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We prove two lemmata about Schubert calculus on generalized

1. Background on Schubert Problems f|ag manifolds G/B, and in the case of the ordinary flag manifold
2. The Schubert Problems Graph and Its Structure for Small GLn/B we interpret them combinatorially in terms of descents,

GLn(C) and geometrically in terms of missing subspaces. One of them
3. Proofs of the Lemmata gives a symmetry of Schubert calculus that we christen descent-
4. A Geometrical Interpretation cycling. Computer experiment shows these two lemmata are

M k' R I surprisingly powerful: they already suffice to determine all of
GLn Schubert calculus through n = 5, and 99.97%+ at n = 6.

^ ^ We use them to give a quick proof of Monk's rule. The lemmata
Acknowledgements a ! s o h o | d j n e q u i v a r jant ("double") Schubert calculus for Kac-
Addendum Moody groups G.
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1. BACKGROUND ON SCHUBERT PROBLEMS

Fix a pinning for a complex reductive Lie group G: a
Borel subgroup B, an opposed Borel subgroup 5_,
a Cartan subgroup T = B n B_, the Weyl group
W = N(T)/T, and R the Coxeter generators of W.
There is a famous basis (as a free abelian group) for
the cohomology of G/B given by the Poincare duals
of the closures of the i?_ orbits on G/B; these are
the Schubert classes Sw := [B_wB/B], for w G W,
and are indexed by the Weyl group.

(In this introduction we will only consider ordi-
nary cohomology and the case of finite-dimensional
G. However, since the Schubert cycles B_wB/B are
T-invariant, they define elements not only of ordi-
nary but of T-equivariant cohomology of G/B, and
our results hold in that case also. In addition, our
main arguments apply to the case of Kac-Moody G.
Our references for equivariant cohomology of (pos-
sibly infinite-dimensional) G/B are [Graham 1999;
Kostant and Kumar 1986].)

The degree of the cohomology class Sw is twice
l(w), the length of w (as a minimal product of Cox-
eter generators from R). Define a Schubert problem
as a triple (?x, v, w) G W3 such that

This research was partially conducted for the Clay Mathematics
Institute. l(u) + l(v) + l(w) = dimc G/B.
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In this case we can consider the symmetric Schubert Schubert problems are well-understood thanks to
numbers Littlewood-Richardson and other positive rules for

r / Q Q Q their computation. Note that descent-cycling can-
JG/B not be formulated in the context of Grassmannian

which count the number of points in the intersection problems alone: descent-cycling a nontrivial Grass-
of three generic translates of Schubert cycles. Since mannian Schubert problem always produces a non-
this intersection is transverse (by a standard appeal Grassmannian Schubert problem, and Grassman-
to Kleiman's transversality theorem), and is of three n i a n problems from different Grassmannians (the
complex subvarieties, the points are all counted with s i n S l e descent in different places) can be dc-equiv-
sign +1 and therefore the number is nonnegative. alent.
While formulae now exist for these numbers, it is a I n Section 2 we define a graph whose vertices are
famous open problem to compute these numbers in a Schubert problems and edges come from descent-
manifestly positive way. The analogous problem for cycling; by computer we were able to determine
G/P where G = GLn and P is a maximal parabolic m u c h a b o u t t h e structure of this graph in small ex-
was solved first by the Littlewood-Richardson rule amples. This we believe to be the main point of in-
far see [Knutson and Tao > 2001]). t e r e s t i n t h e paper —that two such simple lemmata

Recall the Bruhat order on W (due to Chevalley): s u f f i c e t o determine so many Schubert numbers.
v > w if v e B_wB/B. With this we can state our lt i s o u r h o P e t h a t t h i s symmetry might help guide
two lemmata* ^he search for a combinatorial formula for Schubert

calculus; a rule generalizing Littlewood-Richardson
Lemma 1.1. Let (u,v,w) be a Schubert problem, and ( t h e c a s e t h a t ^p each have only one descent, and
s a Coxeter generator. If us > u, vs > v, and i n t h e s a m e p l a c e ) a n d m a n i f e s t i y invariant under
ws > w, men cuvw = u. descent-cycling would have very strong evidence for

