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Abstract. In this paper, we use Prandtl mixing-length theory and semiempirical the-
ory to extend the classical problem of the wind in the steady atmospheric Ekman layer
with constant eddy viscosity. New generalized atmospheric Ekman equations are estab-
lished and qualitative properties of the corresponding ODEs are studied. Spatial wave
solutions results for the nonlinear and implicit equations with different nonlinearities
are presented.

Keywords: generalized atmospheric Ekman equations, nonlinear and implicit equa-
tions, spatial wave solutions.

2020 Mathematics Subject Classification: 34A09, 86A10.

1 Introduction

Lamina sublayer, surface layer and Ekman layer are three important parts for the atmospheric
boundary layer [24,26]. In particular, the Ekman layer covers ninety percent of the atmospheric
boundary layer, which is driven by a three-way balance among frictional effects, pressure
gradient and the influence of the Coriolis force in non-equatorial regions [13,24,33]. However,
this balance breaks down in equatorial regions, where the Coriolis effect due to the Earths
rotation vanishes, the Coriolis force changes sign across the Equator, so the nonlinear effects
have to be accounted for [4–8, 11, 23, 25].

Ekman was the first to formula and analyse a mathematical model which describes the
behavior of wind-generated steady surface currents [13], the theory is the basis for our un-
derstanding of wind-driven currents, and is also relevant for the air flow in the atmospheric
boundary layer.
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We consider a rotating framework with the origin at a point on the Earth’s surface, with the
x axis chosen horizontally due east, the y axis horizontally due north, and the z axis upward,
it is known that the standard Ekman equations are given by{

f (v− vg) = − ∂
∂z (k

∂u
∂z ),

f (u− ug) =
∂
∂z (k

∂v
∂z ),

(1.1)

where u = u(t, x, y, z), v = v(t, x, y, z) are the components of the wind in the x and y directions
respectively, P is the atmospheric pressure, ρ is the reference density, f = 2Ω sin ϕ is the
Coriolis parameter at the fixed latitude ϕ, ug and vg are the corresponding geostrophic wind
components, k denotes the eddy viscosity [22].

Ekman derived the flow from this model and obtained three characteristics, two of which
have been shown to hold in the general case of depth-dependent eddy viscosity. However,
regarding of the value of the deflection angle of the surface flow from the wind direction,
some data in non-equatorial regions predicted significant differences [9,17,34]. It is natural to
attribute this difference to the assumption of constant vorticity. Some results have been made
on the explicit formula of the solution to (1.1) with the hight-dependent eddy viscosity and
the classic boundary conditions u = v = 0 at z = 0 and u → ug, v → vg for z → ∞ for the
atmospheric Ekman equations [9,10,16,19,20,32]. With respect to wind-driven surface current,
one can refer to [1–3,12,30,31] for the depth-dependent eddy viscosity and the corresponding
boundary conditions.

Noting that (1.1) is formulated by omitting the turbulent fluxes, which has obvious lim-
itations. Recently, Guan et al. [18] introduced a new nonhomogeneous model containing
turbulent flux terms, which improved the classical model proposed in [24]. Further, in this
paper, we propose the following generalized model{

f (v− vg) = − ∂
∂z (k

∂u
∂z ) + 2l2u ∂u

∂x ,

f (u− ug) =
∂
∂z (k

∂v
∂z ) + 2l2v ∂v

∂y ,
(1.2)

where l is a constant number. We emphasize that (1.2) is a generalization of the standard
Ekman equations since the turbulent flux term is considered. Comparing with the previous
extension model in [18], (1.2) has a totally different and specific turbulent flux terms. In
[18], the turbulent flux is assumed to be a function of height, but here we use semi-empirical
method and assume turbulent flux to be a function of u, v and their partial derivatives, which
are more reasonable than the turbulent fluxes only depending on the high z in [18] and also
makes the current model more complex.

Note that explicit solution and dynamical properties of atmospheric Ekman flows with
boundary conditions have been presented extensively. There are still very few contributions
on the modified Ekman equation. In particular, periodic solutions and Hyers–Ulam stability
are reported in a modified model in [18] by using the theory of ordinary differential equations
and hyperbolic matrix theory. In this paper, we consider spatial wave solutions of (1.2), which
satisfy certain ODEs, and we study qualitative properties of this corresponding ODEs. This is
a novelty of this paper.

The rest of the paper is organized as follows. New generalized atmospheric Ekman equa-
tions are derived in Section 2. Section 3 deals with spatial wave solutions of (1.2). We study
qualitative properties of the corresponding ODEs determining these solutions. Involving also
other terms not just linear ones into (2.5), we continue our analysis in Section 4 with more
general ODEs. Finally, (2.4) is investigated in Section 5. The obtained spatial wave ODEs
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are nonlinear and implicit, so their study is difficult. There are still many open challenging
problems for further research. These aspects are presented in Section 6.

