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Abstract. Under the exponential trichotomy condition we study the Hyers–Ulam sta-
bility for the linear partial difference equation:

xn+1,m = Anxn,m + Bn,mxn,m+1 + f (xn,m), n, m ∈ Z

where An is a k × k matrix whose elements are sequences of n, Bn,m is a k × k matrix
whose elements are double sequences of m, n and f : Rk → Rk is a vector function. We
also investigate the Hyers–Ulam stability in the case where the matrices An, Bn,m and
the vector function f = fn,m are constant.
Keywords: partial difference equations, Hyers–Ulam stability, exponential dichotomy.
2020 Mathematics Subject Classification: 39A14.

1 Introduction

Partial difference equations is an area which deals with difference equations with several
variables. Some classical results in the area can be found, for example, in books [4, 9, 12, 14].
Despite the fact that the study of partial difference equations is pretty much complicated, both
theoretically and technically, there are some investigations on solvability, stability and other
topics related to the equations (see, for example, [5–7, 10, 13, 15, 25, 29, 31, 34, 40, 41] and the re-
lated references therein). Many partial difference equations are obtained from some problems
in combinatorics, probability, discrete mathematics and other related areas of mathematics
and science (see, for example, [11, 22, 43]).

In [8] the authors studied the so-called µ-exponentially weighted shadowing property of
the equation

xm+1 = Lmxm + fm(xm), m ∈ Z,

where Lm is a sequence of linear operators, fm is a sequence of nonlinear operators m ∈ Z

assuming that the linear equation
xm+1 = Lmxm

has an exponential dichotomy and the sequence fm is uniformly Lipschitz continuous.
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Inspired by the above work, as well as some applications of solvability methods for dif-
ference equations, here we investigate Hyers–Ulam stability for the nonhomogenous linear
partial difference equation of the form:

xn+1,m = Anxn,m + Bn,mxn,m+1 + f (xn,m), n, m ∈ Z, (1.1)

where An is a k× k invertible matrix whose elements are sequences of n, Bn,m is a k× k matrix
whose elements are double sequences of m, n and f : Rk → Rk is a vector function.

In what follows we denote by | · | any convenient norm either of a vector or of a matrix.
We say that the linear difference equation

xv+1 = Cvxv, v ∈ Z, . . . (1.2)

where Cv is an invertible matrix has an exponential trichotomy (see [16, 17]) if there exist
constants K > 0, 0 < p < 1 and projections P1, P2, P3 (P2

i = Pi, i = 1, 2, 3), P1 + P2 + P3 = 1
such that

|XvP1X−1
s | ≤ Kpv−s, v ≥ s, s, v ∈ Z

|XvP2X−1
s | ≤ Kps−v, s ≥ v, s, v ∈ Z

|XvP3X−1
s | ≤ Kpv−s, v ≥ s ≥ 0

|XvP3X−1
s | ≤ Kps−v, 0 ≥ s ≥ v

(1.3)

where Xv is a fundamental matrix solution of (1.2) given by

Xv =



(v−1

∏
s=0

Cv−s−1

)
C, v ≥ 0( −1

∏
s=v

C−1
s

)
C, v ≤ 0,

and C is a constant matrix. We regard that X0 = C.
For the readers’ convenience we give a simple example concerning exponential trichotomy

for a linear difference equation. Consider equation (1.2) where

Cv =

 1/2 0 0
0 2 0
0 0 cv

 , cv =

{
1/2, v ≥ 0

2, v < 0.

Then if we take C = I3, I3 the 3× 3 indentity matrix, we get

Xv =

 (1/2)v 0 0
0 2v 0
0 0 dv

 , dv =

{
(1/2)v, v ≥ 0

2v, v ≤ 0.

