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Acknowledgements Traditionally, algorithms in group theory have rep-
e erences resented a subgroup U of a finitely presented group

G either by a set of generators (as words in the gen-
erators of the full group) or via a coset table.

Both representations have disadvantages. A coset
table for U has [G:J7] rows, so the space requirement
for storage can be large, which in practice restricts
this representation to index a few million at best.
The other method of representation, via a gener-
ating set, is not particularly suited to calculations:
many algorithms compute a coset table as a first
step and effectively work with it, discarding the gen-
erating set. Furthermore, for subgroups obtained as
output of other algorithms, generating sets often are
not what a user wants. The standard way to obtain
generators is as Schreier generators; since this is a
process that "lives" in a free group, the number of
generators produced grows linearly with the index,
and any reduction of this number (if possible at all)
would require further work.

The first aim of this article is to introduce a differ-
ent representation, namely as a subgroup of a quo-
tient: Given a group G and a homomorphism </?,
we represent a subgroup U which is a full preimage
under (p by the pair ((/?, Ucp). We call U a quotient
subgroup and the pair ((/?, Utp) the quotient repre-
sentation of U.

Such representation comes naturally to systems
such as Magnus [Magnus 1997], quotpic [Holt and
Rees 1993] or XGAP [Celler and Neunhoffer 1999]
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having a graphical user interface in which subgroups G we obtain by adding the commutators [g, n] (for
are objects whose generators or coset table are (usu- g and n running through a generating set of G and
ally) never displayed. JV, respective) to the relators of G. A lower central

We will show how such representations can be series is obtained by taking for ip the epimorphism
created, and how to calculate with subgroups in of G onto its largest nilpotent quotient (as found by
this representation. We will then examine how this a Nilpotent Quotient Algorithm) Q, the terms of the
approach can be iterated in an attempt to extend lower central series of G are the preimages under (p
known quotients. of the lower central series of Q.

The approach has been implemented by the au- For a more complex example consider PSL2(Z),
thor in GAP [GAP 2000] and is used there as a which is isomorphic to a free product C2 * C3. A
default method for many operations for subgroups congruence subgroup such as
of finitely presented groups. r / \ "i

r ° ( A ° = { ( c d) C E E ° ( m o d 7 V ) }
1. CREATION OF QUOTIENT REPRESENTATIONS AND . , £ . £ ^ . ,

FASY CAICIJIATIONS 1S preimage or the group ot upper triangular
matrices under the "reduction-mod-N" homomor-

If U < G is of finite index a Todd-Coxeter coset phism. So we can represent these subgroups (and
enumeration [Todd and Coxeter 1936] will yield a calculate with them) in quotient representation as
permutation representation cp of G on the cosets of subgroups of C2 * C3.
U. The image of U is the stabilizer StabGv,(l). So if a subgroup U < G is given in quotient rep-
the quotient representation of U is ((/?, StabGv?(l)). resentation (</?, Utp), we can easily obtain the coset

Similarly, the low-index subgroup algorithm [Sims table representation and the representation by sub-
1994, 5.6] can be considered to produce admissi- g r 0 U p generators, as we shall see forthwith. Thus
ble homomorphisms ip into permutation groups, the the quotient representation will still allow the use of
quotient representation of the subgroups found is a n existing algorithms.
again of the form (<p, StabG y )(l)). A possible variant A coset table for U in G represents permutations
is the "G-quotient" algorithm [Holt and Rees 1992; for the action of G on the cosets of U. This permu-
Hulpke 1996, V.5], which, using a similar search, tation action has the same image as the action of
finds quotients isomorphic to a given group. Q(p on the cosets of Uip, and we can compute per-

Quotient algorithms such as the p-quotient [Mac- mutations for this action easily if a membership test
donald 1974], the nilpotent quotient [Wamsley 1974; for JJ^ [s available.
Nickel 1996], the solvable quotient [Plesken 1987; To compute generators of U, we can then sim-
Niemeyer 1994; Bruckner 1998], and the polycyclic p l y take this permutation action on the cosets, and
quotient [Lo 1998] all return a homomorphism (p. compute Schreier generators for it. But in almost
Subgroups induced by this quotient are naturally a u c a s e s subgroup generators will not be required
given in quotient representation. for further calculations —they would just be in the

If ^ is a homomorphism with domain G, the quo- w a y a n ( j take up space.
tient representation of ker ^ is (^, (•)). In particu- For a membership test, observe that x E U if and
lar, this allows us to represent the intersections of o n iy if Xln e JJm since kenp < U.
the conjugates of a subgroup (whose index can be n!,
making coset tables very space-consuming) in a quo-
,. , & , ,. : ^ , 6 y /;. 2. SUBDIRECT PRODUCTS
tient representation using the same homomorphism
(p. Now assume that U,V < G are subgroups given by

This provides a natural way to represent commu- the quotient representations (</?, U(p) and (^, VI/J).

tator subgroups: G' is the kernel of the epimorphism We set A := Gcp and B := Gip and define a homo-
on the largest abelian quotient (whose structure we morphism e:G-^AxB^g^ '(g<p,gi/j). I ts kernel
obtain by abelianizing the presentation). If N < G, is the intersection (ker <p n ker^) . The image Ge is
the commutator subgroup [G, N] has a quotient in a subdirect product of A and B [Remak 1930].
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Denote the normal subgroup generated by both ators, there is no need to actually write down a full
kernels by M — (kerc/^ker^). Then M is mapped presentation. Such a procedure is already available
to two normal subgroups E := Mcp < A and F := as part of the functionality for computing kernels of
Mip < B. By the homomorphism theorem we have homomorphisms [Leedham-Green et al. 1991].
A/E = G/M = B/F. The structure is this: If v C B is a generating set of VI/J, then V is

generated by ker^ together with representatives of
^_2 « ̂  _ ^ ^ t ^ preimages of v under -0. Therefore V(p is the sub-

A/E A G B B/F group of A generated by E and representatives of
images of y_ under (.

