM = > l /^ ) = #AS[F] = p" k e r [AiW2{R)) ^ ^ ( i ? ) ] ^ k e r m R ) ^ R]9

already, so the degree of L -> yL/ff is at least pp, r ^ i u o i x j x , t . r i i
. ' _ . 7 for Fp-algebras it, related to the formal group ob-

hence by Lemma 6.1 equal to p9. x . \ , . ,, . r . , L. ,,
_ . , . . . . . . . tamed by expressing the group law of A analytically
On the other hand, there are special instances in . ,, , , ,

. . . _ . . .. _ in the local parameters r̂ .
which the size can be chosen much smaller, ror A , L . r,f<1 .^o^ ^

. .. . . _ . _ _.. r .. A short argument using Mime 1986, Proposition
example, if A is the canonical lift of an ordinary o / u ^ , ., , ,, , . v A . ,

. , ^ , \ 5.3(b) shows that the morphism i : X —> A induces
abelian variety over Fp , the exact sequence (3-1) . , . „ TTO, A o i \ rrorv o i \

, . p
 n r ^ v . } an isomorphism i : H^iA.Q1,^ ) —> H°(X,ui-/7 ).

splits and the splitting map A -> L ^ G9 is a ho- m .^ . x,
 v '. A / ^ y . / ' x / z ^ ;

, . r j l i . , , i r - . - i (By considering the generic and special fibers, one
momorpmsm ot the desired type, and of size 1. . , . ° , , c

can reduce this statement to the analogous one for
Remark. Buium [1996] uses the bound p2g on the fields; then one may assume that the field is alge-
index of pA in H to prove that braically closed, and finally, one can relate the L* for#<x n A^ < & b(29 - 2)+H 9!. : : z * ^ t i : : i " ' " f o r m Albanese
In the course of the proof of Lemma 6.2, we bounded We will use Coleman's p-adic abelian integralsthe index by pk := #A[p](Qp"r) < #As[p](Fp) <p9, [1985]. Let O G A(Qp) be the identity. If Q €
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A(Qu
p

nr) reduces to 0 in Aa(Fp), then / * Cu{ G pZu
p
n\ y2 = f(x, 1) where /(x, z) G Zp[z, *] is a homoge-

as we can see by using an analytic primitive of UJ{. neous polynomial of degree 2# + 2 whose mod p re-
More generally, if Q reduces to a point in As(¥p) duct ion/has no repeated factors. Then X is hyper-
of order n prime to p, then the same is true, since elliptic, and we define i and the hyperelliptic torsion
f£u> = n'1 JOQUJ. For such Q we may define packet T = ^(A^) as in the remark at the end

o p of Section 5. By changing the original Zp-basis for
jiJQ) — (r)~1 / £o i mod p G F M if necessary, we may assume that UJI — xl~l dx/y.

V Jo ) Let xo, Xi denote the rational functions on X giving
Lemma 7.1. Let Q G -A(Qpnr) be a point reducing to t h e first t w o W i t t coordinates of the x-coordinate
0 in As(¥p), so that TT(Q) G L(¥P). Then %(Q) - o n X' Similarly define yo,Vl.
zi\K\Q))- Lemma 8.1. Let tp and I(J be as in Corollary 7.2. Then

Proof. The expansion of ^ in a neighborhood of Z as rational functions on X,
in terms of the local parameters ti is given by , .

G(XQ) ,(X1 XP
QX! X[

0
9 ^XA

A (poi= ' d e / + ^ - p , - ^ - , . . . , p (8-1)
Ui^dU + Y^hjdtj yl g^ \vl Vl Vo )

for some polynomial G G Fp[x0] of degree at most
where hj G Z p [ [ t i , . . . ,tg]] has zero cons tan t coeffi- (q+l)pdegib.
cient. Integrating cĴ  formally, and noting that p > 2
and tj(Q) = 0 (mod p) for each j , we find that By deg^, we mean the total degree. Since ^ : G9

a -^
g Ga is a homomorphism, deg?/; = p r for some r G

/ a>i = ^(Q) (modp2). ^>o-

^ ,i xl i i xi i2 x ^ TTT.,, j . , Proo/". We first show that the rational functionOn the other hand, the first two Witt coordinates

of U(Q) are 0 and ^(TT(Q)), by definition of zu so /Xi XPXI X^'^X^

U(Q) = p(zMQ))Y/p (mod p2). ^''= (¥? ° 0 " ̂  ̂ ' IT'"" " " ^ T ~ J
Combining these yields the result. • Q n % .g c o n s t a n t o n infinitely many fibers of the Fp-

As a corollary, we can use Coleman's integrals morphism X ^ Xs. Let P ,P ' be points in X(Q^nr)
to compute values of homomorphisms A —> Ga at reducing to the same point in X8(WP), and assume
many points of A, namely those whose image in that the latter point is affine and that it has nonzero
A8(¥p) are of order prime to p: y-coordinate. Define Q := i(P') - L(P) G A(Qlnr).

Corollary 7.2. Let cp : A -> Ga be a homomorphism,
and let ip(zi, z2,..., zg) be the polynomial giving the (^ o L)(TT(P')) - ( ^ O L)(TT(P))

restriction of tp to L. Suppose that Q G A(Qn
p

nr) = ^(^(Q)) = ^ (^ (Q) , . . . ,^(Q)), (8-2)
reduces to a point in As(¥p) of order prime to p.
Then by Corollary 7.2, and

v W 0 ) ) = ^ i ( Q ) , . . , ^ ( Q ) ) . Q v

Proo/: Without loss of generality, replace Q by a %(Q) = (P'1 J ^ ) m o d P
prime-to-p multiple to assume that Q reduces to 0 ,pl, p

inAs(¥p). Now apply Lemma 7.1. D = | p - i / Q. j m o d p

8. COMPUTING THE HOMOMORPHISM ON A / _i ^ V ,
HYPERELLIPTIC CURVE = ^ / p

 u*) m°d P

We retain earlier notation, but from now on assume _ ( -i [P X%~X d>x\P

in addition that X is birational to the affine curve \ Jp y J
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By the choice of P and P ' , we may expand uoi and x^ + 2 / / (x 0 , 1 ) and deg/(x0 ,1) < d e g / = 2g + 2.
its integral in terms of the uniformizing parameter Hence if degG > ( g + ^ p d e g ^ , then G(xo)/yQdeg^
x — x(P) at P : has a pole of some order at R on Xs.

