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We also investigate the family of curves arising as closed or-
bits in the suspension flow on the figure-eight knot complement,
many but not all of which are geodesic. We are led to conclude
that geodesies of small tube radii may be difficult to distinguish
topologically in their free homotopy class.

1. INTRODUCTION

By a hyperbolic three-manifold we mean a complete
orientable finite volume three-dimensional Rieman-
nian manifold, all of whose sectional curvatures are
— 1. Every hyperbolic three-manifold contains one
(and typically more than one) simple closed geo-
desic— see [Adams et al. 1999], for example — and
such a simple closed geodesic is also called a geodesic
knot In Section 2 and in [Miller > 2001] we show
that large classes of hyperbolic three-manifolds in
fact contain infinitely many geodesic knots.

In this paper we consider the problem of topo-
logically characterising these geodesic knots — that
is, we look for necessary or sufficient topological
conditions for a simple closed curve 7 in a hyper-
bolic three-manifold M to be isotopic to a geodesic.
These conditions could either be properties of the
curve 7 in M, or of its complement, the drilled man-
ifold M — 7, which is hyperbolic if 7 is a geodesic;
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knot complement. To do this, we develop methods In the case that M is an orbifold whose singular
of locating geodesies 'explicitly' in the manifold by locus contains a one-dimensional connected subset
identifying their isotopy class within a free homo- S of order 2, then we will call closed any simple
topy class of closed curves. geodesic which occurs in M as a geodesic arc with

Our investigations rely heavily on the computer endpoints in S. For, upon lifting with respect to
program SnapPea by Jeff Weeks, and its extensions the corresponding order 2 symmetry, the geodesic is
Snap and Tube by Oliver Goodman. In particular, closed in the usual sense.
these programs can drill closed curves from hyper- Proposition 2.1 encompasses the case of link com-
bolic three-manifolds, and provide a range of invari- plements M = S3 — k for such k as the figure-eight
ants associated with the resulting manifold. knot, the Whitehead link, and the Borromean rings.

The paper is organised as follows. In Section 2 Its proof uses the following fact:
we collect various mathematical results that lie be- , _^T , _
, . , ,, ! , T ,. ! , Lemma 2.2. Let g,h G PSL(2,C) with trg ^ ±2.
hind the work we carry out. In particular we show , 7 , , \ ,
,! , ,! n - i j_ i j. i , i • n -, i Then the complex distance p-\-iv between axis a and
that the ngure-eight knot complement has minutely . . 7 7 _i 7

j . T , ,, . . £ i , its translate h axis q = axis hqh is qiven by
many geodesic knots, thus giving a useful source to * * * *
investigate. We also briefly discuss the features of tr2 o — 2 trig, /i]
SnapPea, Snap and Tube that we use (see [Hodg- cosh(p + i6) = t r2 ff _ 4 ' *
son and Weeks 1994; Coulson et al. 2000] for more
details). In Sections 3 and 4 we discuss various as- Proof' T h i s fo l lows> UP t o s i § n ' f r o m t h e f o r m u l a i n

pects of the set of geodesic knots in the figure-eight [ Jones a n d R e i d 19973 f o r c a l c u l a t i n § t h e d i s t a n c e

knot complement. In Section 3 we use the com- b e t w e e n t h e a x e s o f t w o ^onparabolic isometries of
puter programs to help identify closed geodesies in ^ H e r e i s a n ^ernat ive proof (Figure 1):
the figure-eight knot complement, and to help in- Conjugate g and h so that in the upper half-space
vestigate properties of their complements. Section 4 m o d e l o f H > a x i s 9 h a s e n d P o i n t s ±1 o n t h e s P h e r e

continues this investigation, but uses the structure a t i n f i n i t ^ 5 - = C U {°°} a n d * h e c o m m o n P e rP e n"
of the figure-eight knot complement as a once-punc- d i c u l a r t o a x i s 9 a n d a x i s h9h~ i s t h e *-<**•
tured torus bundle over the circle. In Section 5 we L e t t h e c o m P l e x l e n S t h o f 9 be 2d. Then
gather together conclusions and suggest questions /coshd sinhcA
arising from this work. 9=\^ s i n h d c o s h d J •
2. PRELIMINARIES . ,

axis h
This section presents several results about geodesies ^^--^ ^ \ax is hgh~x

in hyperbolic three-manifolds. / ^ ^ \
Geodesies in Hyperbolic 3-Manifolds / /^^ ^ \ / \

For d a squarefree positive integer, let 0^ be the ring / / yC axisg \
of integers in the quadratic imaginary number field / ^ ^ ^ ^ L / \ - "p+io
Q(\ / Z d) . Recall that, if we define UJ as | ( l + \ / - 5 ) / ^ ^ ^ ^ ^ ^ - ^ / - - ' \' " 6

if d = —1 mod 4 and as y/^d otherwise, then 0d — ^ -^/n^X® \
Z[(jj] and {1,ou} is a basis for 0d. I ^-^"^ / ^^^^^^r i

Our first result shows that many hyperbolic man- ^--^^ / l""^-^.^
ifolds contain an abundance of geodesic knots. / j ^ e

Proposition 2.1. / / M — H3 /F is a hyperbolic three- /
orbifold such that T is a finite index subgroup of the r . _ . . . , . T , £ , , , _x ,., ., U1

J _n_J * n FIGURE 1. The axes of g and hgh 1 after suitable
5^anc/l^ group Td = PSL(2, 0,) for some squarefree conjugation, in the upper half-space model of M3.
positive integer d, then M contains infinitely many The axis of the isometry h between them is the
simple closed geodesies. z-axis.
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The element h corresponds to a composition of two The right-hand side defines the open straight line
isometries — one with axis the z-axis and complex segment in the complex plane between 2 and tr2 g —
length precisely the complex distance p + i9 between 2, giving the result. •
axis a and axis hqh~1, and the other with axis the , , . . ~ , . .

, , , ~ Proof of Proposition 2.1. Consider a closed geodesic 7
same as axis g and complex length say 21. So we . _ _ __«,_ ,, . £ _, ~ T 00 ju F & J m M = H3/T, the axis of g G F. By Lemma 2.3, and
can writp

since all traces of elements of F c Fo = PSL(2,0d)
h = (e(p+ie)l2 0 \ /coshZ sinhl\ l i e i n t h i s r i n g o f integers 0d in Q ( v ^ ) , 7 is non-

^ 0 e-
{p+ie)l2) \ sinhZ cosh I) simple if and only if there is some h<ET such that

and then compute the expression of [g,h]: ti\g,h] lies some rational fraction of the distance
along the open line segment between 2 and tr2 g — 2

/cosh d-e-<'+">sinh d ( l - e p ' ) c o s h d s i n h d \ in the complex plane. Equivalent^, by a translation,
\(1—e~(p+*^)coshdsinhd cosh2d — ep+l0sinh2d) tr[g,h] — 2 G 0d must occur some rational fraction

This is independent of the second factor of h, which o f t h e distance along the open line segment between

commutes with g. In particular, tr g = 2 cosh d and ° a n d t r g ~ 4 ' s a y

tr[g, h} = 2 cosh2 d - (ep+ie + e-
(p+ie)) sinh2 d tr[5, /i] - 2 = —(tr2 p - 4)

it

= 2 cosh2 d - 2 cosh(p + i^) sinh2 d, for g o m e m > n i n t e g e r g s u c h t h a t n > i a n d 0 < m <

so that ft- I n particular, if 7 is nonsimple, some integer
t 2 — 2 t f / ? l n > l divides tr2g — 4. Since trg G 0^, it can be

—9 7^— written in the form tr q — a + bu for some a, 6 G Z
(where UJ is defined in the beginning of this section),

4 cosh2 d — 2(2 cosh2 d — 2 cosh(p+i#) sinh2 d) so that

4 cosh2 d — 4 o o _ o
tr2 g - 4 = a2 + 2a6a; + &2CJ2 - 4. (2-1)

_ 4 cosh(p+ie) sinh rf =

~~ 4sinh2 d ~~ C°S ^ '̂ We consider the two possible cases for UJ separately.