, , , . Similarly F is the cokernel of the homomorphic

•* -) •« -)\- • kr *" closure £ of (a ̂  b) and Uip = (F,u£ \ u G u) for a
/ /M \̂  \ ^ generating set u of [/(/P.

ŷ  / \ . \ ^ We can therefore compute E, F, and the converse
W '-« <^ker(^ ke r^y ^ (v images Uip and Fy? directly from the constituents A

\ . ŷ  and 1? with the generating set a and 6. Further-
N. / more, note that Us < A x B is the full preimage of

\ / e r £ (7̂ 0 under the projection form Ge to A.

jr A A ID uxt . x j xx- This gives us all the necessary input for the fol-
lr A and B are both represented as permutation & J ^

groups, the direct product A x 5 can be represented l o w i n g c o m P u t a t i o n s :

again as a permutation group (on the disjoint union Lemma 2.1. (a) (e, Us H Ve) is a quotient represen-
of the domains of A and i?) and we can use this tation ofUDV.
representation to compute in its subgroup Ge. Sim- (b) (<p, (U(p,Vip)) is a quotient representation of
ilarly, if A and B are both matrix groups over the (U,V).
same field, Ax Scan be represented as matrix group (c) (e, NUe(Ve)) is a quotient representation of
again by block matrices. If A and B are given by Nu(V).

polycyclic presentations, we can easily write down a (d) (<p, V\geG(p{Uip)g) is a quotient representation of
polycyclic presentation of A x B. C] U9.

W e n o w m a p a g e n e r a t i n g s y s t e m g = (gi,...,gi) (e) Representatives for the double cosets U\G/V are
under both projections and get generating systems given ty ( ^ e preimages under <$ of) representa-

a := gtp of A and b := gjj of B. Let (x \ 3?) be fives for the double cosets U<p\G<p/V<p.
a presentation for B on generators x corresponding
to b. Then the epimorphism from the free group Prooi S i n c e k e r £ ^ U> V> P a r t (a) f o l l o w s i m m edi -
X = (x) denned by 0 := (X -> B, x h+ 6) factors via a t e ly- Similarly (b) follows from ker <p < U < (U, V).

7:=(X^G,x^g)as(3 = 7^. The kernel ker ̂  F o r ^c) o b s e r v e t h a t k e r e - V - N ° ^ d ) f o l l o w s

thus is the image of ker/? under 7, and therefore a s k e r ̂  ^ f\eG UK Finally in e), the double cosets
E = (ker 0)^^ a r e o r ^ ^ s °f ̂  o n ̂ e c o s e t s of [/, for which (p is a

_ . _ „ _ ^ i i bijection. D
For a subset S C G of a group G, we denote by

(§)NT the normal closure of 8, that is the smallest To test containment, we do not need to form the
normal subgroup of G containing all elements of 8. subdirect product:

By the definition of a presentation ker/3 = (3?}NT , o o rr ̂  TT .* i 7 .* ̂  ^ TT , T n .
rr,i r EI . xl i i • „ r A I Lemma 2.2. V <U if and only ifE<U<p and V^ <
Ineretore h is the normal closure in A of the set JT ,
{r(a) | r G 3i} of relators of B evaluated in a.
We call this subgroup the cokernel of the relation Proof. Since ker ij) < V and since subset relations
C: B -» T4 obtained by extending the mapping (6 i-> are preserved by homomorphisms, the conditions are
a) homomorphically. certainly necessary.

To compute E, it is sufficient to have a procedure Conversely, E < Ucp implies that ker-0 < U. In
to evaluate a set of defining relators in given gener- this situation it is sufficient to test containment in
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the image of ^ which proves sufficiency of the cri- r(X)x (with r G 32, a G (X)) containing the whole
terion. • of 32. The resulting group is thus generated by X

T , . . T Ai T . vi. ^ i and isomorphic to A.
Inclusion in both directions gives an equality test. rT,1 . . . . . . A . .

The kernel of this projection onto A is generated
O A D . . . * c iwi- * D J * by conjugates of y2, and relations of type (2-3) show
2A. Presentations for Subdirect Products , / x ^ , ,

that (y2) is conjugation invariant. Furthermore the
In the course of this article we shall need a presen- r e l a t i o n s ( 2_2) s h o w t h a t (y2) m u s t b e iSOmorphic
tation for a subdirect product. The following ap- t o a f a c t o r g r o u p o f F Q

proach must be well-known; it is only given here
because I've not been able to find explicit literature Using Tietze transformations and the expressions
references. (2-1) of Y2 as words in X, we can get rid of the

We consider a subdirect product of two finitely auxiliary generators Y2 and obtain a presentation in
generated groups A and B via an isomorphism of terms of X.
their factor groups A/E with B/F and let

. _ . . , _ _ Corollary 2.4. If F is a free group, 32,8 are finite
cp:AxB^A, ip:AxB-+B , ,- , , ,L / Q \ ' j?

sets generating normal subgroups (Jv)NT, (O)NT < r
be the component projections. If X is a generating and [F:(32, 8) N T] is finite, the intersection (32}NT n
set for AXB, X — Xcp and X = Xifj are generating (§)NT < F is finitely generated as a normal sub-
sets for A and for B. We assume we are given pre- group.
sentations for the constituent groups A = (X \ 32}
and B = (X | S) in these generators (script letters
will be used to denote sets of relators). We shall 3. ITERATED QUOTIENT REPRESENTATIONS
write w(X) do denote an abstract word in X. A g m e n t i o n e d a b o v e ? i f v < G i s g i v e n i n q u o t ient