If we take the projections

P1 =

 1 0 0
0 0 0
0 0 0

 , P2 =

 0 0 0
0 1 0
0 0 0

 , P3 =

 0 0 0
0 0 0
0 0 1


we have P1 + P2 + P3 and (1.3) hold with K = 1 and p = 1/2.
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Moreover, we give some details concerning the form of operator T given in Proposition 2.2.
In Proposition 1 of [16] the author proved that if equation (1.2) has an exponential trichotomy
(1.3) then the inhomogenous ordinary difference equation

xv+1 = Avxv + fv, v ∈ Z,

fv : Z→ Rk, | fv| ≤ M, v ∈ Z where M is a positive constant, has at least bounded solution yv

given by

yv =
−1

∑
s=−∞

XvP1X−1
s+1 fs +

v−1

∑
s=0

Xv(I − P2)X−1
s+1 fs −

∞

∑
s=v

XvP2X−1
s+1 fs, v ≥ 0,

yv =
v−1

∑
s=−∞

XvP1X−1
s+1 fs −

−1

∑
s=v

Xv(I − P1)X−1
s+1 fs −

∞

∑
s=0

XvP2X−1
s+1 fs, v ≤ 0.

(1.4)

According to [21] we say that (1.1) has the Hyers–Ulam stability if for any ε > 0 there
exists a δ > 0 such that if yn,m satisfies either

|yn+1,m − Anyn,m − Bn,myn,m+1 − f (yn,m)| < δ (1.5)

or
|yn,m+1 + B−1

n,m Anyn,m − B−1
n,myn+1,m + B−1

n,m f (yn,m)| < δ (1.6)

then there exists a solution xn,m of (1.1) such that

|xn,m − yn,m| < ε, n, m ∈ Z. (1.7)

Now in this paper assuming that equation (1.2) where Cn = An has an exponential trichotomy
then, under some assumptions on the matrices An, Bn,m and the function f , we prove that (1.1)
has the Hyers–Ulam stability. In addition, if Bn,m = AnDm, An, Dm are invertible matrices
and the equation (1.2) where Cm = −D−1

m has an exponential trichotomy, then, under some
assumptions on the matrices An, Dm and the function f , we prove that equation (1.1) has
also the Hyers–Ulam stability. Finally we study the Hyers–Ulam stability in the case where
the matrices An, Bn,m are constants, that is An = A, Bn,m = B and the function f = fn,m is
independent on x that is fn,m : N×N→ Rk.

Roughly speaking the stability of Hyers–Ulam means that for any approximate solution
of equation (1.1) there exists a solution of (1.1) which is near the approximate solution. Since
this is very important there exists an increasing interest in studying this stability. Therefore
there are many papers which deal with this subject (see [1, 3, 8, 21] and the related references
therein).

In what follows we denote
l∞ = l∞(Z2)

the space of all double sequences (zn,m) ⊂ Rk which are bounded.
In the study we will essentially use a method related to the solvability of the linear dif-

ference equation of first order, by which the studied difference equations are transformed
to some difference equations of ‘integral’ type, for which it is easier to apply methods from
nonlinear functional analysis. Here it is applied the contraction principle. It should be men-
tioned that recently appeared many papers on difference equations and systems of difference
equations which have been solved by transforming them to some linear solvable ones (see, for
example, [2, 20, 26–28, 30, 32, 33, 35–39, 42] and the related references therein).

Finally it should be mentioned that, there is a plenty of papers dealing with solvability or
invariants for difference equations (see, for example, [18, 19, 23, 24, 28, 30, 35, 36, 38, 39]).
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2 Main results

Firstly we give a proposition which concerns the existence and uniqueness of the solutions of
(1.1).

Proposition 2.1.

(i) For a given sequence cm there exists a unique solution xn,m of (1.1) such that x0,m = cm, m ∈ Z.
Moreover, xn,m satisfies the following relations

xn,m =


XnX−1

0 cm +
n−1

∑
s=0

XnX−1
s+1 (Bs,mxs,m+1 + f (xs,m)) , n ≥ 0, m ∈ Z

XnX−1
0 cm −

−1

∑
s=n

XnX−1
s+1 (Bs,mxs,m+1 + f (xs,m)) , n ≤ 0, m ∈ Z

(2.1)

where Xn is a fundamental matrix solution of (1.2) with Cn = An.

(ii) Suppose that Bn,m = AnDm and An, Bm are invertible matrices. Then there exists a unique
solution of (1.1) such that xn,0 = dn, n ∈ Z where dn is given sequence. In addition if

R(xn,s) = D−1
s A−1

n xn+1,s − D−1
s A−1

n f (xn,s),

xn,m satisfies the following equalities

xn,m =


XmX−1

0 dn +
m−1

∑
s=0

XmX−1
s+1R(xn,s), m ≥ 0, n ∈ Z

XmX−1
0 dn −

−1

∑
s=m

XmX−1
s+1R(xn,s), m ≤ 0, n ∈ Z

(2.2)

where Xm is a fundamental matrix solution of (1.2) with Cm = −D−1
m .