2 Model description

In the local Cartesian coordinate system, the earth’s surface is approximately regarded as a
plane, and the curvature term can be omitted, so the Ekman layer is governed by the following
equations, see [24, 26] 

Du
Dt = − 1

ρ
∂P
∂x + 2Ω sin ϕv− 2Ω cos ϕw + Frx,

Dv
Dt = − 1

ρ
∂P
∂y − 2Ω sin ϕu + Fry,

Dw
Dt = − 1

ρ
∂P
∂z − g + 2Ω cos ϕu + Frz,

(2.1)

where 
Frx = υ[ ∂2u

∂x2 +
∂2u
∂y2 +

∂2u
∂z2 ],

Fry = υ[ ∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2 ],

Frz = υ[ ∂2w
∂x2 + ∂2w

∂y2 + ∂2w
∂z2 ],

and υ = µ
ρ is the kinematic viscosity coefficient [24], u = u(t, x, y, z), v = v(t, x, y, z) and

w = w(t, x, y, z) are the components of the wind in the x, y and z directions respectively.
Besides,

−→
U = (u, v, w) satisfies the continuity equation

∂ρ

∂t
+∇ · (ρ−→U ) = 0. (2.2)

For a wide range of air movements, w ≪ u, v [33], so we assume w = 0, kinematic viscosity
coefficient is negligible in the Ekman layer, so Frx = 0, Fry = 0 , then (2.1) reduces to{

Du
Dt = − 1

ρ
∂P
∂x + 2Ω sin ϕv,

Dv
Dt = − 1

ρ
∂P
∂y − 2Ω sin ϕu.

(2.3)

Note that the Boussinesq approximation is an important simplifications in (2.2) and (2.3) for
application in the boundary layer, in this approximation, density ρ in (2.2) and (2.3) are re-
placed by a constant mean value (everywhere except in the buoyancy term in the vertical
momentum equation, see [24]). Clearly, (2.2) becomes to

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0.

We assume that the variable consists of the mean value and the turbulence value, for exam-
ple, u = u + u′, the corresponding mean values are indicated by overbars and the fluctuating
component by primes.

Under the Boussinesq approximation, the mean velocity fields satisfy the following conti-
nuity equations [24]

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0,

we separate each dependent variable into mean and fluctuating parts, and substitute into the
chain rule of the differentiation, then we obtain

Du
Dt

=
∂u
∂t

+
∂

∂x
(u′u′) +

∂

∂y
(u′v′) +

∂

∂z
(u′w′),
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where
D
Dt

=
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

is the rate of change following the mean motion.
Using the above relationships and (2.3), the mean equations thus have the following form:{

Du
Dt = − 1

ρ
∂P
∂x + f v− [ ∂u′u′

∂x + ∂u′v′
∂y + ∂u′w′

∂z ],
Dv
Dt = − 1

ρ
∂P
∂y − f u− [ ∂u′v′

∂x + ∂v′v′
∂y + ∂v′w′

∂z ].

We omit the inertial acceleration terms because they are much smaller that the Cariolis force
and pressure gradient force terms for midlatitude synoptic-scale motions [24], using the
geostrophic balance, we obtain{

f (v− vg)− [ ∂u′u′
∂x + ∂u′v′

∂y + ∂u′w′
∂z ] = 0,

− f (u− ug)− [ ∂u′v′
∂x + ∂v′v′

∂y + ∂v′w′
∂z ] = 0.

By the Flux-Gradient theory [24], we get{
u′w′ = −k ∂u

∂z ,

v′w′ = −k ∂v
∂z ,

where k is the eddy viscosity coefficient, then we obtain{
f (v− vg) = − ∂

∂z (k
∂u
∂z ) +

∂u′u′
∂x + ∂u′v′

∂y ,

f (u− ug) =
∂
∂z (k

∂v
∂z ) +

∂u′v′
∂x + ∂v′v′

∂y ,

usually we omit the terms ∂u′u′
∂x , ∂u′v′

∂y , ∂u′v′
∂x and ∂v′v′

∂y because they are small in comparison to

the terms ∂u′w′
∂z , ∂v′w′

∂z , but here we retain ∂u′u′
∂x and ∂v′v′

∂y and obtain{
f (v− vg) = − ∂

∂z (k
∂u
∂z ) +

∂u′u′
∂x ,

f (u− ug) =
∂
∂z (k

∂v
∂z ) +

∂v′v′
∂y .

By the Prandtl mixing-length theory [24], we have u′ = −l′ ∂u
∂z , v′ = −l′ ∂v

∂z , so{
f (v− vg) = − ∂

∂z (k
∂u
∂z ) + l2 ∂

∂x (
∂u
∂z )

2,

f (u− ug) =
∂
∂z (k

∂v
∂z ) + l2 ∂

∂y (
∂v
∂z )

2.
(2.4)

where l = l′ is the mean mixing-length.
Now replacing u, v, ug and vg by u, v, ug and vg, respectively, and we assume that

∂u
∂z
≈ u,

∂v
∂z
≈ v, (2.5)

by semiempirical theory, one can obtain{
f (v− vg) = − ∂

∂z (k
∂u
∂z ) + 2l2u ∂u

∂x ,

f (u− ug) =
∂
∂z (k

∂v
∂z ) + 2l2v ∂v

∂y .
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3 Spatial wave solutions for (1.2)