Then ker <p = (r(X) \ r G 32)NT. By adding con- r e p r e s e n t a t i o n ^ U(p^ w e c a n o b t a i n a c o s e t table
jugates, we extend this set to Y2 = {r(X)a \ r G 32 f o r [/ i n G f r o m t h e a c t i o n o f G(p o n t h e c o s e t s o f

for some a G (-X")} such that F = (kenp)^ — (Y2^). JJ^
We denote by YB = Y2^ the images of Y2 in B. Using Reidemeister rewriting [Magnus et al. 1966,
Given the presentations for A and B we can ver- 2 ̂  i t i g t h e n p o s s i b l e t o c o m pute from this coset
ify that enough conjugates are taken by checking t a b l e a g e t o f g e n e r a t o r s o f v a n d a presentation in
that [B:{YB)\ = [A:E]. Rewriting the presentation t h e s e g e n e r a t o r s [Havas 1974; Neubiiser 1982]. (In
in these subgroup generators we furthermore get a p r a c t i ce , one would simplify the resulting presen-
presentation (Y2 \ 32F) for F. Finally, using rewrit- t a t i o n u s i n g T i e t z e transformations before working
ing in (YB) < B, we obtain conjugation relations w i th it )
32c = \yx = w(Y2) | y G Y2, x G A ) . j ^ g n e w presentation (and the rewriting process
Lemma 2.3. A presentation for AxB is given by f o r subgroup elements) thus enables us to evalu-

ate homomorphisms with domain U. One can then
(X,Y2 | y — w(X), (2-1) again apply algorithms to U, obtaining subgroups

/y \ (2-2) °^ ̂  ^n Qu o^ e n^ representation.
If V < U is such a subgroup, given by the quo-

^c)> (2-3) tient representation (a, Va) with a defined on [/,

7 T_ m 7 ,, we want to get a quotient representation for V a s a
where y ranges over Y2, r ranqes over Jip, and the , r ° ™r i . , , • • , i

, f. / r t -x ,7 i n - r ̂ r i s u b g r o u p o i G . W e c a n a c h i e v e t h i s u s i n g t h e e m -
relations (2-1) are the definitions of Y2 as words , , ,. jn r ,, , 1 rT. ,
. bedding theorem tor wreath products [Krasner and

Kaloujnine 1951]:
Proof. The relations given certainly hold in AxB, Let (3 be the permutation action of G on the cosets
since they were obtained from AxB. of U and set C = Ua and D = G(3. We label the

If we add relations Y2 = 1 to the given presenta- cosets of U in G from 1 to n = [G:U] and pick coset
tion, the relations of type (2-1) become conjugates representatives {r^} such that r̂ /3 maps 1 to i. Now
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we define a mapping 7 = at(m -G —> ClD — Cxn.D using only the primary generators can result in an
by: exponential growth of the word lengths. Instead, we

/, _i x / _i x compute the images of all secondary generators un-
7 :5 ^ {{n • 9 • r ( l f l ) )a , . . . , (r, • 5 • r{.g))a,..., ^ ^ ^ ^ ^ i m m e d i a t e l y a g a n e l e m e n t o f Ua%

(rn - g - r^n9^)a,g ) G Cxn.D if elements of this image group are given in unique
/ ... .T r .(rm J J . - J . I X -1 ^ T \̂ form (say as matrices or permutations) this expo-fwriting ix for iK P) and noting that riXr,.^ G n . ; . y

1 j nential growth will not apply in this representation.
Remark 3.1. If the image of a is a permutation group, Finally, some care has to be taken if we compute
C I D can be represented as a permutation group quotient subgroups of V < U < G when V itself
again. If a is a matrix representation, 7 can be con- had been given by a quotient of U. The way we
sidered as the induced representation a^y (This found the quotients it would be tempting to rewrite
proves that 7 is a homomorphism.) elements of V as elements of G via U. However

In general the representation will be by tuples of this means that at an intermediate stage we would
elements with an appropriate multiplication. (Fol- have to handle rewritten elements of U as words,
lowing a suggestion of J. Neubiiser, these can be which (as mentioned above) can become extremely
realized by "monomial type" matrices.) long. Instead it is much quicker to create a new
T J. - i_ j.i 1 1 • J J 2 J i-r J £ J augmented coset table for V and to rewrite using
Let a be the homomorphism denned on (77 denned ° °

this tableby (iry)& = ua (this is well-defined since ker7 <
ker a). It is surjective onto C, so there is a subgroup
V < Uj which is the full preimage of Va under a. 4. POLYCYCLIC-BY-FINITE GROUPS
The quotient representation of V as a subgroup of D e f i n i t i o n 4 / l . L e t /? : G -> ff be an epimorphism. A
G therefore is (7, V). homomorphism 5: G -> N.H with ker S < ker/3 and

If a is a permutation action as well, and V is a N ^ keif3/kerS i s c a l l e d a Hft o f ^ W e c a l l N t h e

point stabilizer in this action, the resulting image j - n u / f A
V is a point stabilizer in the resulting permutation
action 7 for the wreath product. Remark 4.2. Following the use in [Huppert 1967;

Robinson 1996], we call an extension 1 —>> N —>
In practice, once we have computed a presenta- Ar TT TT 1 , , Ar , TT / r™ .

n TT .-,, 1 . 1 . 1 . n . 1 N.H -> H -> 1 an extension of N by H. (This
tion or c/, we will work with an isomorphic mutely ,, , xl ri-rj.ro -^ vr,

- , . means that the image group 01 a hit or p with lift
presented group U and compute the further quotient , , AT . . r AT u no \

_ _ r% kernel J\l is an extension or TV by Gp.)
a from the presentation of U.