From (1.1) and using the constant variation formula for a fixed m we can prove (2.1).
Since from (1.1) we have

xn,m+1 = −B−1
n,m Anxn,m + B−1

n,mxn+1,m − B−1
n,m f (xn,m)

= −D−1
m xn,m + D−1

m A−1
n xn+1,m − D−1

m A−1
n f (xn,m),

(2.3)

using the constant variation formula for a fixed n we can easily get (2.2).
We prove the Hyers–Ulam stability in the case where equation (1.2) with Cn = An or

Cm = −D−1
m , Bn,m = AnDm has an exponential trichotomy.

Proposition 2.2. The following statements are true:

(i) Suppose that (1.2) with Cn = An has an exponential trichotomy (1.3), that there exists a positive
number M such that

|Bn,m| ≤ M, n, m ∈ Z, (2.4)

and that f : Rk → Rk is a vector function such that for all x, y ∈ Rk

| f (x)− f (y)| ≤ L|x− y|, (2.5)

where L is a positive constant. Then if

(M + L)
2K(p + 1)

1− p
< 1 (2.6)

equation (1.1) has the Hyers–Ulam stability.
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(ii) Suppose that Bn,m = AnDm, n, m ∈ Z where An, Dm are invertible matrices for any m ∈ Z,
that equation (1.2) where Cm = −D−1

m has an exponential trichotomy (1.3), that there exists a
positive number M such that

|D−1
m A−1

n | ≤ M, n, m ∈ Z. (2.7)

and that (2.5) is true. Then if

M(1 + L)
2K(p + 1)

1− p
< 1, (2.8)

equation (1.1) has the Hyers–Ulam stability.

Proof. (i) Let ε be an arbitrary positive number and δ be a positive number such that

δ <
1− p− 2K(1 + p)(M + L)

2K(1 + p)
ε. (2.9)

Suppose that yn,m is a double sequence such that (1.5) is satisfied. Let

H(zn,m) = −yn+1,m + Anyn,m + Bn,m(yn,m+1 + zn,m+1) + f (yn,m + zn,m). (2.10)

Inspired by (1.4) we define the operator T on l∞ as follows: If zn,m ∈ l∞ then we set

Tzn,m =
−1

∑
s=−∞

XnP1X−1
s+1H(zs,m) +

n−1

∑
s=0

Xn(I − P2)X−1
s+1H(zs,m)

−
∞

∑
s=n

XnP2X−1
s+1H(zs,m), n ≥ 0, m ∈ Z.

Tzn,m =
n−1

∑
s=−∞

XnP1X−1
s+1H(zs,m)−

−1

∑
s=n

Xn(I − P1)X−1
s+1H(zs,m)

−
∞

∑
s=0

XnP2X−1
s+1H(zs,m), n ≤ 0, m ∈ Z.

(2.11)

We prove that T(l∞) ⊆ l∞. Let

|z|∞ = sup{|zn,m|, n, m,∈ Z}.

From (2.10) we obtain

H(zn,m) = − yn+1,m + Anyn,m + Bn,myn,m+1 + f (yn,m)

+ Bn,mzn,m+1 + f (yn,m + zn,m)− f (yn,m).
(2.12)

Then from (1.5), (2.4), (2.5) and (2.12) we have

|H(zn,m)| ≤ δ + (M + L)|z|∞. (2.13)

Therefore from (1.3), (2.13) and since I − P2 = P1 + P3 for n ≥ 0, m ∈ Z we get

|Tzn,m| ≤
(
−1

∑
s=−∞

Kpn−s−1 + 2
n−1

∑
s=0

Kpn−s−1 +
∞

∑
s=n

Kp−n+s+1

)
(δ + (M + L)|z|∞)

≤ 2K(1 + p)
1− p

(
δ + (M + L)|z|∞

)
.

(2.14)
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Furthermore from (1.3), (2.13) and since I − P1 = P2 + P3 for n ≤ 0, m ∈ Z we have

|Tzn,m| ≤
(

n−1

∑
s=−∞

Kpn−s−1 + 2
−1

∑
s=n

Kp−n+s+1 +
∞

∑
s=0

Kp−n+s+1

)
(δ + (M + L)|z|∞)

≤ 2K(1 + p)
1− p

(
δ + (M + L)|z|∞

)
.