Lemma 1.2. Let (u,v,w) G W3 be a triple with it.
In Section 3 we give the nearly-trivial proofs of

l(u) + l(v) + l(w) = dimc G/B - 1, t h e t w Q l e m m a t a 5 u s i n g s tandard properties of the

and let s be a Coxeter generator. If us > u, vs > v, (equivariant) BGG operators. We do this in terms
and ws > w, then of "Schubert structure constants" rather than sym-

metric Schubert numbers. This seems to be more
cus,v,w = Cu^w = cu,v,ws. appropriate for equivariant cohomology (in light of

In the case where G = GLn(C), W = 5n , and s is [Graham 1999]), and also gives results in the case of
the transposition i 4-> i + 1, the statement us > u G a Kac-Moody group.
says that u(i) < u(i + 1); one says that u ascends in In the GLn(C) case, there is an intuitive geometri-
the i-th place. Otherwise if u{i) > u(i + 1) one says cal interpretation in terms of "reconstructing forgot-
that u descends in the i-th place, or that it has a ten subspaces"; with this we can also say something
descent there. For this reason we christen the sym- about finding the actual flags in the intersection in
metry of Lemma 1.2 descent-cycling, and call these synthetic-geometry terms, which we do in Section 4.
three problems dc-equivalent. Extending this rela- In Section 5 we prove Monk's rule via descent-
tion by transitivity, we get a very powerful notion cycling, to give an example of an interesting Schu-
of equivalence for solving Schubert problems; in par- bert problem that falls to these techniques. It would
ticular many Schubert problems are dc-equivalent to be interesting to see if other known cases of cuvw =
ones that fall to Lemma 1.1, ones which we call dc- 0,1 (such as the Pieri rule [Lascoux and Schiitzen-
trivial. berger 1982; Robinson > 2001; Sottile 1996]) are

We define a Grassmannian Schubert problem to consequences of descent-cycling,
be a Schubert problem (u, v, w) in which u, v each
have Only One descent, and in the Same place. The 11 emulated a preprint a year ago entitled "A conjectural rule for

r , c . ., . ., , . . . GLn(C) Schubert calculus", generalizing a Grassmannian theorem
name comes from the fact that the relevant inte- from [Knutson a n d Tao > 2001] Alas> t h e rule conjectured t he re

gral can be performed on a Grassmannian; these is not invariant under descent-cycling.
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2. THE SCHUBERT PROBLEMS GRAPH AND ITS dc-equivalent to a dc-trivial problem. Otherwise,
STRUCTURE FOR SMALL GLn(C) (TT, p, a) is dc-equivalent to (id, id, w0), where id de-

Let Tn be the graph whose vertices are Schubert notes the identity permutation and «;0 the long word;
problems for GLn(C), with edges between two Schu- t h e r e f o r e t h e symmetric Schubert number cvprT is
bert problems that are related by cycling a single e ( l u a l t o o n e - P u t a n o t h e r w a ^ ' t h e r e i s e x a c t l y o n e

descent. Then the descent-cycling Lemma 1.2 says non-dc-trivial component of the Schubert problem
that the symmetric Schubert number is constant on g r a P n for e a c n n < 5.
connected components of this graph. (This is per-
haps more naturally a "3-regular hypergraph" than I n Particular, the two lemmata (and the trivial cal-
a graph, since the natural concept of "edge" here c u l a t l o n cid,id,«,0 = 1) suffice to completely deter-
connects three, not two, vertices.) Recall that we m i n e Schubert calculus for GLn(C) through n = 5.
define two Schubert problems to be dc-equivalent if W e k n o w a P r i o r i t h a t t h i s connectedness cannot
they are in the same connected component, i.e., if continue at n = 6, because the nonzero symmetric
one can be transformed into the other by a sequence Schubert numbers are sometimes 2. (All symmetric
of descent-cyclings. Also, we call a Schubert prob- Schubert numbers in this paper were computed with
lem dc-trivial if it falls to Lemma 1.1; that is, if for t h e M a P l e P a c k a S e A C E [Veigneau 1998].)
some (z, i+1) it has three ascents.