Thus, to evaluate a on elements of U < G we must We now consider the situation that [G:U] is finite,
express these elements as words in the generators of j3 is the permutation action of G on the cosets of U
U which gave the presentation for U. This can be and that a homomorphism a: U —>> Ua is obtained
achieved by the same Reidemeister rewriting process as a result of a polycyclic (or nilpotent) quotient
used to compute a presentation of U in the first algorithm applied to a presentation for U. (For
place. finite groups, "polycyclic" is equivalent to "solv-

Typically the rewritten presentation U will be un- able".) Then Ua is polycyclic and 7 : G —» Ua I Gf3
handily large and one will apply Tietze transforma- is a lift of (3 whose image is polycyclic-by-finite with
tions first to shrink it — see the survey [Havas and the "finite" part given by G/3.
Robertson 1993]. To keep the connection to the orig- Since polycyclic-by-finite groups are the largest
inal U one therefore has to keep track of the Tietze class of groups for which an algorithmic theory is
transformations being done. possible [Baumslag et al. 1991] a natural question

If the index of U gets larger, a little bit of care which arises at this point is therefore whether this
has to be taken to avoid memory problems: By de- iterated quotient construction can help to expose all
fault the rewriting yields a word that also uses "sec- polycyclic-by-finite factor groups of G\ respectively
ondary" generators (are defined as words on the all such factors, where the top part is given by the
"primary" generators). Expanding these as words image G/3.
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Certainly all such lifts can be found by computing U8/V with US/N with common factor U8/M. This
polycyclic quotients for U — ker /?, indeed the em- is illustrated by the following diagram:
bedding theorem for wreath products is often given
only for this situation (see [Huppert 1967, 15.9], for JJ
example).

On the other hand the number of generators and
relators for a subgroup presentation grows with the
subgroup index, and even reduction methods such [M

as reduced Reidemeister-Schreier and Tietze trans- v=U^°°^6 / \ \ N
formations cannot remedy this fully. Therefore the <( \ ^
index of ker /3 is often too big to make the computa- \y^ L

tion of a presentation computationally feasible. The \^
algorithmic question we face is thus: Given a homo- I (1)
morphism /?, find a subgroup U > ker/3 of index as
small as possible, such that a quotient algorithm ap- Now consider the easiest nontrivial case: Assume
plied to U will find some (or all) finite by polycyclic that N is a minimal normal subgroup of H and thus
factors that lift G/?. This gives rise to: is elementary abelian. Then N/K is abelian and

thus M1 < V. Furthermore N/K is central in M/K
Definition 4.3. Assume there is a lift 5: G —>• H of p , ,, y <\ M
whose lift kernel N — (kei P)S < H is a polycyclic AT . , , ' , n a ~ rj/AT W u + • + ̂

, TT „ * * „ r r \ N is a module for G/3 = H/N. When restricted
group. Take U < G with kerp < U. We say that (£ , . ^o , , x , n/ro ,, J i AT-I
6 F — H - J (from being a Gp-module) to M/3, the module N has
N is visible from U if there is a homomorphism a * • • i r + T +i, J ^ I • i

J i l l a trivial factor. In other words: 1 here is a subgroup
on U so that the image Ua is polycyclic and that TJ7 . TT , , £ , TJ7 -.^ ,n , 0 I - J ^ H / < c / (we can set for example W := M) such

fkera)^ < ker 5 ~
gGGV y — • ^ a ^ C//W is solvable and that W/3 is a subgroup

Certainly any polycyclic N is visible from ker/?. We of a vector stabilizer for the dual module of N. Let
also observe that visibility does not solely depend L < TV be an M/?-submodule (considering N as an
on the image Up, but also on the type of the exten- M/?-module by restriction) of codimension one with
sion: Consider the case of 2.A6 and 2 x A6. In both trivial factor module. Since V < M, the factor M/L
cases there is a factor group Gfi isomorphic A6 with has a complement (namely (V, L)/L) to N/L.
normal subgroup N isomorphic Z2. We consider a Conversely, let W < G be a subgroup such that
subgroup U so that Up = StabAfl(l) = A5. In the ^ stabilizes a vector for the dual module of N.
first case, the image of U in H is the perfect group T h e n t h e r e m u s t b e a W/?-submodule L < N of
2.4s, so N is invisible from U. In the second exam- c o d i m e n s i o n l f a n d t h u s L <, W ( 5 - I n t h e f a c t o r

pie, however the image of U in H is 2 x A5, so there WS/L^ e i t h e r t h e p e r f e c t r e s iduum (WS/L)^ in-
is a nontrivial solvable quotient a which makes N tersects trivially with 7V/L (and so TV is visible from
v i s i b l e - W and thus visible from any U > W with U/W solv-

For the general situation, let 5 be a lift of P and a b l e ) o r [t c o n t a i n s NIL' I n t h i s s e c o n d c a s e ' s e t t i n S
P:= (W6)/L, we have that N/L < Z(P) n P' and

V := (7(oo)(5 = (/75)(oo) P ^ (N/L).{WP). We call such an extension of a
(nontrivial) N/L by WP Schurian and the induced

the smallest normal subgroup of US with solvable e p i m o r p h i s m p:W-* P a Schurian lift of (3\w.
factor. Then visibility of N means that K :=VnN W e h a y e p r o v e d :

does not contain any nontrivial normal subgroup of
H. We also set M := (V, N). So U8/M is the largest Lemma 4.4. / / a known quotient P of a finitely pre-
solvable quotient of U5/N = Up. Thus M — XS sented group G lifts with the lift kernel isomorphic
where X is the full preimage of (C//?)(oo) under /3. to a simple module JV, and W < G is a subgroup
Being an intersection of two normal subgroups, K such that Wp is a vector stabilizer in the dual mod-
is normal in [7(5, so U5/K is a subdirect product of ule of iV, either N is visible from every subgroup U
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with W < U < G and U/W solvable, or there is a \i\G —> FA, and since [S,F] < S this epimorphism
Schurian lift of f3\w. is a Schurian lift of (3.