, , , Let XQ.XX be the first two Witt coordinates of
x dx

ooi — the rational function 1/x. A Witt vector calculation
^ yields x\ — —xlpXi. Hence

= \ ' + V Cj(x - X(P))J dx, / 2P 3P (g+l)p x

\ Vo Ho Vo /
for some c« G Zp, and

But Ai and <£>CH are regular at it, so the order or the
fp/ x{P)i'1 , pole (if there is any at all) of £ at the point R on Xs is

7 P ^ = V(P) ( x ( j P / ) ~ x ( P ) ) at most the order of the pole of ^ + 1 ) p d e g ^ / ^ d e g ^ ,
oo / /p,x _ , p\\j+i which is strictly smaller than the order of the pole of

+ Yl ci - , i G ( x o ) / ^ d e g ^ . This contradicts £ = G ( x o ) / ^ d e s ^

= ,L (x{pl)-<p)) (modff2) ™ , u , . T C 1 i .. - u w
2/(P) v v / v // v r > I he degree bound m Lemma 8.1 makes it possible to

(since p > 2) compute G given <p using interpolation. Suppose, for
2ji-i example, that y? is the composition of P(FA) : .A —>>

= p ^ - ( ( ^ ) 1 / p - X i / p ) (mod p2), £ a n d Z l : L _> G a . T h e n ^(zu ...,zg) = P(F)(z1),
where P(F) should now be considered as an ad-

where xo,xuyo denote the values of the functions d i t i v e polynomial of degree p2°. For many values
xo,xuyo at TT(P) (i.e., the Witt coordinates of the XQ £ ¥p (say? a l l o f a g i v e n d e g r e e o v e r ¥p t h a t

coordinates of P) , and x[ is the value of Xl at ir(P'). a r e n o t r o o t s o f f^ ^ che^ whether x0 is the x-
(To make sense of the previous equation, these quan- coordinate of some R e Xs(¥p) such that i(R) is of
tities should be considered as elements of Z^nr, but o r d e r p r i m e t o p i n As(¥p). (In Section 11 we'll show
it is only their residues modulo p that matter.) Sub- h o w t o c h e c k t h i s ) I f m o r e o v e r R has nonzero y-
stituting into (8-3) yields coordinate, HensePs Lemma lets us lift R to a point

-(i-i)p- _(i-i)p_, R G X(Qp
mr) whose x-coordinate mod p2 equals the

Vi(Q) — ° -P ^~^—~ mod p. Teichmiiller lift of x0. Setting Q = L(R), we may
then calculate rji(Q) for each i (see Section 11 for

Substituting this into (8-2) and using the fact that details), and hence compute (f(7r(Q)) from Corol-
^ is a homomorphism shows that £ is constant on lary 7.2. On the other hand, (8-1) gives another
each closed fiber of X -> Xs above an affine point expression for </?(TT(Q)) = (cp o L)(TT(R)), in which
with nonzero y-coordinate. Thus £ can be expressed everything is known except the value of G. If we
as a rational function in x0 and y0 only. compute G(x0) for enough values of x0 (more than

Since cp o t is regular on all of X, the definition the degree bound for G in Lemma 8.1), the polyno-
of £ shows that y^deg^^ is regular on any open set mial G can be computed by Lagrange interpolation,
where y0 is regular. Hence yldeg^^ can be expressed Now suppose that we wish to use the improved
as a polynomial in x0 and y0. The hyperelliptic in- homomorphism $ of Corollary 6.2 instead of P(FA).
volution on X is compatible with multiplication by In this case, we need to get around the fact that
— 1 on A. Hence the induced involution on X trans- we do not have a priori formulas for the restriction
forms both ^ d e g ^ and £ to their negatives. Thus ip : L -> Ga to L of the composition of $ with a
yPdeg^£ _ Q^XQ^ for s o m e polynomial G. projection G^ -» Ga . Let / be the unknown ideal in

We can bound deg G by studying the behavior of ¥p[zu . . . , zg] defining the subscheme L(1 ker $ in L.
(8-1) at a point R G X(FP) reducing to a point R at Then #¥p[zu . . . , zg]/I = # (L n ker $) = pg. Let
infinity on Xs. The function xg

0
+1 /y^ is nonvanishing W be the 2^-dimensional Fp-span of the Zi and zf

at R if it is regular at all, since its square equals in ¥p[zu . . . ,zg]. Then #(W fl / ) > p9. If if) is in
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WDI, then z/; kills L n ker $, so ^ factors through 9. ELIMINATION OF VARIABLES
the restriction of $ to L, which is a homomorphism A ,, ^ , , . n .̂ o .^ _, . • • - . , , , , , p T, ! Assume that we succeeded m Section 8 in computing
L -> Gg Composing $ with "the other factor , the ,, , . ,. £ , , ^ , , , ,
. i . ^ ^ - I T T i the restriction of $ to X, so that we now know g reg-
homomorphism G9 -> G o , yields a homomorphism , - ,. ^ , . , , , , . , r / o i \ \ -L

_ . a . _ ular functions on X (right-hand sides of (8-1)) whose
A —» (bia whose restriction to L is (p. ^ • n -, i i ^ • •

, r , ^ r , i r r r ! common zero set is a finite subscheme containing
If we try to determine G for each ip G W, by / V n i x A/r u . -, . , - ,, u ,

/ r -, TT(X H -Ators)- Multiplying each of these by a large
interpolating several more values than the degree , , r -. i • 2 i_ z/ \ i_

ii ii n , r , ii °dd power of y0 and replacing yi by j (x 0 ) , we ob-
bound, then we will find for some ty that the degree , . , . , ,. , ' .