Fact 2.4. The graph T6 has 8,881,334 vertices, of
Example 2.1. We write a vertical bar to point out the whi ch all but 2,351,475 are dc-trivial. Throwing
descents, and a horizontal bar indicating to where o u t the components with dc-trivial vertices we are
we intend to cycle a descent. In the following line we ieft w i th 145 components comprising 411,582 ver-
descent-cycle our way to a dc-trivial problem; this t i c e s . The lion's share of those vertices, 409,023,
shows c1324,2143,2341 = 0. a r e dc-equivalent to the easy case (id,id,u>0), leav-

1 0 1 9 4 1 2 3 4 1 2 3 4 m& ^ ^ cases (less than 0.03%) not succumbing to
2 | | 413 y 211 4|3 y 1 2 413 dc-equivalence/dc-triviality arguments.
2 3-411 2-413|1 4 | 2 3 | 1 Of the remaining 144 components, only one con-

tains a Grassmannian Schubert problem, so in some
Next we show that (1324,3142,1423) is dc-equivalent s e n s e t h e Littlewood-Richardson rule doesn't help
to (1234,1234,4321), so Ci324,3i42,i423 = £1234,1234,4321, much. (In fact this is the only one with any Grass-
which is in turn easily seen to be 1. mannian permutations, so a Schubert-times-Schur

1 3 1 2 4 1 3 1 2 4 1 2 3 4 1 2 3 4 1 2 3 4 r u l e wouldn't help much either.)
3|1 412 —> 1 3 412 -> 1 3 412 —> 1 3|2 4 —> 1 2 3 4 Exactly one of these components has intersection
1-412 3 411-2 3 4 |2 | l -3 412-311 4131211 number zero (despite containing no dc-trivial Schu-

bert problems); one element of it is (231645, 231645,
The reader may enjoy studying hands-on the prop- 3 2 6 1 5 4 ) T h e r e &rg a l s o 4 g c o m p o n e n t s o f s i z e o n 6 )

erties of descent-cycling, using the descent-cycling th&t .^ S c h u b e r t p r o b l e m s t h a t a d m i t n o d e s c e n t .
Java applet found at http://www.math.berkeley.edu/ c y d i n g w h a t e v e r ; o n e e x a m p l e i s ( 2 1 4 3 6 5 ) 1 5 4 3 2 6 ;

-allenk/java/DCApplet.html. 00-1 or A \
We established the following facts by brute-force
computation. These computations were done in C and took 2.5

o o r r r^r //r.N minutes on a Pentium 300. The limiting factor was
Fact 2.2. There are 35 Schubert problems for GL3(C), x1 x xl . , u , £ x . nA , x

&
 r T , A M

. . .̂  -4 .1 ; t h a t t h e ^ J u s t b a r e l y fit m 6 4 megabytes of RAM,
of which 21 are not dc-trivial. Ail 21 live in the iJ_. ,, n , , . n . , , ^ O/lo. r _ . . . . _ putting the n = 7 case (which is roughly 76 = 343
same connected component of 1 3 , which is pictured ,. , . N , r , .,, , . ,
. _. times bigger) out of reach without new ideas,
in b iffure 1

It seems likely that as n increases, the fraction
Fact 2.3. Let n < 5, and (TT, p, a) be a Schubert prob- of GLn(C) Schubert problems having no place with
lem in dimension n. Then the symmetric Schubert three ascents (and so falling to Lemma 1.1 alone)
number cnp(T equals zero if and only if (TT, p, a) is goes to 0. We did not pursue this.
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FIGURE 1. The non-dc-trivial component of F3, drawn to make its 53 symmetry manifest. The edges, which
always come in sets of three, are drawn as triangles and labeled with the column where descents are being cycled.
Note that not all vertices have degree 4; one cannot descent-cycle in a column which has two descents.

