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Abstract. In this article, we devote ourselves to investigate the following logarithmic
Schrödinger–Poisson systems with singular nonlinearity

−∆u + φu = |u|p−2u log |u|+ λ
uγ , in Ω,

−∆φ = u2, in Ω,
u = φ = 0, on ∂Ω,

where Ω ⊂ R3 is a smooth bounded domain with boundary ∂Ω, 0 < γ < 1, p ∈
(4, 6) and λ > 0 is a real parameter. By using the critical point theory for nonsmooth
functional and variational method, the existence and multiplicity of positive solutions
are established.
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1 Introduction and main result

In this paper, we consider the following logarithmic Schrödinger–Poisson system with singu-
lar term 

−∆u + φu = |u|p−2u log |u|+ λ
uγ , in Ω,

−∆φ = u2, in Ω,

u = φ = 0, on ∂Ω,

(1.1)

where Ω ⊂ R3 is a smooth bounded domain with boundary ∂Ω, 0 < γ < 1, p ∈ (4, 6) and
λ > 0 is a real parameter.
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Due to the wide applications in physics and other applied sciences, partial differential
equations with logarithmic nonlinearity have attracted much attention in recent years, the
logarithmic Schrödinger equation given by

− i
∂Ψ
∂t

= −∆Ψ + (W(x) + W)Ψ− |Ψ|p−1 log |Ψ|, Ψ : [0, ∞)×RN → C, N ≥ 1, (1.2)

has also received a special attention. This class of equation has some important physics appli-
cations, such as quantum mechanics, quantum optics, nuclear physics, transport and diffusion
phenomena, open quantum system, effective quantum gravity and Bose–Einstein condensa-
tion, for more details see [28] and the references therein. For the elliptic equations with
logarithmic nonlinearity, we can refer to [6,10–12,17,19,23,25] and the references therein. The
authors in [10] considered the following logarithmic elliptic equations of the type{

−∆u + u = u log u2, in RN,

u ∈ H1(RN).

The authors obtained solutions for this equation by applying the non-smooth critical point
theory. In addition, Chao et al. in [11] considered the following Schrödinger equation with
logarithmic nonlinearity

−∆u + V(x)u = u log u2, x ∈ RN ,

where the potential V is continuous and satisfies the condition lim|x|→∞ V(x) = V∞. When
the potential is coercive, the author obtained infinitely many solutions by adapting some
arguments of the Fountain theorem, and in the case of bounded potential obtained a ground
state solution.

Returning to the singular Schrödinger–Poisson over bounded or unbounded domains,
many papers have studied the following problem{

−∆u + u + qφ f (u) = g(x, u), in R3,

−∆φ = 2F(u), in R3.
(1.3)

Under various assumptions of nonlocal term f and nonlinear term g, the existence, uniqueness
and multiplicity of solutions to system (1.3) has been studied by using the modern variational
methods, see [1, 8, 13–15, 20–22, 24, 26, 27].

There are also many references which investigated Schrödinger–Poisson system in bounded
domain, see [2, 3, 9]. It is worth mentioning that the author in [27] considered the following
singular Schrödinger–Poisson system

−∆u + ηφu = µu−γ, in Ω,

−∆φ = u2, in Ω,

u > 0, in Ω,

u = φ = 0, on ∂Ω,

where Ω ⊂ R3 is a smooth bounded domain with boundary ∂Ω, η = ±1, γ ∈ (0, 1) is a
constant, µ > 0 is a parameter and he proved the existence and uniqueness result for η = 1
and multiplicity of solutions for η = −1 and µ > 0 small enough by using Nehari manifold.
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In [16] Liu et al. has considered the following singular p-Laplacian equation in RN

{
∆pu + f (x)u−α + λg(x)uβ = 0,

u ≥ 0, x ∈ RN ,

where ∆pu =div(|∇u|p−2∇u) is the p-Laplacian operator, N ≥ 3, 1 < p < N, λ > 0, 0 <

α < 1, max(p, 2) < β + 1 < p∗ = Np
N−p . The existence and multiplicity of positive solutions

for this equation are considered under some suitable condition by the critical point theory for
non-smooth functional and supper-and sub-solutions method.