(2.15)

Relations (2.14) and (2.15) imply that T(l∞) ⊆ l∞. We prove now that T is a contraction on the
space S. Let zn,m, wn,m ∈ l∞. Using (2.10) we get for n, m ∈ Z

H(zn,m)− H(wn,m) = Bn,m(zn,m+1 − wn,m+1) + f (yn,m + zn,m)− f (yn,m + wn,m)

and so from (2.4), (2.5) we have

|H(zn,m)− H(wn,m)| ≤ (M + L)|z− w|∞, n, m ∈ Z. (2.16)

From (2.11) we have for n ≥ 0, m ∈ Z

Tzn,m − Twn,m =
−1

∑
s=−∞

XnP1X−1
s+1

(
H(zs,m)− H(ws,m)

)
+

n−1

∑
s=0

Xn(I − P2)X−1
s+1

(
H(zs,m)− H(ws,m)

)
−

∞

∑
s=n

XnP2X−1
s+1

(
H(zs,m)− H(ws,m)

)
.

Then relations (1.3) and (2.16) for n ≥ 0 and m ∈ Z imply that

|Tzn,m − Twn,m| ≤
(
−1

∑
s=−∞

Kpn−s−1 + 2
n−1

∑
s=0

Kpn−s−1 +
∞

∑
s=n

Kp−n+s+1

)
(M + L)|z− w|∞

≤ 2K(1 + p)
1− p

(M + L)|z− w|∞.

(2.17)

Moreover from (1.3) and (2.16) for n ≤ 0 and m ∈ Z we get

|Tzn,m − Twn,m| ≤
(

n−1

∑
s=−∞

Kpn−s−1 +
−1

∑
s=n

Kp−n+s+1 +
∞

∑
s=0

Kp−n+s+1

)
(M + L)|z− w|∞

≤ 2K(1 + p)
1− p

(M + L)|z− w|∞.

(2.18)

So, from (2.6), (2.17) and (2.18) T is a contraction on the complete metric space l∞. Hence
there exists a unique zn,m ∈ l∞ such that

Tzn,m = zn,m, n, m ∈ Z. (2.19)
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From (2.10), (2.11) and (2.19) we obtain for n ≥ 0, m ∈ Z

zn,m =
−1

∑
s=−∞

XnP1X−1
s+1H(zs,m) +

n−1

∑
s=0

Xn(I − P2)X−1
s+1H(zs,m)

+
n−1

∑
s=0

XnP2X−1
s+1H(zs,m)−

n−1

∑
s=0

XnP2X−1
s+1H(zs,m)−

∞

∑
s=n

XnP2X−1
s+1H(zs,m)

=
−1

∑
s=−∞

XnP1X−1
s+1H(zs,m) +

n−1

∑
s=0

XnX−1
s+1H(zs,m)−

∞

∑
s=0

XnP2X−1
s+1H(zs,m)

= XnX−1
0

−1

∑
s=−∞

X0P1X−1
s+1H(zs,m) +

n−1

∑
s=0

XnX−1
s+1(−ys+1,m + Asys,m)

+
n−1

∑
s=0

XnX−1
s+1

(
Bs,m(ys,m+1 + zs,m+1) + f (ys,m + zs,m)

)
− XnX−1

0

∞

∑
s=0

X0P2X−1
s+1H(zs,m).

(2.20)

Then for n = 0 we get

z0,m =
−1

∑
s=−∞

X0P1X−1
s+1H(zs,m)−

∞

∑
s=0

X0P2X−1
s+1H(zs,m). (2.21)

We claim that

yn,m = XnX−1
0 y0,m +

n−1

∑
s=0

XnX−1
s+1(ys+1,m − Asys,m), n ≥ 0, m ∈ Z. (2.22)

It is obvious that (2.22) is true for n = 0. Suppose that (2.22) holds for a fixed n. Then

Xn+1X−1
0 y0,m +

n

∑
s=0

Xn+1X−1
s+1(ys+1,m − Asys,m)

= AnXnX−1
0 y0,m + yn+1,m − Anyn,m + An

n−1

∑
s=0

XnX−1
s+1(ys+1,m − Asys,m)

= Anyn,m + yn+1,m − Anyn,m = yn+1,m.