It was very tempting to believe that a vanishing 3. PROOFS OF THE LEMMATA
Schubert number could always be "blamed" on dc- m l , , , . ,, . ,. ,. n ,, j.rr

. , , . . 1
 J

1 _ 1 The statements in this section are slightly differ-
equivalence to a dc-tnvial problem, and it was very , - ,, . ,, . , , ,. . ,, , ,,

n i i i T ^ i i i e n ^ worn those in the introduction, in that they are
sad to find the lone component in T6 that belies , J - , r , . , . w ,i

. « i ., • phrased in terms or structure constants c™ , ratner
this. Mark Haiman pointed out a stabilization ,, , . o , , , , , ,7 a ,

. / v than symmetric bcnubert numbers cuvw. W/euTstre-
map Tn_! ^ Fn taking (u.v.w) to (un,vnAw+1)1), . , , , , r , , ,. -, , ,. , , ,,

r n L n , , , i I , mind the reader of the partial relation between these
where w + 1 means w with 1 added to each element. , , . , ., , , ,, , , . £

_ _ and explain why we switch to tne less-symmetric tor-
Jbor example, , ,.

mulation.
In ordinary cohomology of GIB (if dimG < oo),

(2143,1243,3214) » (21435,12435,43251). w e w ^ P o i n c a r ^ p a i r i n g ^ relation
Unfortunately, it turns out that stabilizing the bad / SUSV = 8u,WoV

problem (231645, 231645,326154) one, two, or three ^G/B

times (to (231645789, 231645789,659487321)—this where w0 is the long element of the Weyl group,
was again limited by computer memory) does not and 5 is the Kronecker delta. (Note that the dual-
make it dc-equivalent to a dc-trivial problem. Ques- ity discussed here is in the sense of dual bases, not
tion: is dc-equivalence already a stable relation? Poincare duality!)
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One way to see this is to realize the class Sv not by 1974], in a nonequivariant formulation, though equi-
the Schubert cycle B_vB but the opposite Schubert variant if-theory is implicit in the second of these
cycle BwovB = w0B_vB. Since w0 is connected to works.)
the identity in G, these two cycles define the same We refer to [Kostant and Kumar 1986] for the four
element of cohomology. properties we need of these BGG operators ds:

From this we derive that „ T r ^ ^ a ^
1. it ws > w, then osbw = u.

Q Q — X^ r
w <? imnlipci rw — r 2. If WS < W, then dsSw = Sws.

w 3. With respect to a certain natural action of W on
n . ,. T , i • T HUG IB), the map ds is a twisted derivation:
So in ordinary cohomology, one can work instead
with these Schubert structure constants, though our ds(af3) = ads(f3) + ds(a) (s • (3).
results from the first section are prettier to state ( W g w o n > t Q e e d t Q u n d e r s t a n d t h i s a c t i o n o f wj
symmetrically. However, in T-equivariant cohomol- 4 ff ^ ^ = ^ ^ ^ ^ r e d u c e d e x p r e g_
ogy the dual basis to the Schubert basis is not once s i o n g for a W e y l g r Q u p e l e m e n t ^ t h e n

again the Schubert basis (essentially because w0 is
not connected to the identity through T-invariant dSl ... dSl — dri . . . dri,
maps of G/B) and these two concepts part ways. a n d s o w e h a v e a well-defined operator dw.

In [Graham 1999] a certain positivity result was
proven for the equivariant C e H^ (which must be S i n c e t h e P r o o f s o f b o t h lemmata have much in corn-
carefully stated, insofar as these are polynomials not m o n> w e gather them into a single proposition. Triv-
numbers). This implies a much weaker positivity ia^ a s ^ 1S' ^^1S 1S ^^e heart of the paper,
result for the cuvun and so it seems more interesting Proposition 3.1. Let (u,v,w) G W3, and s a simple
to prove results about the structure constants. reflection, such that us > u but ws < w.

Also, in the case of G an infinite-dimensional Kac-
Moody group, one cannot so blithely do integrals on # If vs > v> t">en cuv = 0-
G/B, and the cw

uv are the only concept that makes # Jfvs < v> then C = <%*-
sense. This concludes the advertisement for Schu- Proof. The main formula we need is
bert structure constants over symmetric Schubert
numbers. (In fact almost all work on Littlewood- c^v = c o e f f i c i e n t o f Si in dz(SxSy)
Richardson is in terms of the structure constants; which follows easily from the properties stated of
see [Knutson and Tao > 2001] for a discussion of the BGG operators,
this.) Since ws < w, we have