Lemma 2.2 gives the following nice geometric result. Case 1. d = —Imod4, so a; = | ( l + \f^d). Let
d = - 1 + 4/,/ G N. Then J1 = a; - /, and (2-1)

Lemma 2.3. Le£ ̂  be a closed geodesic in a hyperbolic ,
three-orbifold H.3/T, corresponding to the axis of g G
T C PSL(2, C). T/ien 7 i5 nonsimple if and only if tr2 g - 4 = a2 + 2abu + b2(u - I) - 4
there is some h G F 5̂ /c/i t/iat tr[g,/i] /zes on /̂ie = (a2 — Z62 — 4) + (2ab + b2)u.
open line segment in the complex plane between 2

, f 2 9 So, if 7 is nonsimple there is some integer n > 1 such
that n divides (a2 — lb2 — 4) + (2a6+62)a;, and thus n

Proo/". The geodesic 7 is nonsimple if and only if there divides gcd(a 2- /6 2-4, 2ab+b2). Suppose a = 0 and
is a h G F such that in H3, axisg intersects, but b is odd. Then
is not equal to, its translate h axisg = axis hgh~1. 2 2 2 22
This means that the complex distance p+i9 between § c d( a ~lb ~ 4 > 2 a b + b ) = § c d H & " 4 ^ & )>
these axes has p = 0, or equivalently that cosh(p + wheie b2 is odd. Since 2\b2, and since any other
i9) G [-1,1] C R. The cases cosh(p + i6) = ±1 p r i m e d i v i s o r o f tf d[v[des itf a i s o b u t n o t ^ w e

correspond to axishghr1 = axis^ so are ignored. have gcd(-/62-4,62) = 1. So 7 is simple for this a
So, by Lemma 2.2, 7 is nonsimple if and only if a n c j ^

_ t r 2 g - 2tr[g,h] ( , Case 2. d = 1 or 2 mod4, so u = V^d. Here u;2 =

tr2^ — 4 ' —d, so that (2-1) becomes

or, after rearranging, if and only if tr2 c/ - 4 = a2 + 2abu + b2{-d) - 4

tr[flf, h] = | ( tr2 p - t(ti2 g - 4)), with - 1 < t < 1. = (a2 - d&2 - 4) + (2ab)u.
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So, if 7 is nonsimple there is some integer n > 1 such of hyperbolic three-manifolds containing many geo-
that n divides (a2 — db2 — 4) + (2a6)a;, which means desic knots. We next discuss topological restrictions
n divides gcd(a2 — db2 — 4, 2ab). Take a = 1 and on their complements.
b = 2 or 4 mod 6. Then gcd(a2 — db2 — 4, 2a6) = Define the Fox group of a knot k in a three-mani-
gcd(-db2-3,2b) where 62 is even and 3\b. Since 2{ fold M to be
(—d62 — 3) and 3f26, and moreover any larger prime
divisor of 2b also divides db2 but not 3, we have G = k e r ( i * : ^i(M-k) -> TTI(M)),

gcd(—o?62 — 3,26) — 1. So again, for this a and 6, 7 n . . . , , . x1 . , . . , . 7

. . where z* is induced by the inclusion map 1 : M—k —>
T ' ir n , . n . , M. This is a fundamental invariant of the knot.
In either case, therefore, we can tind infinitely

many elements of Td whose corresponding geodesies Theorem 2.4 [Sakai 1991]. The Fox group of a sim-
in Md = H 3 / r d are simple — for example, elements pie closed geodesic in an orientable hyperbolic three-
of the form manifold is a free group.

a = ( I for 7 G Z While Sakai sates this and subsequent results in his
jj \ 1 /°. / '

V •?'/ paper with the added supposition that the manifold
where be closed, his proofs hold also in the noncompact

( On 1 i\M in >̂oâ  i case, so we present them here in this more general
CJ = i , ,„ • ^x . c (2~2' form.

I 1 + (6J + 2)UJ in case 2.
However, we would like infinitely many distinct sim- T h e o r e m 25 [Sakai 1 9 9 1 1 ' SuPPose that M is an 0Ti~
ple geodesies to occur in this way. But elements enta\le simPle three-manifold whose universal cover
gh and gh give the same primitive geodesic pre- is R ' Let a be a noncontractible knot in M such
cisely when gh = gm and gJ2 = hgnh~1 for some that

g,h G Td and m,n G Z\{0}. The traces tr gh and (X) a i 5 primitive (that is, if a is freely homotopic
trgh then arise as traces of powers of a common el- to pP for some ioop p and an integer p, then p =
ement g G Td. So it suffices to show that the infinite _j_;n anc[
set of traces {trgj}jez for these simple geodesies do (2) G = ker( i : TTI(M - a) -> TTI(M)) is a /ree
not all occur as traces of powers of a finite set of qroup
elements of Td.

For a fixed element g, with eigenvalues A±1 where Then & is a simple knot in M.
|A| > 1, we have |tr <^| = |A" + A"^| « |A|^ for N R e c a U t h a t a k n o t ig ^ m p / e .f i t g c o m p l e m e n t con_
large. So the series £ n l / | t r ^ | is approximately a t a i n g n Q e s s e n t i a l t o r L

geometric series with ratio 1/|A| < 1, and thus con- Theorems 2.4 and 2.5, together with Thurston's
verges. Hence for any set of traces {tr,},G/ express- U n i f o r m i z a t i o n Theorem, then yield:
ible as traces of powers of a finite set of elements, the
s u m ^ 6 / l / | t r ; | is finite. In our case, however, since Theorem 2.6 [Sakai 1991]. A geodesic knot in an
the traces { t r ^ } j G Z = {cj}jez form an arithmetic orientable hyperbolic three-manifold is a hyperbolic
progression as at (2-2), the series ^ -ez l / | t r ^ | di- knot.
versres