_ _ . ' . . 7 1 1 I , tarn 9 polynomial equations in x0 and xx. It is easy
of G would have to exceed the degree bound; this ,. . £ ,, . ,, . r^. . M i l , . . r to eliminate x\ from these using p-resultants Goss
means that w cannot possibly be the restriction of a i rknr, a ,. ., r l ,, r ,, ,
. . : rt * _ TTr/ _ _ _ 1995, bection 1.5 , since the exponents of X\ that
homomorphism A —> hra. Let W denote the set of n r TTr , .., . !
. _ i . i i i r i i i ^ . i appear are all powers of p. We end up with a single

^ for which the degree of the interpolated G is less , • i / \ -̂ TT? r I u ± u
. ,° _ . „_. , nonzero polynomial r(x0) G Ir1 „ x0 whose roots (to-

than or equal to the bound; thus W is a subspace xl ., , .^ \ • ^ T i
_TT_ . . rrr T TP n i i i- u n gether possibly with oo) give the x-coordmates mod-

ofvr containing W f l i . If we find that dim W < g, , r , , .-, , ^ .i . u -ii
TTr/ TTr

to _ _ _. TTr/ . __ ~ *T ulo p of the residue classes on X tha t could possibly
then W = W n I and dimW^ = g, since VT n / 1 • i ± v m ^T £ ± , x -

_. _ Tr i i contain elements of 1. We factor rlxo) over Jbp.
has dimension at least g. If moreover the subgroup
scheme L[W] cut out by the polynomials in W is Remark. If g > 2, then the number of equations in x0

finite, then its order will be at most p9, but on the and xx above exceeds the number of variables, so we
other hand it must contain L fi ker$, so L[W] = expect heuristically that r(x0) will have very small
Lnker $ and the basis for W describes $ : A -> G9

a degree,
up to an (irrelevant) automorphism of GjJ.

If we are not so lucky, then we can simply try a dif-
ferent p. Naive heuristics suggest that the method 10« L I F T I N G T O CHARACTERISTIC ZERO AND
u A c A- w/ A r rw/ i • G VERIFICATION

above succeeds (i.e., dim W = g and L[W \ is fi-
nite) for at least a positive density of primes p, but Now we have a list of irreducible polynomials over
it seems difficult to prove anything along these lines, ¥p whose roots in Fp , together with oo G P1(FP),
since it is closely related to questions such as decid- contain the reductions of the x-coordinates of points
ing, given an abelian variety A over Q, the finiteness of T. Let S denote the corresponding set of residue
or co-finiteness of the set of primes p for which A classes in Xs(¥p). To finish, we need an algorithm
mod p2 is a canonical lift of A mod p. that, given a point R G 5, determines whether there

(Alternatively, we could guarantee success by us- exists a point R G X(Q^nr) in its residue class with
ing $ = P(F) instead of our improved $, but in t(R) torsion, and if so, finds it.
practice this is usually more expensive, since the The computations done so far, which have nar-
degree of G in Lemma 8.1 tends to be much larger.) rowed our search to a finite set of candidates for

A computational improvement: instead of per- R, have used only the equation of X mod p2. For
forming the interpolation for each of the p2g ele- this, it did not matter whether X was defined over
ments of W, we can interpolate the rji at points with a number field or not. But from now on, we as-
^-coordinates that are Teichmiiller lifts modulo p2, sume that the coefficients of the polynomial / (# , 1)
to obtain elements of some quotient Fp[xo]/h whose defining X lie in a number field k C Qp. Such an
values at any root of h G Fp[x0] represent the value assumption lets us make sense of the problem of
of rji at the corresponding Teichmiiller lift point, and finding the points of T exactly: the answer can be
evaluate the combinations needed in Corollary 7.2, the list of minimal polynomials over k satisfied by
as elements of ¥p[x0]/h. Here we should interpo- their ^-coordinates.
late enough to obtain h of degree larger than the The plan is to attempt to lift L(R) to a torsion
degree bound in Lemma 8.1, and enough larger that point R G A(Q^nr) tors to high p-adic precision. By
it becomes likely that the interpolation yields a G of Lemma 4.2 there is at most one such R. Moreover,degree below the degree bound only when (p actually R is guaranteed to exist if i(R) is of order prime tocomes from a homomorphism A —>> Ga . p. If we succeed in producing R, we check whether
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it lies on L(X) up to the computed p-adic precision. computations on A and A. Although in theory the
Details of computing R and determining whether it torsion packet calculating algorithm works for any
lies on L(X) up to a certain p-adic precision will be g > 2, we restricted our implementation to the g = 2
given in Section 11. case to avoid working too hard, the work having al-

After doing this for each non-Weierstrass point ready been done by Cassels and Flynn in this case.
R G S, we have a list of ̂ -coordinates in P ^ Q ^ ) (See [Flynn 1993; Cassels and Flynn 1996].) More-
which appear to be, to high p-adic precision, the over our implementation assumes that the genus 2
complete list of ^-coordinates of the non-Weierstrass curve is defined over Q.
points in T. In practice, if we go to high preci- Suppose that A is the Jacobian of a curve X of
sion, we can be morally certain that these are ap- genus g = 2 over a field k of characteristic not 2.
proximations of the desired ^-coordinates. We then The associated Kummer surface K is the quotient
construct the homogeneous polynomial g G Zp[x,z] A/(±l) where —1 acts on A as multiplication by
vanishing at these points of P1(Q^nr) to high preci- —1. The multiplication by —1 on A has 16 geomet-
sion, scaling it so that some coordinate is 1, and try ric fixed points (the points of order 2); some authors
to recognize these approximate coefficients of g as el- blow these up on A before taking the quotient in or-
ements of A: of small height. This can be done using der that the quotient be smooth, but we will not.
p-adic continued fractions if k — Q; more generally, We remark that if P G X(k) is not a Weierstrass
as we learned from Hendrik Lenstra, to recognize a point, then the image of L(P) in if is a nonsingular
number in Zp (represented as an integer a modulo point, since otherwise 2P would be linearly equiv-
pn for large n) as an algebraic number of degree d of alent to a sum of two Weierstrass points, and the
small height, apply lattice basis reduction to find a difference of these divisors would be the divisor of a
short nonzero vector in the sublattice of vectors with degree 2 function on X not preserved by the hyper-
last coordinate zero of the lattice in Zd+2 spanned elliptic involution, an impossibility,
by the rows of A point in K{k) corresponds to a Gal(fc/fc)-stable

r l 0 0 0 O i l P a i l { ^ ' ^ o f P° i n t s i n A(k) satisfying P = -Q.
1 n n " ' n ^o r n ^ ̂ ' multiplication by n on A induces a mor-

0 Q 1 Q ' ' * Q ^2 phism mn: K ->• K taking {P, -P} to {nP, -nP}.
The addition A x A —> A does not induce a mor-
phism KxK —» K. But instead there is a "addition-

0 ° ° ° • * * 1 a and-subtraction" morphism (/? : K x K -> Sym2(K)
L° ° ° ° ••• ° Pnl taking ({P,-P},{Q,-Q}) to