Note that the condition we gave in Section l for _
a "Schubert problem" corresponds to l(w) = l(u) + °Abu\) = OwsOs{bubv)
l(v), which seems a reasonable thing to ask since = dws(Suds(Sv) + ds(Su)(s - Sv))
cohomology is a graded ring. But we will not in- = dws(Suds(Sv)),
sist on this in what follows because, in equivariant . . . . . o, T ,, , , this last because by the us > u assumption, os an-
cohomology, the structure constants can be nonzero
even if one only has l(w) < l(u) + l(v). (We only Tr

 u' . . .... _ . .
, , , . ,.,. / r \ i ', i r If vs > v, then os annihilates Sv too, and the

imposed this condition betore to keep the graph ot T^TTO . -, , . . n > , ^ r T P
r. i i x i i i i • \ KHb IS zero. Combining that with the iormula tor
bchubert problems a reasonable size.) . _ n .

T , ^ D U . , a . ' D p p ct gives the first result.
Let s G R be a simple reflection, and Ps = BsB < xy

T° ^ T m m . o / n n \ i
„ , ,, ,. • • i u r T * \\ vs < v, then the RHS is dws(Subvs), and two
G be the corresponding minimal parabolic. Let ps : .. . ' . r , r - i
^/T-» x-f/n i î T • ... -i applications of the formula tor clni give the second
G/B —> G/Ps be the corresponding projection; it xy

is G-equivariant and therefore T-equivariant. Com-
posing pushforward with pullback defines a degree The conditions on ws versus w in this proposition
—2 endomorphism ds on H^{G/B). (This map was are backwards from how they were in Lemmata 1.1
first introduced in [Bernstein et al. 1973; Demazure and 1.2; that's because of the multiplication by w0 in
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comparing Schubert structure constants with sym- Proof of Lemma 1.1. Let {F} be the set of flags in
metric Schubert numbers. With this in mind the relative position u to A, v to i?, and w to C where
two lemmata follow. A, B, C are three flags in generic relative position.

Then by codimension count (and the usual appeal

4. A GEOMETRICAL INTERPRETATION to Kleiman's transversality theorem) the set {F} is
finite. However, since none of A, B, C care what i^

For w e W, let Dw := G-{wB,B) C (G/5) 2 . is (sinCe by assumption none of them have a descent
Given a simple reflection s e R, le^P s again be the a t ^ m ) ) j t h e g e t {F} i s a u n i o n o f c p i ^ T h e s e

corresponding minimal parabolic BsB, and consider t w Q facts a r e o n l c o m p a t i b i e i f sF\ i s e m p t y . D

the composite map Dw ̂  (G/B)2 -» G/P s x G / 5 .

Lemn*4A. LetweW,seR,P = mB. The fibers Proof of Lemma 1.2. Let {F} be the set of flags in

Of Dw ^ (G/B)2 -> G/Ps x GIB are r e l a t i v e P o s i t i o n u to A ' v t o S> a n d ™ t o C w h e r e

A, S , C are three flags in generic relative position.
• CP1 's ifws <w Then as in the previous proof, the set {F} is a union
• single points (generically), if ws > w. of CF^'s, reflecting the ambiguity in F{. If we change

Proof. We reduce to the well-studied case (see [De- o n e o f u>v>w t o h a v e a d e s c e n t a t & i + 1 ) ' e a c h o f

mazure 1974]) of a single flag manifold. Let X := t h e s e C p l ' s i s c u t d o w n t o a s i n § l e P o i n t ' B u t [t

G/B x {B/B}; since G • X = G/B x G/B it suf- d o e s n 5 t m a t t e r w h i c h o f u>v>w § e t s t h i s n e w d e "

fices to consider the map Dw HX -> G/Ps x {B/B}. s c e n t * D

And D w f l l = BwB/B x { £ / £ } , so (omitting the T h i g g e o m e t r i c description of descent-cycling sug-

{B/B}) weVe studying the fibers of the composite g e s t g t h a t a d d i t i o n a l s y m m e t r i e s m a y c o m e f r o m