On the one hand, we find that most of Schrödinger–Poisson system contain only power
terms and not the logarithmic terms |t|p−2t log |t|. This arouses the research interest of the
Schrödinger–Poisson systems with logarithmic nonlinear term. On the other hand, it is noted
that the logarithmic nonlinear term does not satisfy the monotonicity condition and (AR)
condition , which makes system (1.1) more complex and challenging than the case without the
logarithmic nonlinear term. Remarkably, the singular term leads to the non-differentiability
of the energy functional corresponding to the system (1.1) on H1

0(Ω), which make the study of
system (1.1) particularly interesting. To our knowledge, the logarithmic Schrödinger–Poisson
system with singular term has not been studied. Motivated by the above references, in this
paper, we consider logarithmic Schrödinger–Poisson system (1.1) with singular term.

Now our main result is as follows:

Theorem 1.1. Assume that 0 < γ < 1, p ∈ (4, 6), then there exists Λ0 > 0 such that for any
λ ∈ (0, Λ0), system (1.1) has at least two pair of different positive solutions.

2 Preliminaries

Throughout this paper, we denote the norm of Lp(Ω) by | · |p = (
∫

Ω |u|
pdx)

1
p , where p ∈

[1,+∞). Let H1
0(Ω) be the usual Sobolev space with the inner product and the norm (u, v) =∫

Ω(∇u,∇v)dx, ‖u‖2 =
∫

Ω |∇u|2dx. We denote by Br (respectively, ∂Br) the closed ball (respec-
tively, the sphere) of center zero and radius r. u+

n (x)=max{un(x), 0}, u−n (x)=max{−un(x), 0}.
C, C1, C2, . . . denote various positive constants, which may vary from line to line. Let S be the
best Sobolev constant, namely

S := inf
u∈H1

0 (Ω)\{0}

∫
Ω |∇u|2dx( ∫
Ω |u|6dx

)1/3 .

With the help of the Lax–Milgram theorem, for any given u ∈ H1
0(Ω), the Dirichlet bound-

ary problem −∆φ = u2 in Ω has a unique solution φu ∈ H1
0 . Substituting φu to the first

equation of system (1.1), system (1.1) is transformed into the following equation{
−∆u + φuu = |u|p−2u log |u|+ λ

uγ , in Ω,

u = 0, on ∂Ω.
(2.1)

The energy functional corresponding to the equation (2.1) is the following

J(u) =
1
2

∫
Ω
|∇u|2dx +

1
4

∫
Ω

φuu2dx +
1
p2

∫
Ω
|u|pdx− 1

p

∫
Ω
|u|p log |u|dx− λ

1− γ

∫
Ω
|u|1−γdx.
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From (1.3) and (1.4) in [25], we have

lim
t→0

tp−1 log |t|
t

= 0 and lim
t→∞

tp−1 log |t|
tq−1 = 0, (2.2)

where q ∈ (p, 6), and for any ε > 0, there exists Cε > 0 such that

|t|p−1 log |t| ≤ ε|t|+ Cε|t|q−1, ∀t ∈ R\{0}. (2.3)

If a function u ∈ H1
0(Ω) satisfies∫

Ω
(∇u,∇ϕ)dx +

∫
Ω

φuuϕdx−
∫

Ω
|u|p−1ϕ log |u|dx− λ

∫
Ω

ϕ

uγ
dx = 0

for ϕ ∈ H1
0(Ω), then we say u is a weak solution of (2.1) and (u, φu) is a pair solution of system

(1.1).
Before proving Theorem 1.1, we give the following important lemma.

Lemma 2.1 (See [3, 7, 18, 27]). For every u ∈ H1
0(Ω), there exists a unique solution φu ∈ H1

0(Ω) of{
−∆φ = u2, in Ω,

φ = 0, on ∂Ω,

and

(1) ‖φu‖2 =
∫

Ω φuu2dx;

(2) φu ≥ 0. Moreover, φu > 0 when u 6= 0;

(3) For t 6= 0, φtu = t2φu;

(4) Assume that un ⇀ u in H1
0(Ω), then φun → φu in H1

0(Ω) and∫
Ω

φun unvdx →
∫

Ω
φuuvdx, ∀ v ∈ H1

0(Ω);

(5)
∫

Ω φuu2dx =
∫

Ω |∇φu|2dx ≤ C‖u‖4;

(6) Set F (u) =
∫

Ω φuu2dx, then F (u) : H1
0(Ω)→ H1

0(Ω) is C1 and

〈F ′(u), v〉 = 4
∫

Ω
φuuvdx, ∀v ∈ H1

0(Ω);

(7) For u, v ∈ H1
0(Ω),

∫
Ω(φuu− φvv)(u− v)dx ≥ 1

2‖φu − φv‖2.