Finally, now that we have a homogeneous poly- / /P_Ln _ /p i_nn fr>—n _ / p _ n n \
nomiai g G k[x,z\ whose roots r G F [k) we think
are the x-coordinates of torsion points, for each root Cassels and Flynn observed that equations for the
r let Pr be a point on X with x-coordinate r, and basic computations on K can be written down in
(using the methods of the next section) compute a reasonable amount of space. These equations in-
algebraically m(Pr) for n = 1, 2 , . . . , expecting to elude: an explicit projective embedding for K, equa-
find 0 G A eventually. If so for each r, we are done; tions for the morphism d : P1 ->• K induced by
otherwise we either compute more multiples or redo t : X -> A (F1 being the x-line), equations defin-
the entire computation to higher p-adic precision. ing <p and recursive formulas defining mn for n > 1.
(In practice, we have never needed to do the latter.) These equations are much simpler than the anal-
At the end we have a provably correct list of the ogous equations for A. Hence we will try to use
x-coordinates of the points of T. computations with K in place of A wherever possi-

ble.

11. THE KUMMER SURFACE p3The,r,riety ^ ^ ^ T T * T I TT K
Pd with homogeneous coordinates kuk2,k^,k^. If

The most difficult computational ingredient in the Pi = (x1, yi) and P2 = (x2,3/2)? ̂ e m a P XxX -> K
algorithm described is an algorithm for group law taking (Pi, P2) to the image of the divisor Px+P2 —ft,
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K being the canonical divisor, is given by [1, Xi + x2, culate mjv"+i(j/(xo))5 the image of (iV'+l) *,(JR) G
XiX2, /i], where the final projective coordinate h is As(¥p) in K. If the order of R in As(¥p) is prime
a rational function in all the variables x l52/i,£2,y2. to p, then NR = 0, implying that (TV77 + 1),R = R

We recall what is needed. and rajv+i^'^o)) — ̂ (xo)- Conversely, if

1. Evaluating p-adic integrals (Section 8): Given wijv"+i(*/(#o)) = L'(XQ),

x0 G F o with f(x0,1) ^ 0, check if a point R G _
v ^ A • w i , I (£\\! A • * • then (TV" + 1)R = ±iJ, but TV" and N" + 2 are both
Xs(¥p) is such that i(R) has order prime to p m v y - '
^ ( F p ) , and if so, lift R to R e X(W2(¥P)) and P r i m e t o * s o * i s o f o r d e r P r i m e t o P- _ r

, / / D u _ TV r • -, r> We now assume we are in the case where R is of
compute VMR)) e F p far s = 1, 2 , . . . , *. _ ^ ^ ^ ^ ^ ^ ^ n f t ^ g ^ ^

2. Lt/«n5 to tor5ion points (Section 10): Given i2 e o f XQ i s c o m p u t e d by choosing an arbitrary lift and
Xs (Fp) and a moderately large integer r (e.g. 30), r a i s i n g i t t o t h e pd p o w e r B y Hensel's Lemma, there
either lift t(R) to a point R G A(Wr(¥p)) of the ig a p o i n t R e x(Q^n r) with x-coordinate reducing
same order (a potential approximation to a tor- t o ^ m o d p2 T o c o m p u t e ^ ( f l ) ) , we need to
sion point), or prove that no such R exists. evaluate

3. Deciding whether a point on the Jacobian lies on ri^n) »(N"+I)L(R)

the image of the curve (Section 10): Given a {ji = —- / Cbi%

point in A(Wr(¥p)) determine whether it lies on ^° ^L^
the image t(X(Wr(¥p))) of the curve (to p-adic Since we know (N" + l)t(R) only through its image
precision p r) . in K, we must relate the latter integral to one on

4. Verifying torsion points (Section 10): If fc is a K.
number field, R G X(k), and n > 1, determine Consider the sequence of morphisms

whether nt(R) - 0 in A(k). X Ax xX AA^K

Before describing the algorithms for these particu-
lar routines, we remark that elements of W ^ F ^ ) w h e r e A i s t h e d i a S o n a 1 ' Z3 m a P s ^Q) t o t h e c l a s s

are represented by polynomials of degree less than of P + Q - ^, and 7 is the canonical quotient map.
d in (Z/p*)[x] modulo a fixed monic polynomial in S i n c e ^ ^ i s a UoTm o n X x X s y m m e t r i c u n d e r

(Z/p*)[x] of degree d whose mod p reduction is ir- interchange of coordinates, such that a* pulls it back
reducible. The characteristic polynomial P(x) (of t o ^ > w e m u s t h a v e

Section 4) is computed from -X"(FP) and X(Fp2), ^^ 1 f dxi dx2\
which are computed naively by checking all possi- 2 I Vi V2 ) '
ble ^-coordinates. Then #A(¥pd) is the norm from
Z[x]/{P{x)) to Z of the image of xd - 1. Similarly S i m i l a r l y
the order of the subgroup A(¥q2d)~ of A(¥q2d) on 1 /x x dx ± x2dx2\
which Fd acts as — 1 is the norm of the image of 2 I j/i y2 )
xd + 1.

In particular, /?* is injective on meromorphic 1-forms.
c , .. .. . 4 , On the other hand the 1-forms Lti := d(k2/ki) and
Evaluating p-adic Integrals ,1 , , 1/ \ / 7

/i2 := d(ks/ki) pull back to a(^x + a:2) = dxi + dx2

Let d be the degree of x0 over Fp . First compute & n d ^ ^ = ^ ^ + ^ ^ on x x x^ r e s p e c .
/ (x0) and raise it to the (pd - l ) /2 power to deter- t i y e l y A b u s i n g n o t a t i o n b y identifying each 1-form
mine whether the y-coordinate y0 of a point R € w i t h i t s p u l l b a c k toXxX, and solving for u, and
Xs(¥p) with x-coordinate x0 lies in F p , or in its ^ [n t e r m g o f ^ a n d ^ ^ w e o b t a i n

quadratic extension. Let N = j£A(¥pd) in the first
case, and let N = #A(¥p2d)~ in the second case, ~ _ 1 / _ V2 — yi\
so that the order of L(R) divides N. Let Nf be the 2j/1y2 \ x2 — Xi)
largest prime-to-p divisor of N. Let N" = 2AT' if 1 y2 — y1

Nf = 2 (mod p), and let N" = Nf otherwise. Cal- + 1h^2x2-x1^
 ( 1 1"1 )
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and sequence of iterates converges to the image of the
\ ( v _ y \ desired torsion point. This follows from applying