Assuming that k is a nonzero constant, (1.2) becomes{
f (v− vg) = −k ∂2u

∂z2 + 2l2u ∂u
∂x ,

f (u− ug) = k ∂2v
∂z2 + 2l2v ∂v

∂y .
(3.1)

We are looking for spatial wave solutions of (3.1) as follows

u(x, y, z) = U(αx + βy + z),

v(x, y, z) = V(αx + βy + z),
(3.2)

where α and β are parameters. Then we get

f (V − vg) = −kU′′ + 2αl2UU′,

f (U − ug) = kV ′′ + 2βl2VV ′.
(3.3)

For α = 0 and β = 0, we get the standard Ekman equations. Taking

X =


U
V
U′

V ′

 =


x1

x2

x3

x4

 ,

(3.3) becomes

X′ = F(X) =


x3

x4
f
k (vg − x2) +

2αl2

k x1x3
f
k (x1 − ug)− 2βl2

k x2x4

 . (3.4)

Note (3.4) has a unique equilibrium

X0 =


ug

vg

0
0


and its Jacobian matrix is

DF(X0) =


0 0 1 0
0 0 0 1

0 − f
k

2αl2ug
k 0

f
k 0 0 − 2βl2vg

k

 (3.5)

with the characteristic polynomial

χ(λ) = λ4 + λ3 2βl2vg − 2αl2ug

k
− λ2 4αβl4ugvg

k2 +
f 2

k2 . (3.6)

Lemma 3.1. χ defined in (3.6) has no pure imaginary roots.
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Proof. Suppose λ = ıω, ω ∈ R is a root of χ, then we get

0 = χ(ıω) = ω4 − ıω3 2βl2vg − 2αl2ug

k
+ ω2 4αβl4ugvg

k2 +
f 2

k2 .

So

ω4 + ω2 4αβl4ugvg

k2 +
f 2

k2 = 0,

ω3 2βl2vg − 2αl2ug

k
= 0.

Clearly ω ̸= 0, then βvg − αug = 0, so

ω4 + ω2 4α2β2l4ugvg

k2 +
f 2

k2 = 0,

which is not possible. The proof is finished.

Consequently, DF(X0) is hyperbolic. When α = β = 0, we get

DF(X0) = A =


0 0 1 0
0 0 0 1
0 − f

k 0 0
f
k 0 0 0


with (3.6) of the form

λ4 +
f 2

k2 = 0

and possessing four eigenvalues√
f

2k
+

√
f

2k
ı,

√
f

2k
−
√

f
2k

ı, −
√

f
2k

+

√
f

2k
ı, −

√
f

2k
−
√

f
2k

ı.

Thus there are two eigenvalues of A on both sides of the imaginary axis. By Lemma 3.1
this property remains for any DF(X0) with arbitrary α and β. Consequently, X0 has a 2-
dimensional stable manifold Ws

X0
. So we have a 4-parameterized family of functions

X(α, β, s1, s2; t)

such that
X(t) = X(α, β, s1, s2; t)

is a solution of (3.4) with X(0) ∈ Ws
X0

. Then X(t)→ X0 exponentially fast as t→ ∞. Summa-
rizing, we arrive at the following result.

Theorem 3.2. Functions

uα,β,s1,s2(x, y, z) = U(α, β, s1, s2; αx + βy + z),

vα,β,s1,s2(x, y, z) = V(α, β, s1, s2; αx + βy + z)
(3.7)

give a 4-parameterized family of solutions for (3.1) with

uα,β,s1,s2(x, y, z)→ ug,

vα,β,s1,s2(x, y, z)→ vg,

as x + y + z→ ∞, x ≥ 0, y ≥ 0, z ≥ 0, α > 0 and β > 0. In general, the above asymptotic properties
hold for αx + βy + z→ ∞.
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For l = 0, ug = vg = 1, f
2k = 1, we have an implicit solution [20]

u10,0,1,−1(x, y, z) = e−(10x+z) sin(10x + z)− e−(10x+z) cos(10x + z) + 1,

v10,0,1,−1(x, y, z) = −e−(10x+z) sin(10x + z)− e−(10x+z) cos(10x + z) + 1,
(3.8)

visualizing their spatial wave forms on Figure 3.1.

Figure 3.1: Solutions of (3.8): left u10,0,1,−1(x, y, z), right v10,0,1,−1(x, y, z)

We need the next observation.

Lemma 3.3. If α > 0 and β > 0, then

L(X) =
k
2
(x2

4 − x2
3)− f x1x2 + f vgx1 + f ugx2

is a Lyapunov function of (3.4) on the set

Π = {x1 ≥ 0, x2 ≥ 0} ⊂ R4.

Proof. For any solution X(t) ∈ Π of (3.4), we compute

L(X(t))′ = k(x4(t)x′4(t)− x3(t)x′3(t))− f x′1(t)x2(t)− f x1(t)x′2(t) + f vgx′1(t) + f ugx′2(t)

= x4(t)( f (x1(t)− ug)− 2βl2x2(t)x4(t))− x3(t)( f (vg − x2(t))

+2αl2x1(t)x3(t))− f x3(t)x2(t)− f x1(t)x4(t)

+ f vgx3(t) + f ugx4(t) = −2βl2x2(t)x4(t)2 − 2αl2x1(t)x3(t)2 ≤ 0.