Lemma 2.2 (See [4]). For all p, a, s > 0, we have the following results:

sp log(s) ≤ 1
ea

sp+a, (2.4)

and by simple calculation, we have

sp log(s) ≥ − 1
ep

.
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Proof. We can repeat the proof of [4, Lemma 2], so we omit the detailed proof of (2.4). Next,
we will prove that another inequality holds.

Let h(t) = tp log t for all t > 0. Clearly, one can obtain that t∗ = e−
1
p is the unique

minimum point of function h. Thus, h(t) ≥ h(t∗) = − 1
ep for all t > 0.

In the following, we first recall some concepts and known results of the critical points
theory for continuous functional. Let (X, d) be a complete metric space with metric d and
f : X → R be a continuous functional in X. Denote by |D f |(u) the supremum of δ in [0, ∞)

such that there exist r > 0, and a continuous map σ : U × [0, r]→ X satisfying{
f (σ(v, t)) ≤ f (v)− δt, (v, t) ∈ U × [0, r],

d(σ(v, t), v) ≤ t, (v, t) ∈ U × [0, r].
(2.5)

The extended real number |D f |(u) is called the weak slope of f at u, we say that u ∈ X is
a critical point of f if |D f |(u) = 0, we say that c ∈ R is a critical value of f if there exists a
critical point u ∈ X of f with f (u) = c.

Because of looking for positive solutions of system (1.1), we consider the functional J
defined on the closed positive cone P of H1

0(Ω), that is,

P = {u | u ∈ H1
0(Ω), u(x) ≥ 0, a.e. x ∈ Ω}.

Lemma 2.3. Assume |DJ|(u) < +∞, then for any v ∈ P there holds

λ
∫

Ω

v− u
uγ

dx ≤
∫

Ω
∇u∇(v− u)dx +

∫
Ω

φuu(v− u)dx−
∫

Ω
|u|p−1(v− u) log |u|dx

+ |DJ|(u)‖v− u‖.
(2.6)

Proof. We take a similar approach to [16, Lemma 3.1]. Let |DJ|(u) < c, δ < 1
2‖v− u‖, v ∈ P

and v 6= u. Define the mapping σ : U × [0, δ]→ P by

σ(z, t) = z + t
v− z
‖v− z‖ ,

where U is a neighborhood of u. Then ‖σ(z, t)− z‖ = t, by (2.5), there exists a pair (z, t) ∈ U×
[0, δ] such thatJ(σ(z, t)) > J(z)− ct. Consequently, we assume that there exists a sequences
{un} ⊂ P and {tn} ⊂ [0, ∞), such that un → u, tn → 0+, and

J(un + tn
v− un

‖v− un‖
) ≥ J(un)− ctn,

that is,
J(un + sn(v− un)) ≥ J(un)− csn‖v− un‖, (2.7)

where sn = tn
‖v−un‖ → 0+ as n→ ∞. Let us divide (2.7) by sn and rewrite it as

λ

1− γ

∫
Ω

[un + sn(v− un)]1−γ − u1−γ
n

sn
dx

≤ 1
2

∫
Ω

|∇(un + sn(v− un))|2 − |∇un|2
sn

dx+
1
4

∫
Ω

φun+sn(v−un)(un + sn(v− un))2 − φun u2
n

sn
dx

+
∫

Ω

H(un + sn(v− un))− H(un)

sn
+ c‖v− un‖,
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where
H(u) =

1
p2

∫
Ω
|u|pdx− 1

p

∫
Ω
|u|p log |u|dx.

Letting n→ ∞, we claim that we get

lim
n→∞

∫
Ω

H(un + sn(v− un))− H(un)

sn
dx

= lim
n→∞

∫
Ω

[un + sn(v− un)]p − up
n

p2sn
dx

− lim
n→∞

∫
Ω

[un + sn(v− un)]p log |un + sn(v− un)| − up
n log |un|

psn
dx

=
1
p

∫
Ω
|u|p−1(v− u)dx−

∫
Ω
|u|p−1(v− u) log |u|dx− 1

p

∫
Ω
|u|p−1(v− u)dx

= −
∫

Ω
|u|p−1(v− u) log |u|dx.