^2 = o I \X\ + #2)2/1 — x1 — — I /i-i the following lemma with m — mN+1 and h the con-
Ziyiy2 \ %2 — #1 /

• v version to the formal coordinates obtained by inte-

H ( -j/x + a?i——— )fi2. (11-2) grating regular 1-forms.
2̂ /12/2 \ x2-x1j

To evaluate the integral MI and/i2 on K from the im- Lemma 11.1. Let Vi = y2 = (pW(Fp))®2. Let h :
a g e o f . ( i ? ) t o t h e i m a g e o f ( ^ + l),(i?),aselements ^ "> ̂  &e an ana/ytfc isomorphism. Under h,
of pZ"nr modulo p2, is trivial, because we know the an ™domorphism m : V, -> V, corresponds to an
projective coordinates ku fc2, fc3, fc4 of those two im- a^ne linear function v ̂  (N + l)v - s on V2. If
ages, using the explicit map P1 -» K and the recur- ^ G ̂ ' ^ e n m ^ a uni^ue fixed Point v* and

sively computed map mN,,+1 : K -> K. Hence in for an^ startin9 Point v G ̂  iteration of tp(v) :=
, , C(N"+I)L(R) ~ rn , , v —(m(v)-v)/N converges to v0. If s/N &V2, then

order to compute ,D. cj;, it sumces to know , ' , , x N /Ar , T '
the values mod p at (i?, J?) of the four functions ap-
pearing as coefficients of fjbx and n2 in the change Proof. Let | • | denote the p-adic absolute value on
of variable formulas (11—1) and (11-2). These func- W(WP), and also the sup norm on
tions can be evaluated directly, once we observe that _

V1 = V2 = (pW(¥p))
e2.

2/2—2/1 = 2/2-2/1 = j(X2)-J\Xl)
x2 — xi (x2 - x1)(yi + 2/2) [x2 - x1)(y1 + y2) For u,u' e (pW(Fp))®

2, we write u ~ v! if | u - ^ | <
evaluates to f'(x)/(2y) at an affine point satisfying 'n'*
(xuVi) = (x2,y2) = (x,y) and y ̂  0 modulo p. T h e fixed P o i n t s o f m c o r r e s P o n d u n d e r ^ t o t h e

fixed points of v \-^ (N + l)v — e; there is at most

Lifting to Torsion Points o n e ' a n d o n e e x i s t s i f a n d only elN eV<2' W e h a v e

Define N as in the previous subsection, and suppose m(v) — v\ = \h(m(v)) — h(v)\
that pm is the highest power of p dividing TV. The 1- — \(N -L-l\h( } h( \\
form calculations of the previous section show that ' '
k2/ki and fc3/fci with constants subtracted serve as = l^v^v^) "" s / ^ ) | -
local parameters at the image of i(R) on K. and m, £ • n -, n j x -r J 1 -r /AT- •

. . ° , r • p Inerefore 99 is well-denned at i; 11 and only if e/N is
they induce a bijection between the set of points of . y
its residue disk in K(W(¥P)) and (pW(Fp))®

2. We m
T , 2 ' . , , ,, , ., /AT T/ ,, .,

.„ n , , r , p , , r It remains to show that if e N e V2, then ltera-
will find the image of a torsion point in this disk, if it £ , ,-, n , . , r i - »

AT
 to _._ _ , _,, _ . ' . tion of ip converges to the fixed point v0 of m. Be-

exists, by a JNewton-like method. Choose /ti in this ,, n . - , .
. _ .. . _. / , x / ^ r cause the valuation on v4/(lr)

p) is discrete, it sumces
residue disk, corresponding to ai,Oi . (Of course, , 1 / \ 1 1 r / ^
,, ,. ' £ jZ . 1 / n ., to prove ^ (v j -vo < v - v o for v ^ v o . Composing
the coordinates of iti are given only to some finite p- ,, n . 7 T , ,. , xl . ,

_. . . N _ . n . . . _r /T_ x the isomorphism A by translations on both sides, we
adic precision.) By definition of TV, mN+1{Hi) maps ^ ^ , . ,. r 7 , n, . , , . , may assume ^0 = £ = 0. The derivative of /i modulo
to the same residue class; suppose it corresponds to . , , . , , . . ^T /^ N -,
/ x T ^ ' / T T ; ^ - NX , , p is a constant nonsmgular matrix in GLoiJro); by
(ajv+ij&tf+i). Let i?0 G K(W(FP)) denote the point ^ r , - 6

K 1
 v *'\ :.

v iv-rx, ^-ry \ v vn r a i m e a r change of variable, we may assume that it
corresponding to . , . , ... . , ^^ ^ ,

is the identity matrix mod p. lhe laylor expansion

( _ <̂ Ar+i ~ Q>i , _ ^iv+i ~ &i\ of /i around u shows that h(u') — h(u) ~ vl — u for

provided that these coordinates belong to pW(¥p).
 G l v e n v ̂  °' l e t W = h^V^ SO

We claim that iterating this construction i?x t-> i?0 h(m(v)) = CiV+Dit;
either terminates in failure if at some point the co-
ordinates are no longer in pW(Fp), in which case Then m{v) — v ~ h(m{y)) — h{v) = Nw, so that
the conclusion is that there is no torsion point of (m(v) — v)/N ~ w ~ v. Thus \(p(v)\ < \v\ as desired.
A(W(¥P)) in the desired residue class, or else the •
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Deciding Whether a Point on the Jacobian Lies on the Case 2: # i ^ i > £>. Then # i £ i = p2 , Kx is cut out by
Image of the Curve an equation

This is simple to do with the Kummer surface: the P
2 . p . , n / i n .,

* + u • ^ - ^u u -^ 4. * z{ +az{ + bz1=Q, (12-1)
image of the curve in K is the subvanety cut out
by the equation k\ - k±k3 = 0. In practice, one and K is the graph of a homomorphism Kx -> Go .
can check this relation as one goes along in the sue- The homomorphism K1 is the restriction of a homo-
cessive approximation of the previous subsection, to momorphism Ga -> G a , which is an additive poly-
higher and higher precision, in hope of terminating normal, but since we may reduce this polynomial
the successive approximation early, as soon as one modulo (12-1), we may take it to be of the form
discovers that the torsion point (if it exists at all) is czp + dzu with c,de F p , and K is defined by (12-1)
not on the curve. together with

z2 = czp + dz1. (12-2)
Verifying Torsion Points Tr n . , TT

7 6 If c — 0, we are in type II.
Apply i' to the x-coordinate of R to obtain the im- Otherwise (12-2) expresses z\ as a combination
age of R in K, apply m n , and see if the result is o f ^ a n d ^ w h i l e i f w e r e p l a c e zf [n ^2_x) b y