Therefore (2.22) is true for every n. Using (2.20), (2.21) and (2.22) we obtain for n ≥ 0, m ∈ Z.

zn,m + yn,m = XnX−1
0 (y0,m + z0,m) +

n−1

∑
s=0

XnX−1
s+1

(
Bs,m(ys,m+1 + zs,m+1) + f (ys,m + zs,m)

)
.

Then if xn,m = zn,m + yn,m from (2.1) we have that xn,m, n ≥ 0, m ∈ Z is a solution of (1.1). So,
from (2.9), (2.14) and (2.19) we have

|x− y|∞ = |z|∞ ≤
2K(1 + p)δ

1− p− 2K(p + 1)(M + L)
< ε.
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In addition from (2.11) and (2.19) we have for n ≤ 0, m ∈ Z

zn,m =
n−1

∑
s=−∞

XnP1X−1
s+1H(zs,m)−

−1

∑
s=n

Xn(I − P1)X−1
s+1H(zs,m)

−
−1

∑
s=n

XnP1X−1
s+1H(zs,m) +

−1

∑
s=n

XnP1X−1
s+1H(zs,m)−

∞

∑
s=0

XnP2X−1
s+1H(zs,m)

=
−1

∑
s=−∞

XnP1X−1
s+1H(zs,m)−

−1

∑
s=n

XnX−1
s+1H(zs,m)−

∞

∑
s=0

XnP2X−1
s+1H(zs,m)

= XnX−1
0

−1

∑
s=−∞

X0P1X−1
s+1H(zs,m)−

−1

∑
s=n

XnX−1
s+1

(
−ys+1,m + Asys,m)

)
−
−1

∑
s=n

XnX−1
s+1

(
Bs,m(ys,m+1 + zs,m+1) + f (ys,m + zs,m)

)
− XnX−1

0

∞

∑
s=0

X0P2X−1
s+1H(zs,m).

(2.23)

So, for n = 0 we get (2.21). Moreover, arguing as in (2.22) we can show that

yn,m = XnX−1
0 y0,m −

−1

∑
s=n

XnX−1
s+1

(
ys+1,m − Asys,m

)
, n ≤ 0, m ∈ Z. (2.24)

Therefore from (2.1), (2.23) and (2.24) we can prove that xn,m = yn,m + zn,m is a solution of
(1.1). Using (2.9), (2.15) the proof of (i) is completed.

(ii) Let ε be an arbitrary positive number and δ be a positive number such that

δ <
1− p− 2KM(1 + p)(1 + L)

2K(1 + p)
ε. (2.25)

Suppose that yn,m is a double sequence such that (1.6) is satisfied. Then using (2.2), (2.3), (2.5),
(2.7), (2.8), (2.25) and arguing as in the case (i) we can prove (ii).

In what follows we study the Hyers–Ulam stability for the equation

xn+1,m = Axn,m + Bxn,m+1 + fn,m, n, m ∈N (2.26)

where A, B are k × k are constant matrices and fn,m : N ×N → Rk is a double sequence.
Firstly we give a formula for the solutions of (2.26).

Let xn,m be a double sequence. Then we define the operators E1, E2 as follows:

E1xn,m = xn+1,m, E2xn,m = xn,m+1.

Proposition 2.3. Consider the partial difference equations (2.26). Then the following statements are
true:

(i) There exists a unique solution xn,m of (2.26) with x0,m = cm, cm is a given sequence. Moreover
xn,m is given by

xn,m = (A + BE2)
ncm +

n−1

∑
s=0

(A + BE2)
n−s−1 fs,m. (2.27)



Hyers–Ulam stability for a partial difference equation 9

(ii) Let B be an invertible matrix. There exists a unique solution xn,m of (2.26) where xn,0 = dn, dn

is a given sequence. Furthermore xn,m is given by

xn,m = (−B−1A + B−1E1)
mdn +

m−1

∑
s=0

(−B−1A + B−1E1)
m−s−1(−B−1) fn,s. (2.28)

Proof. (i) From (2.26) we get

xn+1,m = Axn,m + BE2xn,m + fn,m = (A + BE2)xn,m + fn,m, n, m ∈N. (2.29)

Then from (2.29), for a fixed m ∈ N by the constant variation formula we get (2.27). So, the
proof of part (i) is completed.