The proof is finished.

Now we present a uniqueness result for nonnegative solutions in Theorem 3.2.

Theorem 3.4. If α > 0 and β > 0, then any bounded solution X(t) ∈ Π, ∀t ≥ 0 of (3.4) tends to X0

as t→ ∞, i.e., X(t) ∈Ws
X0

, ∀t ≥ 0.

Proof. Set
L̇(X) = −2βl2x2x2

4 − 2αl2x1x2
3.

The ω-limit of set of X(0) is denoted by ω(X(0)). The largest invariant subset of the set

{X ∈ Π | L̇(X) = 0}

is denoted by M. A simple analysis shows that M = {X0}. Next, by Lemma 3.3 and [21,
Theorem 9.22], we know ω(X(0)) = {X0}. The proof is finished.
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Next, using (3.2), we consider that a solution depends on z. Now we study opposite, that
is we take

u(x, y, z) = U(αx + βy),

v(x, y, z) = V(αx + βy).
(3.9)

Then (3.3) is transformed to
f (V − vg) = 2αl2UU′,

f (U − ug) = 2βl2VV ′,
(3.10)

which is an implicit ODE (see [15, 29]). Now (3.10) gives

0 = αUU′(U − ug)− βVV ′(V − vg)

=
d
dt

[
α

(
U3

3
− U2

2
ug

)
− β

(
V3

3
− V2

2
vg

)]
,

thus implicit solutions are given by

H(U, V) = α

(
U3

3
− U2

2
ug

)
− β

(
V3

3
− V2

2
vg

)
= c ∈ R. (3.11)

Theorem 3.5. There is a family of periodic spatial solutions (3.9) of (3.1) given by the equation (3.11)
under the following condition

αβugvg < 0. (3.12)

Proof. The gradient of H(U, V) is

∇H(U, V) =

[
αU(U − ug)

−βV(V − vg)

]
,

so [
ug

vg

]
, (3.13)

is a critical point of H(U, V) with the Hessian

Hess H(ug, vg) =

[
αug 0

0 −βvg

]
.

Clearly, if (3.12) holds then (3.13) is a strong local extreme of H(U, V) and it is a center
for (3.10). If αβugvg > 0, then (3.13) is a non-degenerate saddle point of H(U, V) and it is

hyperbolic. Consequently, (3.11) are periodic for suitable c ≈ βv3
g−αu3

g
6 under (3.12). The proof

is finished.

Implicit ODE (3.10) has the same phase portrait as the following ODE

a′ = βb(b− vg),

b′ = αa(a− ug)
(3.14)

when a ̸= 0 and b ̸= 0. (3.14) has 4 equilibria (0, 0), (ug, 0), (0, vg) and (ug, vg) which are
either centers or hyperbolic. Thus, implicit ODE (3.10) has impasse solutions, so solutions
terminating in singularities U = 0 or V = 0 in finite time [15, 29], which are impasse spatial
solutions of (3.1). This is demonstrated on Figure 3.2.

We end this section with the following notes.
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Figure 3.2: Periodic and impasse solutions of (3.10): left α = −β = ug = vg = 1,
right α = β = ug = vg = 1

1. We can reduce parameters in (3.3) by taking

U(t) = ug +

√
f k

2l2 U1

(√
f
k

t

)
,

V(t) = vg +

√
f k

2l2 V1

(√
f
k

t

) (3.15)

to get
V1 = −U′′1 + αU1U′1,

U1 = V ′′1 + βV1V ′1.
(3.16)

We do not consider (3.16) until instead of (3.3) to keep the role of other parameters in the
above results.

2. Let (3.16) have a T-periodic solution. Then integrating (3.16) we have

∫ T

0
V1(t)dt =

∫ T

0
(−U′′1 (t) + αU1(t)U′1(t))dt =

[
−U′(t) + α

U1(t)2

2

]t=T

t=0
= 0,

∫ T

0
U1(t)dt =

∫ T

0
(V ′′1 (t) + βV1(t)V ′1(t))dt =

[
−V ′(t) + β

V1(t)2

2

]t=T

t=0
= 0.

So we can use Wirtinger inequality [27, p. 9] to derive

∥U′′1 ∥2 ≤ ∥V1∥2 + |α||∥U1U′1∥2 ≤
T2

4π2 ∥V
′′
1 ∥2 +

T
2π
|α|∥U1∥∞∥U′′1 ∥2,

∥V ′′1 ∥2 ≤ ∥U1∥2 + |β||∥V1V ′1∥2 ≤
T2

4π2 ∥U
′′
1 ∥2 +

T
2π
|β|∥V1∥∞∥V ′′1 ∥2,

(3.17)

where

∥U∥2 =

√∫ T

0
U(t)2dt, ∥U∥∞ = max

t∈[0,T]
|U(t)|.