On the other hand for any Schurian lift \± of (3
Since we aim to "discover" N (and thereby the new ^ A = 7 M), i? < ker A is a condition for M

quotient H) we now develop a criterion for the ex- b a m o f ^ S i n c e p x ig & S c h u r i a n e x t e n s i o n

istence of Schurian lifts: r c\ u -no v, n > O\ ^ v / n w J J.̂
of SX by Fp we have that SX < Z(FX) and thus
[S,F]<kerA. D

4A. Relators in the Schur Cover
m , -, , ! . . , , . T , • o i Since every Schurian extension is a factor of a Dar-
To study this situation, we have to examine Schur J

 rr̂  o ^ TTT1^, . i ^ - i T x 7 - . i _ r >o stellungsgruppe bchur 1907, Q 2,111 , we now con-
Covers in more detail. Let F be a free group, G . . -f „ , , , . ,.

.,, . ,. ^ ri T T , ^ sider Darstellungsgruppen and the multiplier
a group with projection j : r —> G and let it =
ker7 = (31)NT- Assume that there is an epimor- M(B) = (S fl F')/[S, F]
phism (3 : G -^ B onto a finite group JB, denote
the kernel of the projection of F onto B by S = ° ^'
ker(7/3) and note that R < S. We finally assume Definition 4.6. Set L := ^ [ ^ F ] n F7 and Wfl(S) :=
that ker/3 < G', that is the largest abelian quotient L/[S,F]. The factor
of G is isomorphic to the largest abelian quotient of

B. MR{B) := (S n F')/L = 5/i?[5, F]
We want to investigate, under which conditions = M(B)/WR(B)

there can be a Schurian lift fi: G -> Q of /? (that . , n /r_. i n •
, T r ,. , ^ r ^ ,, , . c , . is called the R-fixed multiplier of B. (These defini-

IS we look tor a quotient Q or G that is a bchunan . . _ . v» i n i i i
r , , i ^/o\ -î  i tions depend not only on K and B, but also on the

extension ot a normal subgroup by Gp). ror such a . . n _ x

rp, , . ,, ,. - i . - u choice of/?.)
lift, we denote the corresponding epimorphisms by y

A : F —>> Q and v:Q —> B. This group MR(B) is the largest factor of the mul-
_ _ / n r n _, . _, _ tiplicator M(B) that can be realized compatibly to

Lemma 4.5. Ine quotient b /R[b,r\ is a bchunan „ I D
extension of S/R\S, F] by B and is a quotient of Tr „ . , , , /x, , N
_, _ n' T * , n 7 , , It G is a complement to (the torsion subgroup)
G. For any Schunanhft M 0/ /? j c have for the L/[ } .Q R [ S F ] / [ S F ] t h e n c a l g o ig a l e .
epimorphism A = 7 M tta* ker A > R[S, F}. m e n t t Q ^ p ^ ^ ^ .Q 5/[f i,? ^ T h u g ^ ^ ^ ^

^ / is a quotient of a Darstellungsgruppe F/C of B =
7 / F/S. In other words: We obtain the largest Schurian

^ ^ / \ quotient by evaluating the relators 3? for B in a suit-
g/ ^ \ able Darstellungsgruppe (namely F/C) of 5 . Here
/^K \ jpf suitable means not only a suitable isomorphism type,

/ \ ^ / but a suitable choice of the complement C which in-
y\R[S, F] jy fluences the relator values in the Darstellungsgruppe.

/ : \ / s n F'
(1) •+— /R . ^v / / Remark 4.7. If B is a group which has several non-

\ . • /\L /MR{B) isomorphic Darstellungsgruppen and we take for %
^V / the relators of another Darstellungsgruppe not iso-

• T?,no w /D\ morphic to F/C, we see that R[S,F] does not nec-
Q - essarily contain every complement C to S fl Ff. We

• . therefore cannot compute WR(B) by evaluating the
-[S, F] relator set R in an arbitrary Darstellungsgruppe, the

r ,„ ,. r , . \ r.. i r> ̂  ™ choice of a "suitable" group is crucial.
Proof, (bee diagram for clarity.) bmce kerp < G ,
we have that (i?, F') — (S, F'). This implies, setting We get around this problem by working with L in-
A: F -)• F/i2[5, F], that SX < Z(FX) n (FA);. Since stead which does not depend on the choice of C and
R< S, the epimorphism A induces an epimorphism which together with C will generate R[S,F].
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Lemma 4.8. ([S,F],R n F') = R[S,F] n F ' = L. get 3 = {r(F2) | r G ftF} (where %F are relators for
r^ n „ (kerop)^ < F / JR in the generating set Y2^).

Proof. Since [S,F] < S n F ' and i? < S, both gener- c r r D r/i • fi , ^ u UV>/LV ^
1 ' - - ' & Since [FijR • F is finite, the subgroup RF F <

atmg groups on the left hand side are in both groups n / rv • , • r u r J ^ i x- • m
? , , i c F/F is torsion free abehan and the relations m RF

on the right hand side of the equation. To see the . , , , -, w. , n v •» -,
° M are just commutators and integral linear dependen-

converse, take x G i? o, F fl F . Then there are . „ T*r -, , ,, n. , ,
' _ ; , cies . We denote these linear dependencies among

r £ R, s £ o , F and f G F , such that x = rs = f. ,, . r ,, T/- -, m ™n

' ' L ' , , „ , J
A the images of the Y2 by Klin. When representing

Since 15,Fl < F , we see that r = f/s G F r and ., . c\r - T?IT?I \. re • x J. n
- /R P ' images of y2 in F / F ' by coefficient vectors these
~~ ^ ' L ' J/- dependencies can be deduced from a Smith normal

Since [F:(R,F')] = [G:G'\ < oo and normal sub- form of the matrix formed by these vectors,
group generators for R and F' are known, Lemma S i n c e commutator relations hold automatically in
2.3 and Corollary 2.4 give a generating set J for M(B) < D, w e obtain 35 (and thus WR(B)) by
R n F' as a normal subgroup. evaluating the relators # l in in the images Y26. We