~ ' . i i . n . i i. • • This is extended to simple geodesic links in [Koiima
So there are indeed infinitely many distinct simple -,

closed geodesies in Md = M3/Td. For T a finite index T1J* ... r , ,. ..,. r i r _
. . „ , . ^ o , _ . n .x , , We will refer to the conditions of having free Fox

subgroup oi Id, M = lnl°/l is a fmite-sneeted cover , , . , , ,. n 7 ., ,.£.
r ° . ' ./ . ... x .. . . . group and being hyperbolic as Sakai s conditions on

oi Md, and so these geodesies lift to distinct simple , . , k . , , ,. ,, . r , ,, . . J~r , ,-, a geodesic knot in a hyperbolic tnree-maniiold.
closed geodesies in M also. • mi £ i x i • i ix x -

The final topological result we quote is a proposi-
It is proved in [Miller > 2001] that every cusped tion of J. Dubois, which incorporates Theorem 2.4.
hyperbolic three-manifold contains infinitely many Again, the restriction to the case of closed manifolds
simple closed geodesies. This provides large classes is unnecessary, so we do not impose it here.
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Proposition 2.7 [Dubois 1998]. The following knots in structures following drilling on three-manifolds, and
three-manifolds all have free Fox group: can provide a variety of associated topological, geo-

metric and arithmetic invariants. Most useful for
(i) simple closed qeodesics in hyperbolic manifolds, .•,-. , , , ,. , ,
) \ our purposes will be hyperbolic volume and core
(ii) fibres of Seifert manifolds. A . , ,, (c n . ^ , ~ i r \ c -n
, V i in r r 7 7 n geodesic length (following Dehn filling). SnapPea
(iii) a knot transverse to each fibre of a manifold fi- , , , , ,, , . . r , -,
v J J J J J c a n a j g o determine whether two given manifolds are

bred over the circle, . , . . ., c. , , , , o v , „
' isometric via its isometry checker . bnap can list all

(iv) a simple closed curve in an incompressible sur- , , , . , . , x1 . . r , -,
v J

p ; rr r 7 7 ^ closed geodesies up to a given length m a manifold
face of a Haken manifold. u .n. • r i~ J. I J ^ J x

, x , . . . . by their tree homotopy class, and then determine
(v) a knot isotopic via an embedded annulus to a , , . , r ,, , . J T _ I

, , , to which of these classes any given word belongs.
simple closed curve in the boundary of an irre- ^ J > i x j r ^ i r ^ j ^ i

^ v J Goodman s related program Tube Goodman et al.
ducible compact manifold, 1 A n o l „ , . ,, , . -^. . n , ,

f J i 1998 allows us to view these geodesies in a Dinchlet
(vi) a simple closed curve contained in the set of dou- A . - ,, .t ,A . n . r-nu-n-
v J f . . . domain for the manifold using Geomview Phillips

ble points of a surface which is orientable, im- , , 1 A n o l T, , . , , , , , -,. r T
^ _ J J

 7 7 _ .. _ ' et al. 19931. It also provides the tube radius of each
mersed, iti-iniectwe and has the 1-hne and 3- -. . /,, ,. r ,, , , , , , -, , u

7 J geodesic (the radius of the largest embedded tubu-
planes intersection property considered by Hass , . , , , , £ ,, J • \ J j -n
^ ^ ^ * lar neighbourhood of the geodesic), and can drill
and Scott. , . -, , . £ ,-. .£ -,-,

any such simple geodesic from the manifold, using a
So, any knots of type (iii), (iv), (v) or (vi) in an ori- technique developed in [Dowty 2000].
entable hyperbolic three-manifold satisfy the con-
clusion of Sakai's Theorem 2.4. However, in case 3. GEODESICS IN THE FIGURE-EIGHT KNOT
(v), if the manifold has torus boundary, the com- COMPLEMENT
plement of the knot contains an essential torus, and T h e r e s t o f t h i g p a p e r i g d e v o t e d t o t h e c a s e o f t h e

therefore is not hyperbolic. So the three knot classes figure.eight k n o t complement. In order to study
(iii), (iv) and (vi) are candidates for providing sum- t o p o l o g i c a l p r O p e r t i es of its geodesies, we first de-
cient topological conditions on a hyperbolic knot for v e b p m e t h o d s o f i o c a t i n g t h e m u p t o i s o t o p y . Then,
it to be isotopic to a geodesic. Later, in Section 4, u s i n g t h e s o f t w a r e j u s t d i s c u s s e d ) w e c a n drill them
we study further the case (iii) of knots transverse to a n d g e t t o p o l o g i c a l information about them,
each fibre of a manifold fibred over the circle.

A Useful Presentation of the Fundamental Group
Computer Programs Used Thurston [1997, pp. 39-42, 128-129] demonstrates
Jeff Weeks' program SnapPea [1993] and the exact how to obtain an ideal triangulation of the figure-
version Snap by Oliver Goodman [Coulson et al. eight knot complement, starting by picturing the
2000; Goodman et al. 1998] will be used widely manifold 'in S3\ as the complement of the projec-
henceforth. These programs compute hyperbolic tion of the figure-eight knot k shown in Figure 2,

FIGURE 2. Spanning the figure-eight knot by a 2-complex.
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left. To this projection of &, we firstly introduce Looking at Geodesies in S3—k

two additional edges (shown as arrows) and then T a b l e 1 l i s t s a l l geodesics up to length 2.9 in the

span by a 2-complex with four faces A, B, C, D, complement of the figure-eight knot k, as obtained
as in Figure 2, right. The 2-complex is the bound- b y S n a p < B y t h e preCeding discussion we can draw
ary of two balls in S3, which become the two ideal c l o s e d c u r v e s w h i c h a r e f r e e l y homotopic, but not

tetrahedra of the triangulation, subject to the iden- necessarily isotopic, to these geodesics. We would
tifications induced by the common boundary sphere, l i k e t o k n o w w h e n w e h a v e found t h e t r u e geodesic,

as pictured in Figure 3. a n d there are various ways of doing so.

A\ /X\ ^° ' s uPPo s e w e have drawn a curve c freely homo-
/ \ \. / \ N. topic to geodesic 7 in S3 — k.

/ Q\ N. / ^ \ \v Method 1. Use SnapPea to drill c from 5 3 - k. Per-
/ A \ B _ \ / A \ C - ^ form (l,0)-Dehn filling on this c cusp to recover the

/--- — " " " " \ " / /.-""""'" \ " / figure-eight knot complement. If there are no neg-
^ ^ ^ ^ ^ D\ / ^^-v^^ D\ / atively oriented ideal tetrahedra in SnapPea's re-

^ ^ \ ^ ^ \ / ^^-^^^ \ / suiting triangulation, the core of this filling, c, was
^^4/ ^^4/ geodesic [Thurston 1979, Chapter 4].