Adding the two equations of (3.17), we arrive at

∥U′′1 ∥2 + ∥V ′′1 ∥2 ≤
(

T2

4π2 +
T

2π
max{|α|∥U1∥∞, |β|∥V1∥∞}

)
∥U′′1 ∥2 + ∥V ′′1 ∥2. (3.18)
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So if
∥U′′1 ∥2 + ∥V ′′1 ∥2 ̸= 0,

then (3.18) implies

1 ≤ T2

4π2 +
T

2π
max{|α|∥U1∥∞, |β|∥V1∥∞},

which leads to(√
4 + (max{|α|∥U1∥∞, |β|∥V1∥∞})2 −max{|α|∥U1∥∞, |β|∥V1∥∞}

)
π ≤ T. (3.19)

Using (3.15) and (3.19), we obtain

Theorem 3.6. A period T of any nonconstant T-periodic solution of (3.3) with

max
t∈[0,T]

|U(t)− ug| ≤ M, max
t∈[0,T]

|V(t)− vg| ≤ N

satisfying

π

√
k
f

(√
4 +

4l2

f k
(max{|α|M, |β|N})2 − 2l2√

f k
max{|α|M, |β|N}

)
≤ T.

Results similar to Theorem 3.6 are presented in [14].
3. We are focusing in this paper on the case for fixed f ̸= 0. This leads to a hyperbolic-like

dynamics. On the other hand, if f = 0, then (3.4) has a form

x′1 = x3,

x′2 = x4,

x′3 =
2αl2

k
x1x3,

x′4 = −2βl2

k
x2x4.

(3.20)

Clearly
Σ = {x3 = x4 = 0}

is a fixed point set of (3.20) with Jacobian matrices
0 0 1 0
0 0 0 1
0 0 2αl2x1

k 0

0 0 0 − 2βl2x2
k

 (3.21)

possessing eigenvalues

0, 0,
2αl2x1

k
, −2βl2x2

and the corresponding eigenvectors
0
1
0
0

 ,


1
0
0
0

 ,


1
0

2αl2x1
k
0

 ,


0
1
0

− 2βl2x2
k


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for x1 ̸= 0 and x2 ̸= 0. (3.20) is decoupling to

x′′1 =
2αl2

k
x1x′1,

x′′2 = −2βl2

k
x2x′2.

(3.22)

Integrating (3.22), we derive

x′1 =
αl2

k
x2

1 + c1,

x′2 = −βl2

k
x2

2 + c2

(3.23)

(3.23) is solvable and leading to these cases [28]:

i) c1 = 0:

x1(t) =
kx1(0)

k− αl2x1(0)t
,

x3(t) =
αkl2x1(0)2

(k− αl2x1(0)t)2

is a blow-up solution.

ii) αl2c1
k < 0:

x1(t) =
x1(0)

√
− αl2c1

k + c1 tanh
(√
− αl2c1

k t
)

√
− αl2xc1

k − αl2x1(0)
k tanh

(√
− αl2c1

k t
) ,

x3(t) =
− αl2c1

k

(
c1 +

αl2x1(0)2

k

)
(√
− αl2c1

k cosh
(√
− αl2c1

k t
)
− αl2x1(0)

k sinh
(√
− αl2c1

k t
))2

is an asymptotic solution for |x1(0)| <
√
− αl2

kc1
connecting two points on Σ:

lim
t→−∞

x1(t) = ±
√
− c1k

αl2 , lim
t→∞

x1(t) = ∓
√
− c1k

αl2 ,

lim
t→−∞

x3(t) = 0, lim
t→∞

x3(t) = 0

is a blow-up solution for |x1(0)| ≥
√
− αl2

kc1
.

iii) αl2c1
k > 0:

x1(t) =
x1(0)

√
αl2c1

k + c1 tan
(√

αl2c1
k t
)

√
αl2xc1

k − αl2x1(0)
k tan

(√
αl2c1

k t
) ,

x3(t) =
αl2c1

k

(
c1 +

αl2x1(0)2

k

)
(√

αl2c1
k cos

(√
αl2c1

k r
)
− αl2x1(0)

k sin
(√

αl2c1
k t
))2

is a blow-up solution.
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iv) Similar formulas hold for x2(t) and x4(t) by exchanging (α, c1) with (−β, c2).

v) Note

c1 = x3(0)−
αl2

k
x1(0)2, c2 = x4(0) +

βl2

k
x2(0)2.

Clearly blow up solutions persist in (3.4) for f ̸= 0 small. It will be our next study the
asymptotic solutions ii).

Finally, we note that (3.4) for l small has a hyperbolic structure on bounded sets due to the
Hartman–Grobman theorem. On the other hand, when l large, say l = ϵ−1/2 > 0 then (3.3)
becomes

ϵ f (V − vg) = −ϵkU′′ + 2αUU′,

ϵ f (U − ug) = ϵkV ′′ + 2βVV ′.

Scaling
U(t) = U1(t/ϵ), V(t) = V1(t/ϵ),

we get
ϵ2 f (V1 − vg) = −kU′′1 + 2αU1U′1,

ϵ2 f (U1 − ug) = kV ′′1 + 2βV1V ′1.
(3.24)

(3.24) has a form of (3.22) for ϵ = 0, so we can apply above results and remarks. We see that
(3.4) has different dynamics for l small and large.