[0,0,0,1], which is the image of 0 G A in K. ( c _ 1 ( ^ _ ^ y a n d u g e ( 1 2 _ 2 ) a g a i n t o e l i m i n a t e

the zp, we express zP as a combination of Z\ and
12. THEORETICAL BOUNDS FOR GENUS-TWO z2. The subgroup scheme K1 cut out by these two

CURVES expressions, which are of type I, contains K but has
AT ,, , , n . T , , . , . .i . i order p2 so K' — K, and we are done.Now that we have nnished describing the implemen-
tation, we will use the method to prove a bound C a s e 3 : #K2 > P- T h i s i s t h e s a m e a s Case 2, but
for # T when g = 2. In the next section, we will w i t h coordinates reversed. •

show how this bound enables one to combine p-adic Theorem 12.2. Let p > 5 be prime. Let X be a
information for different primes p to speed up the curve of genus 2 over Qp with good redUction at p .
computation. Then there are at most ps + p2 + p + 7 distinct x-

Lemma 12.1. Let K be a subgroup scheme of G2 = coordinates of points in X(Qp) in the hyperelliptic

SpecFp[*!, z2] of order p 2 . Then there exist elements torsion Packet T'
a, 6, c, d of¥p such that K is defined by one of three Proof. Let (px and (p2 be the components of the ho-
systems of equations: momorphism $ given by Corollary 6.2. Let ^ i and

i -yV i „*> _L h-y — >yP J_ ̂ ^ _L Jv — o ^2 be their restrictions to L. Let K be the kernel of
i. Z-^ ~\~ iXZ\ ~r 0Z2 — ~2 •" ^Z\ ~r CIZ2 — u,
.. P2 . P , 7 _ , p. ( ^ I , ̂ 2)• Let ^ and ^2 denote the homomorphisms
II. z1 + az1 + oz\ — Z2 + c^i — U, or ^, 2 ^ . i T -10-1 o- / 1 / 1 /\ i

P2
 P h _ G^ -^ &a given by L e m m a 12.1. Since ( ^ i , ^ ) has

III. z2 + az2 + bz2 = Z! + cz2 = 0. t h e g a m e k e r n d a g tyu^ e a c h c a n b e obtained
Proof. For i = 1,2, denote by ^ the scheme-theoretic from the other by composing with an endomorphism
image of K under the i-th projection G2

a -» Gfl. of the target G2
a. Hence, by composing $ with an

Clearly i ^ is a subgroup scheme of Go of order at automorphism of G2, we may assume that ^1 and
most p2. ^2 are of one of the types in Lemma 12.1.
r- -x JITS ^ A 11 TS ^ c- TS r- TS TS For % — 1,2, let ^ be the regular function cp{ o i
Case 1: # i ^ i < p and #if2 < p . Since i f C Kx x K2, ' ' 2 . ° ^2

v /jiT/ w // r^ \ ^ 2 ,i i -i-rx • on ^ , which by Lemma 8.1 is of the form
we have {#K1){#K2) >p, so the only possibility is
#Ki = #K2 — p and K = K1 x K2. Every subgroup 3^ — ̂  + ^ ( ^ , ̂ Q ^ )
scheme of Ga of order pfc is cut out by an additive , TT . ,. , r ,. , -,

. , r , . , where ii^ is a rational function in xo,yo only, and
polynomial, so K is cut out by , p rp, ,, , i r ,. , , ,

J J w = Xi/yQ. Ihen the hyperelliptic torsion packet
zp + az = zp + dz = 0 maps into the finite subscheme 3^ = J2 = 0 of X.

We now eliminate W from the equations 3^ =
for some a,d E F p , which is of type I. 3r

2 = 0, as in Section 9. Suppose that ^ i and ip2
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are of type I in Lemma 12.1. Then for some poly- W(¥p). Also, with a little more work, we could im-
nomials A, C, D in x0 of degrees at most p, p, p2 prove the bound slightly, by studying more carefully
respectively, we have the valuation of / at oo, and at the Weierstrass x-

coordinates. But the main term, p3, would be the

^ Corollary 12.3. Under the hypotheses of Theorem 12.2,
3̂ 1 — Hi + Apwp + wp , the hyperelliptic torsion packet T contains at most
<JP _ JJP + (JPWP _j_ ]JPWP2 2p3 + 2p2 + 2p + 8 torsion points.

This can be rewritten in terms of matrices: Proof' T h e r e a r e a t m o s t P3+P2+P+1 non-Weierstrass
x-coordinates (possibly including oc), each giving

' Hi — Ji A 1 0 \ / 1 \ r j s e ^0 a^ m o s t two points of the hyperelliptic torsion
H2 — J 2 C D 0 w _ packet; there are also six Weierstrass points. •
HP-3P 0 Ap 1 wp ~ '
Hp — 7P 0 Cp Dp I \ wp2 I Remark. The bound in Corollary 12.3 is a significant

improvement over the bound # T < 36p9 + 216p8 ob-
so the 4 x 4 matrix has zero determinant, and tained by applying the general Theorem A of [Buium