(ii) From (2.26) we get for a fixed n ∈N

xn,m+1 = B−1xn+1,m − B−1Axn,m − B−1 fn,m

= (B−1E1 − B−1A)xn,m − B−1 fn,m.

Then by the constant variation formula we take (2.28). This completes the proof of the propo-
sition.

Proposition 2.4. Suppose that A, B are k× k matrices. Suppose that either

|A|+ |B| < 1 (2.30)

or if B is invertible and
|B−1|+ |B−1A| < 1. (2.31)

Then equation (2.26) has the Hyers–Ulam stability.

Proof. Suppose firstly that (2.30) is satisfied. Let ε be an arbitrary number and δ =

ε(1− (|A|+ |B|)). Let yn,m be a double sequence such that

|yn+1,m − Ayn,m − Byn,m+1 − fn,m| < δ. (2.32)

We set
yn+1,m − Ayn,m − Byn,m+1 − fn,m = Qn,m.

Then, from (2.32), it is obvious that

|Qn,m| < δ, n, m ∈N. (2.33)

Arguing as in the case (i) of Proposition 2.3 we obtain

yn,m = (A + BE2)ny0,m +
n−1

∑
s=0

(A + BE2)
n−s−1( fs,m + Qs,m). (2.34)

Let xn,m be a solution of (2.26) with x0,m = y0,m. Then from (2.27) and (2.34) we have

xn,m − yn,m = −
n−1

∑
s=0

(A + BE2)
n−s−1Qs,m. (2.35)
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Relations (2.30), (2.33) and (2.35) imply that

|xn,m − yn,m| ≤
n−1

∑
s=0

(|A|+ |B|E2)
n−s−1|Qs,m|

=
n−1

∑
s=0

n−s−1

∑
k=0

(n− s− 1)!
k!(n− s− 1− k)!

|A|n−s−1−k|B|kEk
2|Qs,m|

=
n−1

∑
s=0

n−s−1

∑
k=0

(n− s− 1)!
k!(n− s− 1− k)!

|A|n−s−1−k|B|k|Qs,m+k|

< δ
n−1

∑
s=0

(|A|+ |B|)n−s−1 ≤ δ

1− (|A|+ |B|) = ε.

This completes the proof of case (i).
Suppose that (2.31) is fulfilled. Let ε be a positive number and δ = ε(1− (|B−1|+ |B−1A|)).

Let yn,m be a double sequence such that

|yn,m+1 + B−1Ayn,m − B−1yn+1,m + B−1 fn,m| < δ. (2.36)

We set
yn,m+1 + B−1Ayn,m − B−1yn+1,m + B−1 fn,m = Q̂n,m.

Then using the same argument as in the case (ii) of Proposition 2.3 we get,

yn,m = (−B−1A + B−1E1)
myn,0 +

m−1

∑
s=0

(−B−1A + B−1E1)
m−s−1(Q̂n,s − B−1 fn,s). (2.37)

Let xn,m be a solution of (2.26) with xn,0 = yn,0. Then from (2.28) and (2.37) we obtain

xn,m − yn,m = −
m−1

∑
s=0

(−B−1A + B−1E1)
m−s−1Q̂n,s.

Hence from (2.31) and (2.33) we get

|xn,m − yn,m| ≤
m−1

∑
s=0

(|B−1A|+ |B−1|E1)
m−s−1|Q̂n,s|

=
m−1

∑
s=0

m−s−1

∑
k=0

(m− s− 1)!
k!(m− s− 1− k)!

|B−1A|m−s−1−k|B−1|kEk
1|Q̂n,s|

=
m−1

∑
s=0

m−s−1

∑
k=0

(m− s− 1)!
k!(m− s− 1− k)!

|B−1A|m−s−1−k|B−1|k|Q̂n+k,s|

= δ
m−1

∑
s=0

(|B−1|+ |B−1A|)m−s−1 <
δ

1− (|B−1|+ |B−1A|) = ε.

This completes the proof of the proposition.
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[26] S. Stević, On a third-order system of difference equations, Appl. Math. Comput. 218(2012),
7649–7654. https://doi.org/10.1016/j.amc.2012.01.034; MR2892731
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