4 General nonlinearities

Assuming that (2.5) involves also other terms not just linear ones, we suppose that(
∂u
∂z

)2

≈ p(u),
(

∂v
∂z

)2

≈ q(v)

for p, q ∈ C2(R, R). Then instead of (1.2), we obtain{
f (v− vg) = − ∂

∂z (k
∂u
∂z ) + l2 p′(u) ∂u

∂x ,

f (u− ug) =
∂
∂z (k

∂v
∂z ) + l2q′(v) ∂v

∂y .
(4.1)

Then (3.4) becomes

X′ = F(X) =


x3

x4
f
k (vg − x2) +

αl2

k p′(x1)x3
f
k (x1 − ug)− βl2

k q′(x2)x4

 . (4.2)

(4.2) still has a unique equilibrium X0 with a Jacobian matrix

DF(X0) =


0 0 1 0
0 0 0 1

0 − f
k

αl2 p′′(ug)
k 0

f
k 0 0 − βl2q′′(vg)

k

 .

We see again that X0 is hyperbolic with 2-dimensional stable and unstable manifolds. Note
(4.2) has a form

X′ = B(X)(X− X0) (4.3)



Generalized atmospheric Ekman equations 13

for

B(X) =


0 0 1 0
0 0 0 1

0 − f
k

αl2 p′(x1)
k 0

f
k 0 0 − βl2q′(x2)

k

 .

For any X, B(X) is hyperbolic with 2-dimensional stable and unstable manifolds.
This motivates us to show the following results. Let Ws and Wu be stable and unstable

subspaces of A defined in (3.5). Let Ps : R4 → Ws and Pu : R4 → Wu be projections with
Ps + Pu = I. Then from [20] we have

eAtPs =
e−k̃t

2


cos k̃t − sin k̃t − cos k̃t+sin k̃t

2k̃
cos k̃t+sin k̃t

2k̃
sin k̃t cos[k̃t] − cos k̃t+sin k̃t

2k̃
− cos k̃t+sin k̃t

2k̃
−k̃(cos k̃t + sin k̃t) k̃(− cos k̃t + sin k̃t) cos k̃t − sin k̃t
k̃(cos k̃t− sin k̃t) −k̃(cos k̃t + sin k̃t) sin k̃t cos k̃t


and

eAtPu =
ek̃t

2


cos k̃t sin k̃t cos k̃t+sin k̃t

2k̃
− cos k̃t+sin k̃t

2k̃
− sin k̃t cos k̃t cos k̃t−sin k̃t

2k̃
cos k̃t+sin k̃t

2k̃
k̃(cos k̃t− sin k̃t) k̃(cos k̃t + sin k̃t) cos k̃t sin k̃t
−k̃(cos k̃t + sin k̃t) k̃(cos k̃t− sin k̃t) − sin k̃t cos k̃t


for

k̃ =

√
f

2k
.

By considering a norm
∥X∥ = max

i=1,2,3,4
|xi|

on R4, we compute

∥eAtPs,u∥ ≤ Kek̃t, K =
1√
2
+ max

{
1
2k̃

, k̃
}

,

∥B(X)− A∥ = l2

k
max{|αp′(x1)|, |βq′(x2)|}.

(4.4)

We are ready to prove the next theorem.

Theorem 4.1. Let M > 0 and set

SX0(M) = {X ∈ R4 | |x1| ≤ M, |x2| ≤ M}.

Suppose

κ =
l2

k
max

X∈SX0 (M)
max{|αp′(x1)|, |βq′(x2)|} <

k̃
2K

, (4.5)

where K is given in (4.4). Then (4.2) has X(t) = X0 as the only bounded solution on R with X(t) ∈
SX0(M).

Proof. Rewriting (4.3) as

(X− X0)
′ = A(X− X0) + (B(X)− A)(X− X0),
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its bounded solution X(t) ∈ SX0(M) on R is given by

X(t)− X0 =
∫ t

−∞
eA(t−s)Ps(B(X(s))− A)(X(s)− X0)ds

−
∫ ∞

t
eA(t−s)Pu(B(X(s))− A)(X(s)− X0)ds,

which by (4.4) implies

∥X(t)− X0∥ ≤ K
∫ t

−∞
ek̃(t−s)∥B(X(s))− A∥∥X(s)− X0∥ds

+
∫ ∞

t
ek̃(t−s)∥B(X(s))− A∥∥X(s)− X0∥ds ≤ 2Kκ

k̃
sup
t∈R

∥X(t)− X0∥.

This gives

sup
t∈R

∥X(t)− X0∥ ≤
2Kκ

k̃
sup
t∈R

∥X(t)− X0∥,

which by (4.5) implies supt∈R ∥X(t)− X0∥ = 0, i.e., X(t) = X0. The proof is finished.

Theorem 4.1 leads to the following extension of Theorem 3.4.

Corollary 4.2. If (4.5) holds then a bounded solution X(t) ∈ SX0(M), t ≥ 0 of (4.2) satisfies

lim
t→∞

X(t) = X0.