FIGURE 3. The tetrahedra on each side of the 2-com-
plex that defines the triangulation. Letters are cen- While this method is straight-forward, its disadvan-
tered on the faces they label, and faces with the same tage is that the converse to the final statement does
letter are to be identified in such a way that arrows n o t hold — there is no guarantee that a true geo-
m a c ' desic will yield only positively oriented ideal tetra-
The generators SnapPea obtains for the funda- hedra and thus be found. In practice, this method

mental group correspond to loops dual to this tri- is useful in only a small number of cases,
angulation, and we can trace these back to loops in
the S3 view of the manifold, as in Figure 4. M e t h o d 2 ' U s e ^ ^ t o d r i 1 1 T f r o m S ~ fc> a n d

This gives a direct way of converting between a S n a P P e a a s b e f o r e t o d r i 1 1 c f r o m S* - k- I f S n aP"
simple closed curve drawn in this S3 view of the knot P e a ' s i s o m e t l T c h e c k e r finds t h a t t h e resulting man-
complement, and its homotopy class represented as i f o l d s m a t c h b ^ a n i s o m e t r y t a k i n § meridian loops
a word in the generators a, b, c of the fundamental t o m e r i d i a n l o o P s ' t h e n t h e l i n k s ^ U 7 and fc U c are

isotopic, and hence c isotopic to the geodesic 7 in

A presentation for the fundamental group with

ese genera ors is p o r g j^^ geodesies, where the correct isotopy class

TTI = (a,b,c I ca~1bc~1a = 1, ab~1c~1b = 1). should be found in few attempts, this method can

FIGURE 4. Generators of 7ri(53 — &), as loops dual to the triangulation (left), and in the S3 view (right).
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# complex length tube rad. class of the manifold, we can reduce the work needed,

0 1.087070-1.722768* 0.426680 B SlnC? i s o m e t r ™ P S e o d f c s t o ^ « j » - Sets of
1 1.087070 + 1.722768* 0.426680 Ac geodesies in Table 1 with the same length and tube
2 1 662886-2 392124 i 0 274653 AB radius are related by isometries from this symmetry
3 1.662886 + 2.392124 i 0.274653 A2c group, the dihedral group
4 1.662886- 2.392124i 0.274653 B2c i 2 _ - . 4 _ - , - I _ -iv
5 1.662886 + 2.392124i 0.274653 CaC V4-{x,y\x - l ,y - 1, x yx - y ).
6 1.725109 - 0.921839 i 0.211824 CA T h e a c t i o n o f ^ c a n b e s e e n f r o m t h e m Q r e

7 1.725109 + 0.921839* 0.211824 ACb , . . , r ^ n . ., , , , ,
8 2.174140 - 2.837648 * 0.187120 A2B symmetric picture of the figure-eight knot k shown
9 2.174140 + 2.837648 i 0.187120 A3c m Figure 5.

10 2.174140- 2.837648 i 0.187120 B2ac
11 2.174140 + 2.837648 i 0.187120 CaC2 J ^
12 2.416113-1.208686 i 0.111840 CA2

13 2.416113-1.208686 i 0.111840 Bac2 [^^\ ' 1
14 2.416113 +1.208686i 0.111840 Be3

 y' C)~~~~""~~~"~~ ——
15 2.416113 + 1.208686* 0.111840 ACbCb y''r V;^' / V - : >

16 2.633916 + 0.000000i 0.271768 Bcac / ' ^ ^ 1 ^ ^ — t ^ T /''
17 2.633916 + 3.141593i 0.000000 AB2c / ^ ^ - ^
18 2.633916 + 3.141593i 0.127639 CA2B / ^ ^ ^ - ^ j
19 2.633916 + 3.141593 i 0.000000 Ca2C /_ " " " ^ ^ / J /
20 2.633916 + 3.141593z 0.127639 A3cA ~"~~"~~"~~ — ~ ~~^K^\^ /
21 2.633916 + 3.141593i 0.127639 B2ac2 ^ " V "'""•''
22 2.633916 + 3.141593 i 0.127639 Be3 Ac
23 2.839470 + 2.192690 i 0.022793 AB2

24 2.839470- 2.192690 i 0.179924 AC Be FIGURES. Action of the symmetry group on Ss - k.
25 2.839470 + 2.192690z 0.179924 BAc2 H e r e x i s r o t a t i o n by ^ a b o u t a x i s 1 followed by
26 2.839470 + 2.192690* 0.022793 B3c inversion in the box-like region k encloses, and y is
27 2.839470 + 2.192690i 0.179924 Ba2C rotation by TT/2 about axis 2 followed by reflection
28 2.839470- 2.192690 i 0.022793 A2cAc across the horizontal plane.

29 2.839470- 2.192690 i 0.179924 AB2c2

30 2.839470 - 2.192690 i 0.022793 Ac2Ac Table 2 on the next page lists all geodesies in this
manifold with real length up to 3.65 by their sym-

TABLE 1. Geodesies in the figure-eight knot comple- metry orbits, as determined by Tube. It also shows
ment. Shown are the number assigned to the geo- t h e i r t u b e r a d i i j a n d i f s i m p l e 5 t h e i r complement vol-
desic, the complex length, the tube radius and the , , , , . o 3 AT , ,, , -, .
£ T_ , , / ? A n n r - i ume and knot type m o . Note that even geodesies
free homotopy class (where we use A, £?, G lor a , J ^ &

^-1 c - i \ as low as number 23 are nontrivially knotted. Fig-
ure 6 shows examples, up to isotopy, of geodesies

be quite efficient. For long geodesies, however, it is of each of the three nontrivial knot types occuring
not practical. in Table 2. The two geodesies here of knot types 61

, „ ^ . . . . . . and 942 are in fact part of an infinite family contain-
Method 3. Use Tube to view the geodesic 7 in a . , . ,. . n ., , 1>n._>. . , , , , . £ ao 7 . ^ . r ' .1V mg geodesies representing infinitely many different
Dinchlet domain for S6 - k via Geomview Phillips , r\ . •̂friv/r-n v ^ n

, , 1OOQl ,, , , , , ,, c 3 .L, knot types in S3 Miller > 2001 .
et al. 1993 , then convert back to the S6 picture. TT . ,, . , , , , x n , .J Using this table we can choose to find just one
This method eliminates guesswork and also han- geodesic from each symmetry orbit via the methods
dies all closed geodesies, including those with self- above, and use the action of the symmetry group
intersection, but becomes very difficult to imple- to determine the others. Thus Figure 7 shows one
ment for long 7. geodesic per symmetry orbit, pictured up to isotopy,

Using the methods above we can therefore de- for all geodesies listed in Table 1. These form a
termine pictures of the geodesies in Table 1 up to basis for our observations about geodesies amongst
isotopy. By making use of the symmetry group homotopic closed curves.
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complex length tube rad. geod. # s volume kn. tube rad. geod. # s volume kn.