/ H A 1 0 \ / T 4 1 0 \ 1996] to the case g = 2 with a Weierstrass point as

I H2 C D 0 I _ I J 2 C D 0 basepoint.
d e t Hp 0 Ap 1 ~ d e t 3* 0 Ap 1 •

\H% 0 Cp Dp) \3P 0 Cp Dp) 13. COMBINING p-ADIC INFORMATION FOR
DIFFERENT PRIMES p

The entries of the second, third, and fourth columns
are polynomials in x0 of degree at most p, p2, and A s w e w i U d i s c u s s i n t h e n e x t s e c t i o n ' t h e r u n n i n §
p3, respectively. Expanding the right-hand side in t i m e o f t h e algorithm varies widely with the curve,
minors along the first column shows that it is a com- I n t h e c a s e s w h e r e t h e algorithm is slow, most of the
bination of the regular functions ?u 5F2, 3* 3=? on t i m e i s s P e n t i n l i f t i n § t o t o r s i o n P o i n t s (PaSe 4 5 9 ) '
X weighted by polynomials in x0 of degree at most w h e r e o n e n a s a l a r § e d e § r e e f a c t o r o f t h e P 0^ 1 1 0"
p3 + p2 + p. In particular it is regular wherever x0

 m i a l ri?^> a n d t r i e s t o l i f t t h e corresponding point

is, and x~{p3+p2+p) is regular along the polar divi- f ^(F-) (OT r a t h e r i t s ^ T ^ l ^ ^"T* ^
£ <v -r> J. xi i rx i J -J • x- i face) to a torsion point in A(Qn ) to higher p-adic

sor of x0 on X. But the left-hand side is a rational \ x p J ° ^
function in x0, yo only, and is odd with respect to
xl T 1V ,. . T ,. /-i i • • xi i There is sometimes a way to prove a priori that
the hyperelliptic involution. Combining these ob- ., . , , , r p f \

,. , ,, , u ,, . , i Tf \ r the roots of these large degree factors of r(x0) cannot
servations shows that both sides equal l{xo)yo tor ° . , ,

, - l r r j x x 3 . 2 . lift to x-coordmates of points in T, using the bound
some polynomial 1 of degree at most p + p + p. 50
rpi . , . r T r u £ ,1 P ., P of Theorem 12.2 for a smaller prime /. We illustratelne nonvamsnmg 01 1 follows from the nmteness of
the subscheme F of X cut out by 9^ = J2 and the __ . . i
,1 £ ix x Let A be the genus 2 modular curve Ao(31). Al-
tneory of p-resultants. ° ; y

T̂  , , ,, . i , i , .-, , - -x- r 7-/ \ though A has good reduction at 5, the algorithm
But by the right-hand side definition of l(xo)yo, ° ° ' r °

r • ! ,1 . r 7 - . / w \ - x ^ / f ^ \ x with the improved homomorphism fails for p = 5
i vanishes on the image of b (Jbp) m As(ir

lpj, except ^ ^ ^
M T , . , i r •! , i n because it turns out that dirnvr (see Section 8) is

possibly at points where x0 tails to be regular or v J

\ -u IT • v ^ A - - * 3 instead of 2.
where y0 vanishes. Hence, since A D ^4tors injects
• x ^ / f ^ \ x i i. r j - x - x j - x We try again using p = 7. This time the inter-
mto A S (F P ) , the number of distinct x-coordmates , . , , ,: ^r, ^ ,-rTxm
. x r / ^ x r , . . , v . , x 3 . 2 , polation shows that dimvr = 2 and L [W \ is jfi-
111A (Q_) of torsion points on A is at most p° +p + . . _ . L J

. „ p, ,, . - - ,, . w . , nite, so the method will succeed, in theory. Thep + 7, where the + 7 comes from the six Weierstrass _ ' _ , . , ., _ . ' , ,,. x n ,-, decrees of the irreducible factors of the polynomial^-coordinates, and x0 — 00. U , x ^ r -. ^ . ,r(x0) G F7[x0] of Section 9 turn out to be 3, 3, 8, 67,Remark. The same proof, with the same bound, can and 272. The first two factors are from the Weier-be made to work for smooth genus 2 curves X over strass points. A few seconds of computation show
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that a point in As(¥p) corresponding to the degree 8 subgroup of E of order N. The curve X1(N) is the
factor does not lift to a torsion point, and a 50- same, except parameterizing pairs (E,P) where P
minute computation shows that the same holds for is a point on E of order N. For prime TV, X^(N)
the degree 67 factor, but we run out of memory try- is the quotient of X0(N) by the Atkin-Lehner in-
ing to prove the same for the degree 272 factor. If volution WN\ it is the smooth projective model of
there actually were a point of T whose ^-coordinate the coarse moduli space parameterizing unordered
reduced modulo 7 to a root of this degree 272 factor, pairs of iV-isogenous elliptic curves. Many of the
its degree over Q would be at least 272, however, and explicit equations for these modular curves are clas-
then the number of distinct ^-coordinates of points sical; in any case, we copied them from [Hasegawa
in T would be at least 272, contradicting the bound 1995], with a change of variables in a few cases.
53 + 52 + 5 + 7 = 162 given by Theorem 12.2 for the By [Ogg 1974], X0(N) is hyperelliptic (of genus
prime 5. Thus the 5-adic bound lets us finish the 7- at least 2) if and only if N G {22, 23, 26, 28, 29,30,
adic computation without examining the degree 272 31, 33,35,37,39,40,41,46,47,48, 50, 59, 71}; but, as
factor. was known much earlier, the only curves X0(N) of

genus 2 are the eight listed in Table 1. By [Ishii and
14 EXAMPLES Momose 1991], X1(N) is hyperelliptic if and only if

N G {13,16,18}; in each case the genus is 2. All the
Table 1 lists some genus 2 curves X over Q, specified X+(N) of genus 2 with N prime are listed in Ta-
by giving a separable quintic or sextic polynomial ^le 1. Drinfel'd [1973] generalized a result of Manin
f{x) G Q[x] such that X is birational to y2 = f(x). [1972] to prove that the cusps on the quotient of the
For each, we give the smallest prime p > 2g = 4 extended upper half plane by any congruence sub-
for which the method with the improved homomor- g r o u p o f SL2(Z) lie in a single torsion packet. (For
phism worked, the number of points in the hyper- o t h e r p r o o f s o f t h i s "Manin-DrinfePd theorem," see
elliptic torsion packet T, and a list of irreducible [Elkik 1990] Or [Kubert and Lang 1981, Chapter 5,
polynomials in Q[x] whose roots are a complete list Theorem 3.1].) We call this packet the cuspidal tor-
of the x-coordinates of the non-Weierstrass points in sion packet] it coincides with the hyperelliptic tor-
T. We include 00 in the latter list, if there are non- s i o n p a c k e t f o r a l l t h e Xo(N) and X±(N) in the table
Weierstrass points in T with x = 00. When there except X0(37), and for none of the X+(N) in the
is more than one prime p listed, the algorithm was table.
run using the first one, but using the Theorem 12.2 Suppose X = X0(N) is of genus 2, and TV is prime,
bound for the second prime to weed out large degree Le t Q denote the set of cusps, and let H be the set
factors, as discussed in Section 13. of Weierstrass points (points fixed by the hyperellip-