BwB/B -+ G/B -> G/P s , as already done in [De- f o r g e t t i n g m u i t ip le subspaces at a time. It appears,

mazure 1974]. • thoug^ t h a t a i l o f t h e s e a r e implied by the single-

In the case of G = GLn(C), Dw is the variety of pairs subspace case.
of flags (F, G) in C n such that "F is ̂ -close or closer One application of this geometric description is to
to G". In this case, the generators R correspond actually locate the flag satisfying the desired inter-
one-to-one to the subspaces in a flag (other than section conditions, in the case that (TT,P,CT) is dc-
the zero subspace and the whole space), and the equivalent to the easy case (id, id, w0). We illustrate
map G/B -> G/Ps corresponds to "forgetting" the this in the case of the Schubert problem
subspace. Then we can interpret the lemma in very
familiar terms: (132,213,213),

Corollary 4.2. Let w e Sn and i G {2 , . . . , n - l } . Let which we can descent-cycle to (123,213,231), and
F,G be two flags in Cn such that F is w-close or from there to (123,123,321). Working from the end,
closer to G. Let F1 be the partial flag obtained by the unique F satisfying (123,123,321) is given by
forgetting F's i-dimensional subspace. Can we re- Fx = Cu F2 = C2. When we cycle the descent in
construct F knowing only F', G, and w? the (1,2) column, we have to replace F1 = d by

Tr _ /. . H x f • T . Fx = B2 H C2. Then when we cycle the descent in
• Itw ascends at (z, z+1), there is no hope — any i- ,, / o ox , , , , ^ „ ,

,. . , ^ 7 „ .77 7 the (2,3) column we have to replace F2 = C2 by
dimensional space between i^_i and ri+i will do. T? _ A m (u n c \

• If w descends at (i, i+1), then (for a Zariski-open 2
rn,

 1 . u \ ^ ,, . , .
p 7 ^x 7 7 r, . . 7 7 There is an alternate way to prove the vanishing

set of such G) the subspace bi is uniquely deter- ,.,. . ^ o ^ , , . u . ,
. y condition in Proposition 3.1 cohomologically, involv-

ing the projection G/B —» G/Ps. A Schubert class
Another way to interpret this is that if w does not Su is in the image of the pullback of H^(G/PS) if
descend at (z, z+1), then G "does not care" what and only if us > u. Since this pullback is a ring ho-
Fi is used (to get F unclose to G). Conversely, if momorphism, the product of two pulled-back classes
w does descend there, then G "usually insists" on a is also in this image, and cannot involve any Sw with
particular i^, when presented with the rest of F. ws < w.
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5. MONK'S RULE condition TT = aw0. So we can reduce to the case

, , , , , r , , , .^ r r.i . T .^ j_, that any descent in n occurs at a descent of a.
Monk s rule Monk 1959 is concerned with the case .
m r //n\ o i i_ i i_i • i - i • • l If 7T = crw0, each ascent in a occurs at a descent

of GLn(C) Schubert problems in which p is a simple _ , . ,
n j . . / • • , -i \ ol 7T. By our reduction above, this means that a has

reflection Si = {i ** i +1). J , ' , , . , . , x , . ,
no ascents, bo were looking at /(id, id, Wo) which

Theorem 5.1 (Monk's rule). Le£ <ru>o cover TT in the by assumption is 1.

Bruhat order] that is, a is n with each number j Conversely, if /(7r,id,cr) ^ 0, then no column

replaced by (n+1) -j, and two numbers inverted in (i^ i+\) has three ascents (the Schubert problem

7TW0 have been put back in correct order, decreas- (7r,id,a) is not dc-trivial). By our reduction, this

ing the number of inversions by exactly one. Then means that a has no ascents. So a = w0. By the

Cn,Si,a = 1 if the numbers switched straddled the po- assumption on the total length, TT = id, so TT = aw0

sition between i and i + 1, whereas c ^ . ^ = 0 if the a s desired. •
numbers switched were both physically on one side
of (j j+1) Proof. Theorem 5.2] Let a be TTWO with the numbers

in the j - th and fc-th positions switched, decreasing
Remark. Some may object that Monk's rule says the number of inversions by exactly one (and so that
more —that c*^ = 0 unless <rw0 covers TT —but j < ^ ^ < a ^ y I n p a r t icular every number in

we prefer to see this as a more general property of a physically between the j - th and jfe-th positions is

symmetric Schubert numbers, that if n,p are not not n u m e r iCal ly between a(j) and a(k). We want to