1.087070 +1.722768 z 0.426680 0,1 3.663862 0

1.662886 + 2.392124 i 0.274653 2,4,5,3 4.415332 0

1.725109 + 0.921839z 0.211824 6,7 5.333490 0

2.174140 + 2.837648 i 0.187120 8,10,11,9 5.137941 0

2.416113 +1.208686 i 0.111840 12,13,14,15 6.290303 0

2.633916 + 0.000000 i 0.271768 16 8.119533 0

2.633916 + 3.141593z 0.000000 17,19 not simple 0.127639 18,21,22,20 5.916746 0

2.839470 + 2.192690 i 0.022793 23,26,30,28 5.729381 3i 0.179924 24,29,25,27 8.085587 3i

2.921563 +1.381744 z 0.071578 32,34,35,36 6.770817 0 0.271246 31,33 8.706195 3i

3.040161 + 2.932500 i 0.088294 40,43,44,41 6.551743 0 0.181292 37,42,39,38 7.694923 3i

3.261210 +1.114880 i 0.065182 45,46,47,48 9.053177 6i

3.275339 + 0.715139 i 0.132063 51,56,53,55 9.250534 6i 0.142405 49,50,54,52 9.276865 3i

3.325772 +1.498938 i 0.018074 64,65,70,69 8.950382 942 0.049991 61,66,67,68 7.047485 0
0.105419 57,63 8.519184 0 0.215639 58,62,59,60 9.421637 3i

3.369922 + 0.334206 i 0.060708 75,77,78,76 9.569817 6i 0.117776 71,72,73,74 9.340971 0

3.395883 + 2.785465 i 0.062829 87,88,89,90 6.930273 0 0.105235 80,83,81,82 11.356526 0
0.211499 79,86,85,84 7.533918 3i

3.450219 +1.843678 i 0.035793 91,96,93,92 9.401392 0 0.093730 94,95,98,97 8.740307 942

3.525494 + 0.000000 i 0.000000 99,101 not simple 0.000000 100,102,103,104 not simple

3.612317 + 2.140511 i 0.038554 109,110,111,112 8.826031 942 0.197080 105,108,107,106 9.772337 3i

TABLE 2. Symmetry orbits of geodesies in the figure-eight knot complement (grouped by complex length). For
each orbit we give the tube radius, the numbers assigned to the geodesies in the orbit, the hyperbolic volume of
the geodesic complement and the knot type.

^ ^x no. 24 no. 46 ^ ^ s—^/^^ " \

/—"^/^T^v^^x *\ knot 3i knot 6i / /C /Js'\ ^\

no. 94 l̂ V _^^<^J J
knot 94 2 " ^ - ^ ^ • ^

FIGURE 6. Some geodesies in the figure-eight knot complement with nontrivial knot type in 5 3 .
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0 vol = 3.663862 2 vol = 4.415332 6 vol = 5.333490

8 vol = 5.137941 12 vol = 6.290303 16 vol = 8.119533

17 nonsimple 18 vol = 5.916746 23 vol = 5.729381

24 vol = 8.085587

FIGURE 7. Geodesic symmetry orbit representatives and hyperbolic volume of their complements.
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7i 72

\(io,i) W ) \(io,i) \ ) 1

FIGURE 8. Homotopic curves 71 and 72 in the figure-eight knot complement; 71 has lower-volume complement.
After performing (10,1) Dehn filling on the figure-eight component, 72 becomes the geodesic in the homotopy
class, but maintains its higher complement volume.

Findings (PiO) large so that in M(p,q) the geodesic is iso-

One observation from determining these geodesies t o P i c t o 72, we get vol(M(p,g) - 71) « V1 < V2 «
and their complements is that the geodesic often vol(M(p,g) - 72), so that the complement of the
appears to have the lowest-volume complement of nongeodesic 7 l in M{p,q) has lower volume than
all curves in its free homotopy class. However, this t h e complement of the geodesic 72.
is not always the case. There exist simple closed I n t h e example shown in Figure 8, 7 o in the figure-
geodesics in hyperbolic three-manifolds that do not e i S h t k n o t complement is nonsimple geodesic 17 in
have the least-volume complement over all curves in Table 1.
their free homotopy class. So, while this volume-minimising property does not

characterise geodesies in general, perhaps it does un-
Example 3.1. Let M be the figure-eight knot com- d e r c e r t a i n a d d i t i o n a l conditions. We consider this
plement and M(10,1) the manifold obtained from further in Section 4
it by (10,1) Dehn filling. Then for the homotopic Another less precise topological observation about
curves 71 and 7 2 shown in Figure 8, 72 is the geo- t h e g e o d e s i c s i n F i g u r e 7 i s r e l a t e d t o t h e f a c t t h a t

desic but vol(M(10,1) - 71) = 6.55462 < 9.20339 - t h e v o l u m e o f t h e c o m p i e m e n t of a knot in a man-
vol(M(10,1) - 72). i f o l d i s a reasonable indication of the knot's com-

T _ . _ . . . _ _ . . plexity. We observe that a geodesic knot appears to
Remark 3.2. infinite families of such examples can be , , • i i i T J ,

. _ „ _ _ _ _ _ , always have a very simple embedding, compared to
constructed as follows. Let M be a cusped hyper- ^ r ^ . .̂  , L , no. _. r . . . i i . . those of other curves m its homotopy class m our b
bohc three-manifold and 70 a nonsimple geodesic in . P A, n . 1 , 1 , 1 ^ T̂  T 1
, , . , . n\r m l view of the hgure-eight knot complement. It would
M with a single point of self-mtersection. Then 70 , • *_ ,. L - ,. L . . .̂ r ^ ^

, ; , , , . i r . . be interesting to investigate this notion further, and
can be perturbed slightly near its self-intersection . - , , . . £ •,

, . . i i i-rr i s e e !* there is a rigorous way of expressing it.
in two obvious ways, to yield two different knots 71
and 7, in M. The complements of these knots in ^ ^ ^ Q R B | T S J N s u s p E N S , O N F L Q W S

M will in general have different hyperbolic volumes,
say Vi — vol(M —7i) < vol(M — 72) = V2. Now, we Recall that a geodesic knot in a hyperbolic three-
can change the hyperbolic structure on M slightly manifold satisfies Sakai's conditions, of having free
by performing high order Dehn fillings M(p, q) on it Fox group and hyperbolic complement. In this sec-
[Thurston 1979, Chapter 5]. Each resulting hyper- tion, we show that these conditions are not sufficient
bolic manifold M(p, q) will have a geodesic in the in general to guarantee that a simple closed curve is
homotopy class of 70, and generally this geodesic geodesic. We also investigate whether they could be
will be isotopic to 71 for infinitely many (p, q) and sufficient for special classes of knots. In particular,
isotopic to 72 for infinitely many (p, g). By choosing we discuss the case of knots arising as closed or-
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7 I In I 7

V V ^ ^ ^ ^ " ' ^ ^ V V

FIGURE 9. The local picture of the geodesic knot 7 (left) and a homotopic curve 7n with n twists (middle), passing
transversely through a fibration. The twisting is equivalent to performing (l,n) surgery along curve c (right).

bits in the suspension flow of a manifold fibred over For example, the figure-eight knot complement is
the circle. In the figure-eight knot complement, we fibred over the circle with fibre its minimal genus
study these knots in detail. Seifert surface, a punctured torus, as in Figure 10.