Under an epimorphism from F onto an (arbitrary) obtain these images Y2S by evaluating the relators
Darstellungsgruppe D, the subgroup [5, F] maps to i n # (the relators for G) in the free generator images
the trivial subgroup of D. Thus the set 3 will map dcD.
to a normal subgroup generating set of (the image I*1 other words:
in D) of (RHF', [5, F]) which is (the image in D) of T h e Q r e m 4W / ; ^ Z5 a n y DarsteUungsgruppe of B

R[S,F}. Furthermore, since the multiplier is central ^ D/R ^ B and [G:Qf] = [B:B^ ^ uft kemd

in Z>, the images of a are subgroup generators of this QJ fl farycrf 5 c ^ r m n ^ o / p that is a homomor.
subgroup. We deduce: p / m m o / G ^ F / j R ^ ^ e n 6 y MR{B) ^ K/WR(B)^

Lemma 4.9. Let D be an arbitrary Darstellungsgruppe where WR(B) = (r(Y2) I r € %m) and Y2 = {r(d) \
for G(3, v: D —> G/3 /̂ie natural homomorphism and r £J<\.
5:F -+ D be a projection of F on D such that 7/3 =
5v. 4B. Computing WR(B) and MR(B)

Let d be the list of images of the free generators I n practice we want to compute WR(B) and the fac-
of F under 6. (If only D and v are given, one can tor MR(B) for a given B, G and f3:G ->• B without
get d as preimages under v of the images of the free having to construct a Darstellungsgruppe D first.
generators of F under 7/?, this will define such a We note first that we can consider the different
set S.) p-parts of M(B) and of WR(B) separately.

Then WR(B) = (36) < D (that is, it is the sub- For a given B and p, the algorithm in [Holt 1984]
group generated by the words in 3 evaluated in d). will compute a PC presentation for a lift L of a p-
Proof. Since 7/3 = 6u, ker5 < S and so kevS can Sylow subgroup P of S with M p ( l^ , together with
T • 1 i , 1 • i r ,i i ! an epimorphism n or this lift onto Jr. (This lift L
be considered to be in place of the complement sub- . . . . . . v ^ .

<~ . T T T o . Tir /n \ / ^ / m • however is not necessarily isomorphic to a Sylow
group C considered above. Since WR(B) < M(B) is . . _ n

 J ^ _ N
 J

, 1 . 7̂1 i i \ r c r n subgroup of a Darstellungsgruppe of B.)
central in V, normal subgroup generators suffice. U ° . .._ . , r r 9 / n ^ x

& K & This lift corresponds to a cocycle cp G H2(P,C).
To express 3 explicitly, we have to apply Lemma 2.3 Furthermore [Holt 1985] shows that the corestric-
for the homomorphisms <p := 7 : F ->• F/ i? = G tion ^ := corP^B(^) G H2(B,C) corresponds to a
and -0 : F -> F/F1. Since F / F ; is abelian, the p-Darstellungsgruppe B of B:
set y2 — sufficiently many conjugates of relators r-̂  If b denotes the choice of a fixed representative in
(r G %f G F) (remember that i? = (3?}NT), such B for 6 G B, we conclude that 6^- = {b%bj)^){b^bj)
that the images of these conjugates in F/F' will gen- for b^bj G B.
erate (ker^)^ as a subgroup — consists only of re- By iteration, we can therefore use the algorithm
lators and no proper conjugates are needed. Also for evaluating ip via the a "transfer"-like sum given
the relations of type (2-3) (the conjugation action in [Holt 1985] to obtain for each relator r G ft of Gof F/F1 on (Y2) < F/F1) become trivial. Thus we a value mr in the p-part of M(B).
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To compute the relations %-m, we collect (abelian- tion of U to G will simultaneously expose the largest
ized) coefficient vectors for all the relators r in a possible Schurian lift (and so no search for a U2 is
matrix A and compute the Smith normal form S of necessary). We will see an example of this in Sec-
A. The transformation matrix P (when A = PSQ) tion 5C.
then gives the linear relations which yield the p-part

r rrr / r>\ Remark 4.12. In practice frequently not just a sm-
TT7 xl , , , / m ,, r , n/rrry\/jjr / T>\ gle module but a sequence of modules is considered.
We then get MR(B) as the factor M(B)/WR(B). * , n , i , *

Thus we might find several different lifts. In this
case we can in each step replace Q by the subdirect

4C. Application to the Problem of Finding Lifts , , £ ^ , ,, , , ,.£, , r
r r ° product of Q and the largest lift known so far.

We now return to the problem of finding all fac- j t [s possible, that several of those lifts have the
tor groups of G which are lifts of Gfi with a simple s a m e kernel. In this case (which can be checked
module: for by computing the quotients of the image of one

Let A be the simple module of Gf3 for which we subgroup in the lift of the other) it is sufficient to
want to find lifts. Let U < G such that U/3 is a construct only one lift.
vector stabilizer for a nontrivial vector in the dual Finally, in the case that lifts for several modules
of A and let U < U < G with U/U a solvable super- a r e t o be considered, it can happen that a vector
group of U. stabilizer for the one module is contained in a vec-

By rewriting (possibly in several steps via inter- t o r stabilizer for the other module. In this case
mediate subgroups between U and G, which we can it [s worth noting that if U < V < G everything
again find via their images under (5) we compute a visible from V or every Schurian lift recognizable
presentation of U. Let H := (X \ T) be the cor- from MR(V) will be visible, respectively recogniz-
responding finitely presented group. The rewriting able, from U as well. So only the smaller vector
process also gives an isomorphism (:U ->• H, which stabilizer need to be considered,
permits us to evaluate /3\jy on the isomorphic group
H. From the subgroup presentation we compute the
largest solvable quotient a of U so that U/kera is 5 ' A N E X A M P L E

elementary abelian. D. Pasechnik [1998] has posed a question about the
If kera ^ ker/3, the induced representation 7 := group

atr/3) exposes a proper lift Q of /3 with a normal

subgroup with a factor isomorphic A, which is a G= (a,b,c,d,e, f,g,h,i,j |

quotient of G. a2, b2, c2, d\ e2, / 2 , g\ h\ i2,
Furthermore, from the presentation we determine ( ^ ^ ^ ( a d ) 3 ? (aey^ (af)