Proof. If X(t) ∈ SX0(M), t ≥ 0 is a bounded solution of (4.2), then its ω-limit set ω(X(0)) ⊂
SX0(M) is compact and invariant. Thus for any X̃0 ∈ ω(X(0)), the solution X̃(t), X̃(0) = X̃0,
t ∈ R of (4.2) is bounded and it satisfies X(t) ∈ SX0(M), since X̃(t) ∈ ω(X(0)) ⊂ SX0(M),
t ∈ R. Theorem 4.1 gives X̃(t) = X0, so X̃0 = X0 and thus ω(X(0)) = {X0}. The proof is
finished.

Corollary 4.3. If

Θ = max

{
sup
x1∈R

|p′(x1)|, sup
x2∈R

|q′(x2)|
}

< ∞,

then for any

max{|α|, |β|} < k̃k
2Kl2Θ

, (4.6)

all bounded solutions X(t), t ≥ 0 of (4.2) satisfies

lim
t→∞

X(t) = X0.

Proof. Since condition (4.6) implies (4.5), the proof is finished by Corollary 4.2.

We continue with utilizing a hyperbolic structure of B(X) by considering a slowly variable
system

X′ =


x3

x4
f
k (vg − x2) +

αl2

k p′(ϵx1)x3
f
k (x1 − ug)− βl2

k q′(ϵx2)x4

 (4.7)

for a small parameter ϵ ∈ R. Then (4.7) has a form

X′ = B(ϵX)(X− X0).

We have the following conclusion.
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Theorem 4.4. If p′(0) = q′(0) = 0, then for any M > 0 there is an ϵM > 0 such that any bounded
solution X(t) ∈ SX0(M), t ≥ 0 of (4.7) with |ϵ| < ϵM satisfies

lim
t→∞

X(t) = X0.

Proof. Now (4.5) means

κ =
l2

k
max

X∈SX0 (M)
max{|αp′(ϵx1)|, |βq′(ϵx2)|} <

k̃
2K

,

which clearly holds for any ϵ small due p′(0) = q′(0) = 0. The proof is finished.

Results of this section lead to Theorem 3.2.

5 Spatial wave solutions for (2.4)

Motivated by the above method and results, we consider (2.4) for constant k{
f (v− vg) = −k ∂2u

∂z2 + 2l2 ∂u
∂z

∂2u
∂z∂x ,

f (u− ug) = k ∂2v
∂z2 + 2l2v ∂v

∂z
∂2

∂z∂y .
(5.1)

We are looking again for spatial wave solutions (3.2) of (5.1) to get

f (V − vg) = −kU′′ + 2αl2U′U′′,

f (U − ug) = kV ′′ + 2βl2V ′V ′′.
(5.2)

We observe that (5.2) is more sophisticated than (3.3). Shifting

U ←→ U − ug, V ←→ V − vg,

we study
f V = −kU′′ + 2αl2U′U′′,

f U = kV ′′ + 2βl2V ′V ′′.
(5.3)

Integrating both equations of (5.3), we obtain

f
∫

V(t)dt = −kU′(t) + αl2U′2(t),

f
∫

U(t)dt = kV ′(t) + βl2V ′2(t).
(5.4)

By introducing

W1 =
∫

U(t)dt, W2 =
∫

V(t)dt,

we get
f W2 = −kW ′′1 + αl2W ′′21 ,

f W1 = kW ′′2 + βl2W ′′22 .
(5.5)

When W1(t) = 0 then U(t) = 0 and (5.3) implies V(t) = 0, so W2(t) = 0. Consequently
W1(t) = 0 =⇒W2(t) = 0. Similarly W2(t) = 0 =⇒W1(t) = 0. Thus (5.5) gives

W ′′1 =
k−

√
k2 + 4α f l2W2

2αl2 ,

W ′′2 =
−k +

√
k2 + 4β f l2W1

2βl2 .
(5.6)
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Next, we take in (5.6)
Y1 = k2 + 4β f l2W1, Y2 = k2 + 4α f l2W2

to get

Y′′1 =
2β f

α
(k−

√
Y2),

Y′′2 =
2α f

β
(−k +

√
Y1).

(5.7)

Next, we set

Yi(t) = k2Zi

(√
2 f
k

t

)
, i = 1, 2

in (5.7) to obtain
Z′′1 = µ−1(1−

√
Z2),

Z′′2 = µ(−1 +
√

Z1).
(5.8)

for
µ =

α

β
.

Taking

X =


Z1

Z2

Z′1
Z′2

 =


x1

x2

x3

x4

 ,

(5.8) becomes

X′ = G(X) =


x3

x4

µ−1(1−√x2)

µ(−1 +
√

x1)

 . (5.9)

Note (5.9) has a unique equilibrium

X1 =


1
1
0
0


and its Jacobian matrix is

DG(X1) =


0 0 1 0
0 0 0 1
0 − 1

2µ 0 0
µ
2 0 0 0


with eigenvalues

−1− ı
2

,
−1 + ı

2
,

1− ı
2

,
1 + ı

2
and the corresponding complex eigenvectors

− 1+ı
µ

−1 + ı
ı
µ

1

 ,


− 1−ı

µ

−1− ı
− ı

µ

1

 ,


1−ı

µ

1 + ı
− ı

µ

1

 ,


1+ı

µ

1− ı
ı
µ

1

 .
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Consequently, X1 is a hyperbolic equilibrium. Thus we have the following result similar to
the statement of Theorem 3.2.