By Proposition 2.7 we know that a knot transverse ^^^^^m lIl^^^Bi
to each fibre of a manifold fibred over the circle has IliHI^Hl J I S H I H I

free Fox group. Looking at certain families of such ^ ^ ^ ^ ^ ^ ^ . >^^^^^^B
knots allows us to prove the following result. ^ ^ ^ ^ ^ ^ ^ ^ f c ^ ^ ^ ^ ^ ^ ^ ^ B

Proposition 4.1. There are infinitely many examples ^ ^ ^ ^ ^ ^ ^ M > ^ ^ ^ ^ ^ ^ ^ ^
of knots satisfying Sakai 's conditions which are not
nv^Ao on FIGURE 10. A punctured torus fibre in the figure-eight
oeoaesoC. .

knot complement.
Proof. Consider a hyperbolic knot 7 which is trans-
verse to each fibre in a hyperbolic three-manifold Its geodesic 7 from Snap's list can be drawn to
fibred over the circle and whose period with respect be transverse to each fibre as in the first diagram
to this fibration is greater than one. Somewhere in in Figure 11. Adding a full twist to this curve as in
the manifold there is then a local picture looking like the figure's middle diagram yields a homotopic curve
Figure 9, left, with fibres locally horizontal planes. still transverse to each fibre, whose complement can

We can modify 7 locally by an integral number n also be obtained from the complement of geodesic
of twists to obtain a family of homotopic but not iso- 7 by performing (1,-1) surgery along the curve c,
topic curves {7n}« By Dubois, each j n still has free with hyperbolic complement, shown in Figure 11,
Fox group, and moreover, 7n will generally be hyper- right. Since this manifold and all others obtained
bolic. For, giving 7 n twists in the direction shown is from (l,n) surgery for low n are hyperbolic, we in
equivalent to performing ( l ,n) surgery along a curve fact have that all (l,ra) surgeries yield hyperbolic
c shown in Figure 9, right. Then, using Thurston's manifolds, giving an infinite family of explicit coun-
hyperbolic Dehn surgery theorem, as long as the terexamples to the converse of Sakai's conditions,
result of drilling c is hyperbolic, all manifolds ob- The geodesic in the example above has the special
tained from (l ,n) filling on this component for |n| property of being a 'closed orbit' under the 'suspen-
sufficiently large, are also hyperbolic. This gives an sion flow' on the figure-eight knot complement. In
infinite family of distinct homotopic curves satisfy- the next section we describe how such closed orbits
ing Sakai's conditions — only one of which can be arise in a manifold fibred over the circle, and begin
geodesic. • a detailed investigation of them.
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FIGURE 11. A geodesic (left) and a homotopic, nongeodesic, curve (middle) in the figure-eight knot complement,
drawn transverse to each fibre of its fibration. The complement of the nongeodesic curve can also be obtained
by performing (1,-1) surgery on the curve c shown on the right.

Closed Orbits in the Figure-Eight Knot Complement |L(^4n)| = \2 — tr(.An)|. For the monodromy of the
figure-eight fibration, a simple induction argument

A knot or link k is said to be fibred if its complement , ,, ,
S3 — k fibres over S1, with fibre F orientable and sat- / \ n /
isfying dF = k. That amounts to saying that there ( 2 1 j = f ^ 2 n + 1 F<2n j ,
exists an orientable surface F = 'mt(F) for com- V / \ 2n 2n-i /
pact F, with boundary dF — k and a diffeomor- where F{ is the i-th Fibonacci number (with F\ =
phism <£ : F —> F such that S3 — k is homeomorphic F2 — 1), so that it is easy to obtain the data given
to the quotient space F x / / $ with identifications in Table 3.
(#,0) = ($(#), 1). The surface F is called the fibre I
and the map $ the monodromy. n ~

In fibring the complement of a knot or link /, we
induce a flow on it: as the fibre F spins around 4 45 ^Q -̂ 0
its boundary I to fill up S3 — I, each point x in F 5 121 120 24
traces out a path {x} x / in the complement. This 6 320 300 50
particular flow on S3 — I considered as the quotient 7 841 840 120
space F x / / $ , is called the suspension flow of the 8 2205 2160 270
monodromy $. The knots arising as closed orbits of
,1 . n r- <L x x. M j, TABLE 3. For each n, the number of points with
this now are 01 interest to us, as these are transverse •-.i---.- / J ^ \ ^ ^ r

' period dividing n (second column), the number of
to each fibre of the fibration, and hence have free Fox p o i n t s w i t h p e r i o d e x a c t l y n ( t h i r d ) ? a n d t h e n u m b e r

group. They arise from periodic points of $, that is, of closed orbits with period exactly n (last column),
points x in the fibre such that $n(x) = x for some n.

Now, the figure-eight knot is fibred with fibre F The single point of period 1 in Table 3 is the point
its minimal genus Seifert surface, a punctured torus, (0,0), corresponding to the puncture in the punc-
as shown previously in Figure 10. For a detailed tured torus fibre. Thus the number of points with
description and aid in visualising this fibration, see period dividing n as listed in the table is 1 greater
[Francis 1987]. Viewing this fibre F as the quotient than the number we are interested in.
of R2 minus the integer lattice by the action of Z2, Now, in addition to these closed orbits having free
the monodromy $ : F -> F is conjugate to the Fox group, we note that:
Anosov map induced on this quotient space by the . . . . . . .

, . / 2 i \ ,. T ™ 2 r ^ 2 n . x. ^ i Proposition 4.2. A closed orbit c in the suspension
m a t r i x ( M act ing on R - Z . So we are interested „ , f 7 7 , 7 7 ,,- m ,
. ,, . T . , r i A i. • /i now of a hyperbolic three-manifold M fibred over the
in the periodic points of such an Anosov matrix A . . . . . .

,. / , , r\ Tn.2/^2 TT i circle is a hyperbolic knot.
acting on (a subset of) R /Z . Here we can make ^
use of the Lefschetz number L of such a map [Bredon Proof. Let c have period N with respect to the fi-
1993; Brown 1971], and find that the number of fixed bration F x / / $ of M. Then by drilling c from M
points of the linear map An acting on the torus is we are just removing N points from each fibre F in
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the fibration. Since the pseudo-Anosov monodromy ^ ——-~_^
$ simply permutes the N points of intersection of /^\^^^~~~~~~ ^ ^ ^ ^
c with F x {0} = F x {1}, it makes sense to con- /[ / ^ ^ ^ ̂  \ \ ^ \
sider the quotient space F' x / / $ where F' is an / / / /^y<C^^><^^^^^-^"^x \ \
JV-times punctured F and $ has been restricted ac- / / /^TT\ ( \ TvT " \ ; \1 \
cordingly. Since $ remains pseudo-Anosov when re- / If f I \ h\\ xX" \ \l / \ 1 \
stricted to F1', we then have by Thurston [1986] (see K H I M \ \ \ / vJ3\ I Mr"
also [Morgan 1984; Otal 1996]), that the manifold I A \ y " r ^ V \ / v L ^ y I /
M - c w F ' x //<& is hyperbolic. D \ \ \ ! ^^zr^O^^. ^ ^ > ^ / / ^ : > ^ / /

Thus these closed orbits in a manifold fibred over V \ \ _ ^ ^ ^ " ^ ^ ^ \ ^ / / /
S1 satisfy Sakai's two conditions for geodesic knots. ^ _ _ ^ - ^ ^ ^ / ~ ^
In an attempt to determine whether they are all ^ — H Z I I Z Z > < I I I I I E E L Z - ~ - ^ ^ ^ ^
geodesic, we now look at ways of describing and

, . ,, . ,, r ,, n • i , i , FIGURE 13. A template for the now on the comple-
analysmg them in the case of the figure-eight knot , c ,i n . ,, i , 7 .,, , , ,.