2h,
MR(U3). If this group is not trivial, and not all , N9. , 1N9 , .x9 /7 x9 , /7 7X0

r l 1 v •, j.- J. r\^ J.I • (agfiAah)2, (ai)2Abc)2dgAbd)2,
of it can be realized as a quotient of Q, there is a v UJ v J v J ' v } y ' v J '
Schurian lift of U0 that is a quotient of H. This lift (6e)2 ' (bfYdi (bd)2, (bh)3, (6i)2e, (cd)2,

might correspond to another factor group of ker/3 (ce)2d, (c/)2, (eg)2, (c/i)2g, (cz)2/g,

which is isomorphic to A (and thus another lift of/? (de)
2, (d/)2, (dg)2, (dh)2f, (di)2g,

with lift kernel isomorphic to A). ( c / ) 2 ( ) 2 {ehfh {ei)^ ( / ) 2

In this case we have to find a new subgroup U2 2 2 2 2 2 .2

of U, for which the lift will be not Schurian any w ̂  ' ^ ^ ' v5^) > V Ĵ , l ^ j , J >
longer. In many cases (for example for the obvious {dj)2e, [j,ad], (cj)3, {jf)2gi, (jb)2eg),
choice of a non-p Sylow subgroup) however the index
\n TT 1 -n u i -U-J-- i i F n i .11 Baumeister et al. 2000 , which has a quotient iso-
\G:U2 will be prohibitively large. Further work will L J ' H .
i J J X i x i , J. x- x r t - x i x morphic McL exposed by the extra relators (acb)
be needed to make the construction efficient and to ^ 1 i r

, ,, ,. TP, and (jca). Let iv be the kernel of this quotient
represent the corresponding lift. ^

p : G? -> McL. The question mentions a known lift
Remark 4.11. It is worth mentioning that we can be kernel 323 and asks whether this is the largest 3-lift
lucky and a lift obtained by inducing a representa- kernel.
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Here we would like to find possible lifts with a whose duals C/"4(3) is a vector stabilizer (for example
GF(3)-module. the trivial or the 21-dimensional module).

The modular ATLAS [Jansen et al. 1995] lists We next look at the subgroup of type 34.A6, which
the degrees of the smallest dimensional irreducible is a point stabilizer in C/4(3) in the action on 275
GF(3)-modules of McL as 1, 21, 104, 104 (the dual) points for one orbit of length 112. Let V be the full
and 210. preimage in G of this point stabilizer. By the same

(The reason we stop here and do not consider the methods we find a presentation for V on 10 genera-
other representations is purely practical: The in- tors with 925 relators (of total length <y 120000).
volved calculations turn out to be already at the Representing the wreath product of the action of
limit of what was possible with the computers avail- U on the cosets V\U and of G on U\G as a permu-
able to the author. By the techniques of this ar- tation group we obtain a quotient representation of
tide it would also be possible to consider the re- V by a permutation group of degree 30800.
maining modules for McL. It is to be expected, This group V has a cyclic quotient of order 3.
however, that such calculations would become even (Indeed, V is perfect of index 3 in V, so this is the
harder, while not illustrating additional features of largest solvable quotient of V.) The wreath product
the method.) of this action a with the action p on the cosets of V

Explicit matrices for these representations can be yields a lift tp = ot\?p) with an image group of order
found in [Wilson et al. 1996]. 3104 • \McL\. (This disproves the original conjecture

By investigating the behaviour of these represen- about a maximal 23-dimensional lift kernel.) The
tations for some large subgroups of McL (all cal- lift kernel 3104 is an irreducible module for McL.
culations were done in GAP [GAP 2000]), we find Calculating permutation generators for this group
subgroups which stabilize vectors in the dual mod- 3104 • \McL\ took about 1 hour on an UltraSPARC
ules: 10 when starting with the presentation for G. Com-

putation of a stabilizer chain (and thus determining
Subgroup Specification Dimensions the order and the dimension of the module) then

~Q McL 1~~ took 3 hours (and required about 500MB of stor-

1 J74(3) point stabilizer 21 aSe)-
2 34.A6 2-point stabilizer 104a, 210 Remark 5.1. In the resulting permutation represents
3 31+4:2.54 pt. stab, in N(3A) 104b tion on 92 400 point, the normal subgroup 3104 be-

comes a subgroup of 330 800 acting intransitively with
5A A Proper Lift orbits of length 3. Therefore the resulting permuta-
m l ^ -x ir • r x n • • i i tion group will have base length at least 104. This,
ine group G itself is perfect, so all trivial mod- , ,, , , c ,, 1 t., c o i . TP o. T . ^ 1 - . and the large degree or the permutation represen-
ules must come from bchunan lifts. Since McL is . ,. 7 ,, , t..„ . tation indicate, that the representation as a permu-
large, and we will examine proper subgroups, by . . , r , ,. , ,
^ . A _ ̂  . . . , r ;:. . r\ tation group is not optimal tor such quotients and
Remark 4.12 it is not worth to compute MR(McL) . , , , ,. . ,, ,

n ' indeed a representation as generic wreath product
now; we will get the same information from sub- . , , , ., , ,

might be more suitable,
groups.