less than aw0 in the Bruhat order, then cnpa = 0. s h o w that /(TT, si? a) = 0 unless j < i < fc, in which
For example, let TT = 34152, i = 2. Then TTWO = 32514, case / (TT,^,O-) = 1.
which covers 23514, 31524, 32154, 32415. But only First we treat the case k = j + 1. If j = i and k =
31524 involves switching a number in the first 2 i + 1, neither n nor a has a descent at (i, i+1). So
places with a number in the last 5 - 2 places. So we can cycle the descent from the second argument
C34152,Si,31524 = 1, but C34152,Si,23514 = C34152,Si,32154 = ° f / i n t 0 t h e t h i r d ' making them (TT, id, W ) . NOW
C34152 s 32415 = 0. Lemma 5.3 tells us that this 1. If, on the other hand,

, . j,k < i or j,k >i + l (still in the case k = j + 1),
Theorem 5.2. Let / : V7rn) —>• Z &e a functional ,, £ ., \ , , , ,. IN j

, /• rr ; T ^ 7 T w , ^. « 7̂ then none of TT, id, or a have a descent at ( j , fc), and
on the set of bchubert problems. It t satisfies the ,, r » . n .,, , ,

therefore / vanishes as it s supposed to.
Now take the case k > j+1. Then since a has only

1. / is invariant under descent-cycling (i.e., is con- one fewer inversion than TTW0, a must have the same

stant on components), descent-pattern as TTW0. NOW we reduce (much as

2. / = 0 on dc-trivial Schubert problems, and in Lemma 5.3) by cycling descents between the first

3. /(id, id, Wo) — 1> and third arguments, in order to move the positions

then f obeys Monk's rule; that is, f(ir,sua) equals 3 a n d k c l o s e r toSether.
0 or 1 according to the criterion of Monk's rule. W e c a n d o t h i s descent-cycling in the (j, j+1) col-

umn as long as j ^ i, and the (k—1, k) column as
We first prove a lemma: l o n g a s fc ^ i + 1. If j , k are both on the same side

Lemma 5.3. Let f satisfy the conditions of Theorem of the (i, i+1) divide, they can be brought next to
5.2, andn,a G Sn such that /(TT) + /(CT) = (*). Then each other (by e.g. just moving one of them). If j,k

ifn = GWQ, we have /(TT, id, <r) = 1, and otherwise are on opposite sides of the divide, we can at least
/(TT, id, a) = 0. get j up to i, and k down to i + 1. Either way we

r „ . , i ^ T reduce to the k = j + 1 case and therefore get the
Proof. Since the second argument has no descents, ^ *• i , i r-,

,. . . x , , , , same answer as Monk s rule. D
any place \i, %+l) that TT has a descent and a does
not gives us an opportunity to cycle a descent from In particular, this gives us an explicit sequence of

the first argument to the third, replacing TT I-» Ŝ TT descent-cyclings to turn a Monk's rule problem into

and a f-> Sid. This modification keeps the sum of (id, id, Wo)- So in principle one can reverse the steps
the lengths = Q) and neither causes nor breaks the and construct the flag in the intersection of these
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three Schubert varieties, as an expression in the lat- "simplify" the "worst" subspace in P using descent-
tice of subspaces. cycling, with the only unsimplifiable subspaces be-

There are other special cases known for symmet- ing those in A, I?, C. In particular, this would say
ric Schubert numbers where the answer is 0 or 1, that P partially synthetic implies P fully synthetic,
mostly notably the Pieri rule [Bergeron and Sottile
1998; Lascoux and Schiitzenberger 1982; Robinson ADDENDUM
> 2001; Sottile 1996]; it would be interesting to see if
they too are consequences of descent-cycling. Prob- S i n c e t h e submission of this article, Kevin Purbhoo

ably the best version of this would be a "descent- h a s s h o w n m e a v e r y s i m P l e a r § u m e n t t h a t P a r t i a l

cycling normal form" for Schubert problems, and syntheticity already implies c = 1 (and therefore
an effective way to test whether a Schubert problem f u l 1 syntheticity). Contrapositively, if c > 1, none of
is dc-equivalent to (id, id, u,0). t h e s o l u t i o n s c a n b e synthetic. Details will appear

elsewhere.
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