J & & o ment of the figure-eight knot fc, with branch lines
complement. labelled for a symbolic dynamics description.
Templates which was constructed via branched coverings in
An efficient method of studying closed orbits in flows [Birman and Williams 1983].
on three-manifolds is via templates. A template Orbits lying on a template can be conveniently de-
is a compact branched two-manifold with bound- scribed via symbolic dynamics. Here, we first assign
ary which carries a semiflow (irreversible flow), and symbols a, /?, a, b to the four branch lines as shown,
which is composed locally of two types of charts— The template can then be divided into eight 'strips',
joining and splitting — as shown in Figure 12. corresponding to the eight different paths possible

I between two different branch lines — namely a/3, cm,
' /3a, f3b, ab, aa, ba and b(3. An infinite word u =

UQUIU2 . . . in the letters a, /?, a, b is then said to be
| I I allowable if each two-letter subword UiUi+i is among

these eight allowable two-letter words. So a word u
J J J is allowable if there is a path in the template starting

FIGURE 12. A joining chart (left) and a splitting at the branch line u0 and then passing successively
chart (right) for a template. through branch lines uuu2,

We are interested in closed orbits, which in this
Our interest in template theory is motivated by n o t a t i o n c o r r e SpOnd to periodic words, say

the following theorem.

The Template Theorem [Birman and Williams 1983]. u = www ''' = w°°>
Given a flow on a three-manifold M havinq a hyper- n n >, -, •

J J v xr where w — u0Ui... un is a finite word in our sym-
bolic chain-recurrent set. there is a template T C M u ^ Tr ,-,- • n ui -n n i

' n , hols. If this u is allowable, we will then also say
such that, with perhaps one or two specified excep- ,, , ,, 7. , 77 ,7 ^ i . ,. £

' 7 7 in th a t the cyclic word w is allowable. Inis notion ot
tions, the closed orbits under the flow on M are in n U1 r -, ,, r -, ., .

' 7 7 7 7 7 allowable cyclic words thus gives a way of describing
one-one correspondence with the closed orbits under u., . , , ,
, n n orbits in our template.

the semiflow onT. Further, on any finite collection TT . n U1 v , ,
^ 7 7 7 However, given an allowable cyclic word, we need

of closed orbits, this correspondence can be taken to , ^ , . r , i -,. i i
J ' ^ to know how pieces ot the corresponding closed or-

be via ambient isotopy. u . , n, , ,, , , , , ,. . , £ ,,
r* bit fit together at each branch line in order for the

In particular this holds for the suspension flow of entire orbit to embed in the template. Each orbit in
a pseudo-Anosov diffeomorphism of a surface. For fact has a unique correct ordering of its arcs along
the case of this flow on the figure-eight knot com- its branch lines. To determine this ordering, firstplement, we have the template shown in Figure 13, choose one of the two possible orientations on the
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branch lines such that the flow from one to another ^ ^ ^ —----^
preserves this order — say the one indicated in Fig- f s^~~~ "^\ \
ure 13. The following orderings are then immedi- / s^f " \ X "N̂  /"""*" \ \
ately induced on allowable two-letter words: / / / X \ — - ^ C I \

aa < a/3, (3a < (3b, b(3 < ba, ab < aa. S^~^\\ / i \ \
a \ A b 0r~Ty

This in turn induces the lexicographical ordering on V ^ ^ ^ 1 _^^\^ L^a

all allowable words u = UQUIU2 .. • with a fixed first I \ / /
symbol u0. The orbit corresponding to any allowable ^ " \ ~ ~ Z^
word will then embed in the template by ordering j ^ ^ ^ &
the pieces of orbit passing through any branch line \ / \ /
u0 according to the order of the corresponding words V I I I
beginning with u^. For a more detailed explanation \ ^ ^ ^ ^ ^ ^y
of this symbolic dynamics description, see [Birman
and Williams 1983; Ghrist et al. 1997]. FIGURE 14. The figure-eight template can be col-

lapsed to a directed graph in S3 — k.
Obtaining Data Associated with Closed Orbits

depending on whether the vertices are taken to be
The method above of describing orbits allows the a W Qr b d o w t h e p r o j e c t i o n o f ^ b u t s i n c e w e

easy computation of various topological invariants. a r e d e a l i n g Q n l y w i t h dosed orU^ a n y c o n s i s t e n t

One of these is the period p{u) of a closed orbit u c h o i c e w i U g i y e t h e g a m e r e s u l t O n e g u c h l a b e l l i n g

with respect to the fibration of the figure-eight knot |eds:esl —¥ ir (S3 — k) is
complement. Since p(u) is just the linking number
of the closed orbit u with the figure-eight knot A:, we ab \-> 1, ba i-> a, Pa ^ 6"1, a(3 \-± c,
can compute it from Figure 13. There, the figure- aa ^ 1? bp ^ a^ ph ^ b-i^ aa ^ cb-ia

eight knot crosses over the template six times — at
all strips except (3a and ba — and each crossing has By taking the product of these words in SnapPea's
the same sign. Hence we can write generators over all strips traversed by a closed or-

, r. .r n i bit, we obtain the free homotopy class of the orbit
[ 0 it UiUi+1 = pa OT ba, ' „ ^J

p(uiUi+i) = < in 7Ti(o — fc), and Snap can then determine the cor-
I 1 otherwise, responding geodesic.

and compute the overall period as a sum over the Since each closed orbit in our flow can be ex-
strips traversed. This also shows that the best pos- pressed as a finite-length word in the letters a, /?,
sible lower and upper bounds on the length I of a a, 6, the problem of systematically generating pic-
word whose orbit is of a given period p, are given by tures of all closed orbits has been reduced to the

basic task of listing allowable words. A simple com-
p < I <2p-2. (4-1) c n , ,

puter program can generate a list ot all such words
The cyclic word for a closed orbit also tells us yielding distinct closed orbits on the template, up to

which geodesic from Snap's list is in its homotopy a specified length. Using (4-1) we can choose this
class. To see this, first collapse the figure-eight tern- length such that all orbits up to a given period are
plate down to a directed graph with four vertices, included.
corresponding to the branch lines, and eight edges, A secondary program can then turn words on this
the strips between them. After ambient isotopy, this list directly into SnapPea link projection files for
directed graph lies in the complement of our stan- their corresponding closed orbits. Each of these files
dard projection of the figure-eight knot k as in Fig- depicts in SnapPea a projection of a 2-component
ure 14. link with first component the figure-eight knot and

Now associate with each directed edge a word in second component the closed orbit in question, po-
SnapPea's generators of TTI(53 — k) via Figure 4. sitioned according to the template on which it sits.
There is some freedom in the choice of words here, An example is shown in Figure 15.
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FIGURE 15. The link projection produced in SnapPea for the closed orbit given by the cyclic word aaaabababfi.