Theorem 5.1. There is a 4-parametrized family of spacial waves solutions of (5.2) asymptotic to the
equilibrium.

Furthermore, (5.9) has a first integral

I(x1, x2, x3, x4) = x3x4 − µ−1
[

x2 −
2
3

x3/2
2

]
− µ

[
−x1 +

2
3

x3/2
1

]
.

Its reduction on the level
I(x1, x2, x3, x4) = C (5.10)

is given by
x′1 = x3,

x3x′2 = µ−1
[

x2 −
2
3

x3/2
2

]
+ µ

[
−x1 +

2
3

x3/2
1

]
+ C,

x′3 = µ−1(1−
√

x2).

(5.11)

(5.11) is an implicit ODE [15, 29] and its analysis seems to be difficult in general. Some
numerical simulations should help. On the other hand, taking

yi(t) = xi(µt), i = 1, 2, 3, (5.12)

we get
y′1 = µy3,

y3y′2 = y2 −
2
3

y3/2
2 + Cµ + µ2

[
−y1 +

2
3

y3/2
1

]
,

y′3 = 1−√y2.

(5.13)

(5.13) is reducing for µ = 0 to
y′1 = 0

y3y′2 = y2 −
2
3

y3/2
2

y′3 = 1−√y2.

(5.14)

The first equation of (5.14) gives y1(t) = y1(0), and the second and third ones imply

dy3

y3
=

1−√y2

y2 − 2
3 y3/2

2

dy2. (5.15)

Integrating (5.15), we have
ln y3 = ln(y2(2

√
y2 − 3)) + C̃

for a constant C̃, which implies
y3 = C0(3− 2

√
y2)y2 (5.16)

for a constant C0. Note y1, y2 and y3 are depending on t, so differentiating (5.16) with respect
to t, we get

y′3 = 3C0(1−
√

y2)y′2,
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which together with the third equation of (5.14) give

3C0y′2 = 1,

which possesses a solution

y2(t) =
t

3C0
+ y2(0)

and (5.16) leads to

y3(t) = C0

(
3− 2

√
t

3C0
+ y2(0)

)(
t

3C0
+ y2(0)

)
.

Clearly

y3(0) = C0

(
3− 2

√
y2(0)

)
y2(0).

Consequently, (5.13) has a solution

y1(t) = y1(0) + O(µ),

y2(t) =
t

3C0
+ y2(0) + O(µ),

y3(t) = C0

(
3− 2

√
t

3C0
+ y2(0)

)(
t

3C0
+ y2(0)

)
+ O(µ),

C0 =
y3(0)

(3− 2
√

y2(0))y2(0)
.

(5.17)

Summarizing, (5.17), (5.12) and (5.10) give a first order approximate solution of (5.9) with
respect to µ small. Higher orders can be computed similarly. But since the right hand side of
(5.13) is not analytic, it is better instead of (5.13) to take

u2
1 = y1, u2

2 = y2, u3 = y3

and consider
2u1u′1 = µu3,

2u3u2u′2 = u2
2 −

2
3

u3
2 + Cµ + µ2

[
−u2

1 +
2
3

u3
1

]
,

u′3 = 1− u2.

(5.18)

Then we expand

ui(t) =
r

∑
k=0

µkuik(t), i = 1, 2, 3, uik(0) = 0, k ≥ 1 (5.19)

and plugging (5.19) into (5.18), we derive other terms. By (5.17), we have

u10(t) = u1(0),

u20(t) =
√

t
3C0

+ u2(0)2,

u30(t) = C0

(
3− 2

√
t

3C0
+ u2(0)2

)(
t

3C0
+ u2(0)2

)
,

C0 =
u3(0)

(3− 2u2(0))u2(0)2 .
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Note that (5.18) is not solvable at the surface u1u2u3 = 0, so it is implicit in the terminology
of [15, 29]. But it is orbitally equivalent for u1u2u3 ̸= 0 to a standard ODE

û′1 = µû2û2
3,

û′2 = û1û2
2 −

2
3

û1û3
2 + Cµ + µ2û1

[
−û2

1 +
2
3

û3
1

]
,

û′3 = û1û2û3 − û1û2
2û3.

(5.20)

Hence expansion (5.19) really works for (5.18).

6 Conclusion

We use Prandtl mixing-length theory and semiempirical theory to extend the classical prob-
lem of the wind in the steady atmospheric Ekman layer with constant eddy viscosity. This
establishes new generalized atmospheric Ekman equations. Then paper deals with the exis-
tence of spatial wave solutions for these generalized atmospheric Ekman equations. Such kind
of solutions are determined by certain 4-dimensional autonomous ODEs with quadratic non-
linearities. We apply methods of dynamical systems for investigating qualitative properties
of these ODEs. The existence of families of asymptotic and periodic spatial wave solutions
is proved. Exact and approximative solutions of the corresponding ODEs are also derived.
Two figures are presented for visualization of certain these solutions. The derived spatial
wave ODEs are nonlinear and could be implicit, so their study is difficult in general. Conse-
quently, there are still many open challenging problems for further research such as existence
or nonexistence of quasiperiodic, homoclinic or even chaotic solutions.
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