Let U be the preimage of C/4(3) under /3. Using The multiplier of 34.^l6 has structure 2 x 33. Again,
Reidemeister-Schreier rewriting and Tietze trans- a calculation shows that the 3-part of WR(3A.A6)
formations we find a presentation for U on 4 gen- is trivial (and thus the 3-part of M#(34.A6) is 33).
erators with 49 relators. Abelianizing this presenta- This shows that this is not the maximal lift of (3
tion shows that U is perfect as well. We also know, with abelian lift kernel,
that M(J74(3)) = 32 x 4. A calculation now shows
that the 3-part of WR(U4(3)) is trivial and thus the 5B- A S e c o n d Lift

3-part of MR([/4(3)) is 32. We therefore know, that Next, we look at a subgroup of type 31+4:2.54. (We
there will be Schurian lifts which show that ker (3 find this as point stabilizer in a subgroup of type
must have factor groups that are McL-modules, for 31+4:2.55, which in turn is the normalizer of a cyclic
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subgroup of order 3 in McL.) Denote its preimage It is also possible to combine both quotients into
in G by X. a subdirect product as an intransitive group of de-

We find a presentation for X on 9 generators with gree 323 400. Verifying that this product has size
1223 relators (of total length ~ 240 000). 32 3 1 • |McL|, however, stretches available computing

The abelian quotient X/X' has order 6. How- resources, requiring about 550MB of workspace.
ever, if we map X in the already mentioned quotient . o . V o ^ n u 4 « ^ . ^ ^ ^
o l 0 4 ' T * \ . v -^\v v n ^ Remark 5.3. Since Xfi = 31+4:2.54 is solvable one
3 . M c L , we get an image Xip with \X(p:X(p' = 2. , , x 7 , . . \ . . .
o ,, ,. , r v r j o -n M I n could try to use a solvable quotient algorithm now
So the quotient of X of order 3 will yield another n _ ;, . . ^ __ . . .

,. , r ^ , . , n , ,. to find the largest quotient of X whose restriction to
quotient of G wnicn exposes another abelian quo- Ar . , . .. . .

, r Ar TV is elementary abelian. However, we already know
tient part of TV. . . 231 "

TT , . . r i that the this factor is at least 3 , which would
Here we get a permutation representation of de- , . . . . _

ooi nnn rr,i u . rr, / r o i • make such a calculation very hard,
gree 231000. The resulting lift ip of p has an image ^T

 J
 r ._or7 ..

r J oi27 17.̂ r- r\ m V n i ioi27- Moreover, the approach of Plesken 1987; Bruck-
group of order 3127 • McL . The lift kernel 3127 is an . ^OO1 . ' . y . , . , , . . , , .

. , , , , . , ' .' ^ , o i n 4 o n91 o ner 1998 is unsuitable in this situation, since the
unisenal McL-module with structure 31U4.3.321.3. . J. n r . . ' .

composition factors of the large module restricted
Remark 5.2. Permutations on 231000 points take up to 31+4:2.*S4 are of dimension at most 4. Building
almost 1MB each. Since the resulting group has already a 231 dimensional module from such small
base length 127, a strong generating set therefore parts becomes unfeasibly hard. Indeed the GAP
will take at least 127MB of memory, a stabilizer implementation based on [Plesken 1987] managed
chain will require even more. In fact it turns out to construct a quotient of size 11664 • 337 over a day
that the default stabilizer chain routine in GAP will and then became that slow that the calculation was
run out of memory (the author was not willing to stopped.
compile a "static" binary to permit the use of more The approach of [Niemeyer 1994] ought to work
than 512MB of memory). Instead, intermediate re- better in this situation, however (in part since the
suits were represented as words in the generators. author had severe problems to compile a working
The flexible type system of GAP [Breuer and Lin- version of all required programs) this has not yet
ton 1998] made it possible to have those new word- been tried,
elements to look to the system like permutations, so
that the existing code for stabilizer chain computa- 5C. Exposal of Schurian Lifts in other Quotients
tion could still be used. T o find o u t i f t h e l i f t s found a l s o e x p O se Schurian
We note that the module —being uniserial — has no lifts> w e m a P t h e subgroups G, J7, V and X under
factor isomorphic 31 0 4 . The quotient 3104 found be- V a n d ^ a n d compute the commutator subgroups
fore therefore must be a different quotient of TV. w i t h t h e corresponding lift kernels. (That is for
(In fact MeatAxe methods [Holt et al. 1995] show e a c h subgroup 4 < G w e compute the commuta-
that both 104-dimensional modules are dual to each t o r [A\NX] < NX.) We get the following table,

o t h e r . ) where q := [NX:[AX,NX}] and r := [AX:(AX)']:

Thus we know that TV must have an elementary AQ yr (AQ\ T jft \
abelian 3-quotient of size at least 32 3 1 . —— rr—: ; :—

™ * u • u A ± G McL 3 ?/> 3 1
The same technique as above was used to con- ( . 2 2

struct generators for the module 3127 which was re- ot A Q3 / Q3 I
quired to compute the composition structure. oi+46o q2 / o3

The multiplier of 31 + 4 :2.S4 is of type 3 x 3 and V. ti+±2Q % 1 2
again a calculation of Wi?(31+4:2.54) shows, that the 4

whole of this is realizable via lifts of (3. These results show that all Schurian lifts for the
Nonetheless, an explicit calculation in the image subgroups U/3 and V/3 (and so also all Schurian lifts

group Gift shows that the whole of MR(X(3) is realiz- for G/3) are exposed as parts of i/;. (We implicitly
able in this quotient. (This is the example promised also deduced that the 3-part of MR(McL) has size
in Remark 4.11.) 3.) Since M^(31+4:2.54) is already realized in full
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in the image under ip, there cannot be any extra [Havas and Robertson 1993] G. Havas and E. F.
Schurian lift for the module 104b. Robertson, "Application of computational tools for

We therefore discovered all lifts of (5 whose lift finitely presented groups", pp. 29-39 in Groups and
kernel has a quotient isomorphic to a module of di- computation (New Brunswick, NJ, 1991), edited by L.

. o i n Finkelstein and W. M. Kantor, DIMACS Ser. Disc.
mension up to 210. u a ^ , ~ , o . ' A , , ,, cMath. Theoret. Comput. Sci. 11, Amer. Math. Soc,

Providence, RI, 1993.
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