With these SnapPea files for the closed orbits in The special properties of these closed orbits sug-
the suspension flow on S3 — k, we can drill the or- gest a more detailed study of them. Figure 16 shows
bits and obtain topological data about their com- pictures of closed orbit aaaaba and its correspond-
plements. ing geodesic, number 257, in the complement of our

usual projection of the figure-eight knot.
Analysis yye firstly note that a single crossing change in the
Using methods from Section 3, we find that all but circled region distinguishes the closed orbit from the
four closed orbits of those up to period five are iso- geodesic. Moreover, this crossing change alters the
topic to their geodesic, the exceptions corresponding curve's knot type in S3 — the closed orbit is a trefoil
to the symmetry orbit of geodesies {257, 259, 267, knot when viewed in S3, while the geodesic is a triv-
268}. This is indicated in Table 4, which lists all the ial knot. Table 4 also shows that while for the closed
closed orbits up to period five, along with a range of orbits listed, complement volume typically increases
associated data. These four nongeodesic closed or- as the length of corresponding geodesic increases,
bits also provide further counterexamples to the sug- the closed orbits in question have very low-volume
gestion of a geodesic having the least-volume com- complements for their geodesic length,
plement in its homotopy class. For while the com- Their associated geodesies also have very small
plements of the closed orbits have volume 8.107090, tube radii — over 15 times smaller than that for any
the geodesic complements have volume 10.962729. other closed orbit up to period five. So relatively,

FIGURE 16. Homotopic curves in the figure-eight knot complement: on the left, the closed orbit aaaaba with
complement volume 8.107090, and on the right the geodesic no. 257 with complement volume 10.962729.
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cyclic word period c o m P l e m e n t geodesic COmplex length tube radius
volume number

aa 2 5.333490 6 1.725109 - 0.921839 i 0.211824
bf3 2 5.333490 7 1.725109 + 0.921839 i 0.211824

apaa 3 6.290303 13 2.416113 - 1.208686 i 0.111840
a(3b(3 3 6.290303 15 2.416113 +1.208686 i 0.111840
a(3ba 3 8.119533 16 2.633916 + 0.000000 i 0.271768
aabP 3 8.119533 16 2.633916 + 0.000000 i 0.271768
aaba 3 6.290303 12 2.416113 - 1.208686 i 0.111840
bf3ba 3 6.290303 14 2.416113 +1.208686 i 0.111840

apapaa 4 6.770817 34 2.921563 - 1.381744 i 0.071578
aPapbp 4 6.770817 36 2.921563 +1.381744 i 0.071578
apapba 4 9.340971 74 3.369922 + 0.334206 i 0.117776
apaabp 4 9.340971 72 3.369922 - 0.334206 i 0.117776
apaaba 4 8.519184 57 3.325772 - 1.498938 i 0.105419
aPbabp 4 8.519184 63 3.325772 +1.498938 i 0.105419
apbaba 4 9.340971 71 3.369922 - 0.334206 i 0.117776
aababP 4 9.340971 73 3.369922 + 0.334206 i 0.117776
aababa 4 6.770817 32 2.921563 -1.381744 i 0.071578
bpbaba 4 6.770817 35 2.921563 +1.381744 i 0.071578

apaaaa* 5 8.107090 259 4.174849 - 2.120825 i 0.003249
aPbPaa 5 10.852301 244 4.126874 + 0.000000 i 0.117758
aPbpbp* 5 8.107090 268 4.174849 + 2.120825 i 0.003249
aPbpba 5 10.917658 332 4.312773 + 0.836995 i 0.165149
apbaaa 5 10.917658 324 4.312773 - 0.836995 i 0.165149
aaaabp 5 10.917658 325 4.312773 - 0.836995 i 0.165149
aaaaba* 5 8.107090 257 4.174849 - 2.120825 i 0.003249
aabpbp 5 10.917658 333 4.312773 + 0.836995 i 0.165149
aabpba 5 10.852301 238 4.126874 + 0.000000 i 0.117758
bpbpba* 5 8.107090 265 4.174849 + 2.120825 i 0.003249

apaPapaa 5 7.047485 66 3.325772 - 1.498938 i 0.049991
apapapbp 5 7.047485 68 3.325772 +1.498938 i 0.049991

aPaPapba 5 9.835917 176 3.916589 + 0.504028 i 0.066257
aPapaabp 5 9.835917 171 3.916589 - 0.504028 i 0.066257
aPaPaaba 5 10.194877 192 3.953821 - 1.647569 i 0.058246
apapbabp 5 10.194877 201 3.953821 +1.647569 i 0.058246
apaPbaba 5 10.852301 243 4.126874 + 0.000000 i 0.117758
aPaababp 5 10.852301 239 4.126874 + 0.000000 i 0.117758
aPaababa 5 10.194877 188 3.953821 -1.647569 i 0.058246
aPbababp 5 10.194877 199 3.953821 +1.647569 i 0.058246
apbababa 5 9.835917 174 3.916589 - 0.504028 i 0.066257
aabababp 5 9.835917 178 3.916589 + 0.504028 i 0.066257
aabababa 5 7.047485 61 3.325772 -1.498938 i 0.049991
bpbababa 5 7.047485 67 3.325772 +1.498938 i 0.049991

TABLE 4. Data associated with closed orbits (written as cyclic words from their template description) in the
suspension flow of the figure-eight knot complement, and their corresponding geodesies. Orbits not isotopic to
the geodesic in their homotopy class are marked with an asterisk.
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it takes only a small perturbation of these geodesies Question 1. Are there infinitely many simple closed
to change their isotopy class. This may help ac- geodesies in every hyperbolic three-manifold of finite
count for the fact that the closed orbits under the volume?
suspension flow, while satisfying Sakai's conditions ^ x. ^ r n ., 7 7 L 7. ,,

. .. . , . ,, . n „ Question 2. In finite volume hyperbolic three-mani-
and possessing an additional certain straightness , 7 , ,, , 7 . 7 ,.,. , .

, ? folds, are there topological conditions guaranteeing
property by their construction, are not necessarily ,, , . , , 7 x 7 , ,,

, . that in a homotopy class of closed curves, the geo-
geodesic
6 ' desic is the one with the lowest-volume complement?

Question 3. In a hyperbolic three-manifold fibring
over the circle, are there topological conditions guar-
anteeing that a closed orbit in its suspension flow is

After establishing in Section 2 that many hyper- geodesic?
bolic three-manifolds contain (infinitely) many sim- Q u e s t i o n 4 / n fl cusped hyperbolic three-manifold M,
pie closed geodesies, we have endeavoured in this do geodes%cs represent infimtely many knot types in
paper to understand some of the topology of the mch mamfdd oMained by Dehn fiUmg on M ?

geodesies in the figure-eight knot complement.
In Section 3 we developed techniques for drawing Question 5. In a hyperbolic three-manifold fibring

explicit pictures of the geodesies in this manifold, by over the cirde> does a dosed orbit under the sus~
determining their correct isotopy class within a free pension flow have the lowest-volume complement of

homotopy class of closed curves. From here we ob- a^ curves %n ^s homotopy class.

served that, while not true in general, many (short)
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to interpretation. It would be interesting to find
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