(2.8)

Indeed, we have only to justify the limit∫
Ω
|un|p log |un|dx →

∫
Ω
|u|p log |u|dx. (2.9)

Since un(x)→ u(x) a.e. in Ω and u→ up log(u) is continuous, then we get

up
n log un → up log u a.e. in Ω.

Furthermore,

up log u ≤ 1
ea

up+a,

where a is a positive number small enough to ensure the compact embedding H1
0(Ω) ↪→

Lp+a(Ω). By Lemma 2.2, for n large enough, we have

− 1
ep
≤ up

n log un ≤
1
ea

up+a + 1 ∈ L1(Ω).

By using dominating convergence theorem, we justify (2.9). Thus, (2.8) holds.
Notice that∫

Ω

[un + sn (v− un)]
1−γ − u1−γ

n

sn (1− γ)
dx =

∫
Ω

[un + sn(v− un)]1−γ − [(1− sn)un]1−γ

sn(1− γ)
dx

+
∫

Ω

[(1− sn) un]
1−γ − u1−γ

n

sn (1− γ)
dx

=
∫

Ω

[un + sn(v− un)]1−γ − [(1− sn)un]1−γ

sn(1− γ)
dx

+
(1− sn)

1−γ − 1
sn (1− γ)

∫
Ω

u1−γ
n dx

= J1,n + J2,n.

Clearly, J1,n =
∫

Ω
ξ−r

n snv
sn

dx =
∫

Ω
v

ξ
γ
n

dx, where ξn ∈ (un − unsn, un + sn(v− un)), which implies
that ξn → u(un → u) as sn → 0+. Since J1,n ≥ 0 for all n, applying Fatou’s Lemma to J1,n, we
obtain

lim inf
n→∞

J1,n ≥
∫

Ω

v
uγ

dx,
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for any v ∈ P. For J2,n, by the dominated convergence theorem, we get

lim
n→∞

J2,n = −
∫

Ω
u1−γdx.

From the above information, for every v ∈ P, it follows

λ
∫

Ω

v− u
uγ

dx ≤
∫

Ω
∇u∇(v− u)dx +

∫
Ω

φuu(v− u)dx−
∫

Ω
|u|p−1(v− u) log |u|dx

+ c‖v− u‖.

Since |DJ|(u) < c is arbitrary, this leads us to the proof of Lemma 2.3.

Lemma 2.4. J satisfies the (PS) condition.

Proof. Let {un} ⊂ P be (PS) sequence of J, that is

|DJ|(un)→ 0, J(un)→ c as n→ ∞.

By Lemma 2.3, for any v ∈ P, we have

λ
∫

Ω

v− un

uγ
n

dx ≤
∫

Ω
∇un∇(v− un)dx +

∫
Ω

φun un(v− un)dx

−
∫

Ω
up−1

n (v− un) log |un|dx + o(1)‖v− un‖,
(2.10)

taking v = 2un ∈ P in (2.10), we get

λ
∫

Ω
u1−γ

n dx ≤
∫

Ω
|∇un|2dx +

∫
Ω

φun u2
ndx−

∫
Ω

up
n log |un|dx + o(1)‖un‖. (2.11)

Since J(un)→ c,

1
2

∫
Ω
|∇un|2dx +

1
4

∫
Ω

φun u2
ndx +

1
p2

∫
Ω
|un|pdx− 1

p

∫
Ω
|un|p log |un|dx

− λ

1− γ

∫
Ω
|un|1−γdx = c + o(1). (2.12)

It follows from (2.11) and (2.12) that

p− 2
2p

∫
Ω
|∇un|2 +

p− 4
4p

∫
Ω

φun u2
ndx +

1
p2

∫
Ω
|un|pdx

≤ λ

(
1

1− γ
− 1

p

) ∫
Ω

u1−γ
n dx + c + o(1) + o(1)‖un‖

≤ Cλ‖un‖1−γ + C + o(1)‖un‖.