It is hard to predict in advance how long the pro- tic involution) if X0{N) is hyperelliptic and N ^ 37,
gram will take to compute T for a given curve. The a n d l e t H = 0 otherwise. Coleman, Kaskel, and Ri-
running time depends on the size of the smallest b e t [Coleman et al. 1999] conjectured that the cus-
usable p, but also can be dramatically reduced in p i d a l torsion packet of X0(N) equals CUH. This
certain favorable cases, for instance when the re- w a s proVed independently by M. Baker [2000] and
duction Xs is superspecial, i.e., when the Cartier A. Tamagawa [2001]. Hence the only new results
operator acts as zero on the space of regular differ- i n t h e e n t r i e s f o r Xo(N) in Table 1 are for compos-
entials. The curves in the table taking the most and i t e N^ a n d for N = 37< T h e p a p e r [Coleman et al.
least time, respectively, were y2 = x5 + 1 (over 4 1 9 9 9] g i v e s seVeral proofs that the cuspidal torsion
hours) and y2 = x6 + 1 (under 14 seconds). These packet for Xo(37) consists of only the two cusps,
timings were on a 300 MHz Sun Ultra 2. while our computation shows that the hyperelliptic

torsion packet consists only of the six Weierstrass
Modular Curves points.
The curve X0(N) is the smooth projective model of Coleman remarked [1985, p. 155] that Jfi(13) has
the coarse moduli space over Q parameterizing pairs #T > 22, because T contains at least 12 cusps, 6
(£7, C) where E is an elliptic curve and C is a cyclic Weierstrass points, and 4 points fixed by the or-
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curve f(x) p # T minimal polynomials of a>coordinates

XO(22) x6-4a:4+20x3-40x2+48x-32 7 10 oo, x-2

Xo(23) x6-8x5+2^4+2x3-l lx2+10x-7 5 8 oo

Xo(26) x6-8x5+8^4-18x3+8a;2-8x+l 5 10 oo, x
Xo(28) x6+10x4+25x2+28 5 16 oo, x-l, x+1, x2+3

Xo(29) x6-4x5-12x4+2x3-i-Sx2+Sx--7 5 8 oo
Xo(31) x6-8x5+6x4+18x3-llx2-Ux-3 7, 5 8 oo
Xo(37) x6+8a;5-2Ox4+28x3-24x2+12a;-4 5 6
Xo(50) xe-4x5-10x3-4x+l 7 20 oo, x, x+1, x4-x3+x2-x+l

Xi(13) x6+2x5+x4+2x3+6x2+4:X+l 5 22 oo, £3+4z2+£-l , x2+x+l, x+1, x

Xi(16) -x5+2x4+2x2+x 7 14 x-1, x+1, x2-\-2x-l

Xi(18) x6+2x5+5x4+10x3+10x2+4x+l 5 22 oo, x*-?>x-l, x2+x+l, x+1, x
X+(67) x6-4x5+6x4-6x34-9o:2-14x+9 5 6
X+(73) x6-4x5+6x4+2x3-15x2+10x+l 7, 5 6
X+(103) x6-10x4+22x3-19x2+6x+l 5 6
X+(107) x6-4x5+10x4-18x3+17x2-10^+l 5 6
Xo

+(167) xQ-±xb+2x4-2x3-3x2+2x-3 5 6
X+(191) x6+2x4+2x3+5x2-6x+l 7, 5 6

C z 5+l 19 18 x, £5-4
V xe+l 5 10 oo, x
BGi x5+x 5 22 x4-4x2+l, z4+4z2+l
BG2 x5+5x3+x 5 6
P x5-x+l 5 6
B277 x6-2x5-x4+4o:3+3x2+2x+l 7, 5 10 oo, x
L29 4x6-4x5+x4-8x3+20x2-16x+4 5 12 oo, x-1, x

HLP63 897x6-197570x4+79136353x2-146398496 11, 5 6

TABLE 1. Hyperelliptic torsion packets of genus 2 curves y2 = f(x). The column headed p shows the smallest
prime for which the method with the improved homomorphism worked; the next column gives the number of
points in the hyperelliptic torsion packet, and the last one gives irreducible polynomials in Q[x] whose roots are
a complete list of the ̂ -coordinates of the non-Weierstrass points in T.

der 3 diamond operator (3) G Aut(Xx(13)). This packets are distinct, so i sends the cusp to a rational
was apparently the only known result on the tor- point of infinite order on the Jacobian.
sion packets on X1(N) before the present paper.

Our program shows that T for X L ( 1 3 ) contains no Other Curves of Genus Two
other points. For Xi(16), T equals the set of 14 m l ,., , . r ,, , ,.

, . , . . . \ ' T . . . , The literature contains a few other computations
cusps, which include the Weierstrass points. And r m r o ^ , i r ^ ^ -
r J , N̂ _ . . . r ^ ^ i n ^ of T for genus 2 curves over Q. We succeeded in
for Ai(18), 1 is the union ot the 16 cusps and the 6 . r . „ u ^ n j , i m r
TTr . v ; ' ^ verifying all we could find, and we computed T for
Weierstrass points. r xl

^ i r i i i n A r i a ^ e w o t h e r c u r v e s .
Baker 2000 also proved that for all prime iv, the n } r i n o . ,-> , , 1 1 ,. n ,

. 1 , L . . _ __, / A r x . r i Ooleman 1985, end worked 11-adically to prove
cuspidal torsion packet of X^(N) consists of only , . , . ^ n 2 5 , -, i
, u \ / n r T . 1 tn.dX a curve lsomorpnic over Q to C : y = x +1 has

the one cusp. In the genus 2 cases, all of which nrr 1O w i L, rm^ i i J I L , TT 2 6 . 1
_ . . n i l i i n. . # ^ — 18. Voloch 1997 showed that V : y1 — xb + l

are m Table 1, we rind that the hyperelliptic tor- , ^m m - t j J ^7J• -1 j 1 • n
. . . . has # i — 10. He used a 7-adic method which can

sion packet contains only the six Weierstrass points. , -, , . - ,. r ., . . , ,
^ . •; . . be viewed as a simplification 01 ours: it is simpler be-

In particular, the cuspidal and hyperelliptic torsion , , ., , ,, r , ,, , ., T , . , ,
^ J r cause ne exploited the tact that its Jacobian modulo72 is a canonical lift, and that the Jacobian is isoge-
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