Which implies that {un} is bounded in H1
0(Ω). Thus, there exists a subsequence, still denoted

by itself, and a function u ∈ H1
0(Ω), such that un ⇀ u in H1

0(Ω), un(x) → u(x) a.e. in Ω as
n→ ∞. Choosing v = um as the test function in (2.10), we have

λ
∫

Ω

um − un

uγ
n

dx ≤
∫

Ω
∇un∇(um − un)dx +

∫
Ω

φun un(um − un)dx

−
∫

Ω
up−1

n (um − un) log |un|dx + o(1)‖um − un‖.
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By changing the role of um and un, we have a similar inequality, by adding the two inequalities,
there holds

‖un − um‖2 ≤ λ
∫

Ω
(un − um)

(
1

uγ
n
− 1

uγ
m

)
dx +

∫
Ω
(φum um − φun un) (un − um)dx

+
∫

Ω

(
up−1

n log |un| − up−1
m log |um|

)
(un − um)dx + o(1)‖um − un‖

≤
∫

Ω
(φum um − φun un) (un − um)dx

+
∫

Ω

(
up−1

n log |un| − up−1
m log |um|

)
(un − um)dx + o(1)‖um − un‖

≤ − 1
2
‖φum − φun‖2 +

∫
Ω

up
n(un − um)dx +

∫
Ω

up
m(un − um)dx + o(1)‖um − un‖.

Note that

‖φum − φun‖ → 0,
∫

Ω
up

n(un − um)dx → 0,
∫

Ω
up

m(un − um)dx as n→ ∞.

We have limn→∞ ‖un − um‖ = 0. Therefore, un → u in H1
0(Ω) as n → ∞. The proof is

complete.

Lemma 2.5. Assume that |DJ|(u) = 0 , then u is a weak solution of problem (2.1). Namely u−γ ϕ ∈
L1(Ω) for all ϕ ∈ H1

0(Ω), it holds that∫
Ω
∇u∇ϕdx +

∫
Ω

φuuϕdx =
∫

Ω
|u|p−1ϕ log |u|dx + λ

∫
Ω

ϕ

uγ
dx. (2.13)

Proof. By Lemma 2.3, we have

λ
∫

Ω

v− u
uγ

dx ≤
∫

Ω
∇u∇(v− u)dx +

∫
Ω

φuu(v− u)dx−
∫

Ω
|u|p−1(v− u) log |u|dx,

for every v ∈ P. Letting s ∈ R, ϕ ∈ H1
0(Ω), taking (u + sϕ)+ ∈ P as a test function in (2.6),

one has

0 ≤
∫

Ω
∇u∇((u + sϕ)+ − u)dx +

∫
Ω

φuu
(
(u + sϕ)+ − u

)
dx

−
∫

Ω
|u|p−1 ((u + sϕ)+ − u

)
log |u|dx− λ

∫
Ω

(u + sϕ)+ − u
uγ

dx

= s
[∫

Ω
∇u∇ϕdx +

∫
Ω

φuuϕdx−
∫

Ω
|u|p−1ϕ log |u|dx− λ

∫
Ω

ϕ

uγ
dx
]

−
∫

u+sϕ<0
∇u∇(u + sϕ)dx−

∫
u+sϕ<0

φuu(u + sϕ)dx +
∫

u+sϕ<0
|u|p−1(u + sϕ) log |u|dx

+ λ
∫

u+sϕ<0

u + sϕ

uγ
dx

≤ s
[∫

Ω
∇u∇ϕdx +

∫
Ω

φuuϕdx−
∫

Ω
|u|p−1ϕ log |u|dx− λ

∫
Ω

ϕ

uγ
dx
]

− s
∫

u+sϕ<0
[∇u∇ϕ + φuuϕ]dx +

∫
u+sϕ<0

|u|p−1(u + sϕ) log |u|dx.

Since ∇u(x) = 0 for a.e. x ∈ Ω with u(x) = 0 and meas{x ∈ Ω | u(x) + sϕ(x) < 0,
u(x) > 0} → 0 as s→ 0, we have∫

u+sϕ<0
[∇u∇ϕ + φuuϕ]dx =

∫
u+sϕ<0,

u>0

[∇u∇ϕ + φuuϕ]dx → 0,



Multiple positive solutions for a logarithmic Schrödinger–Poisson system 9

and ∫
u+sϕ<0

|u|p−1(u + sϕ) log |u|dx =
∫

u+sϕ<0,
u>0

|u|p−1(u + sϕ) log |u|dx → 0 as s→ 0.

Therefore

0 ≤ s
(∫

Ω
∇u∇ϕdx +

∫
Ω

φuuϕdx−
∫

Ω
|u|p−1ϕ log |u|dx− λ

∫
Ω

ϕ

uγ
dx
)
+ o(s),

as s→ 0. we obtain that∫
Ω
∇u∇ϕdx +

∫
Ω

φuuϕdx−
∫

Ω
|u|p−1ϕ log |u|dx− λ

∫
Ω

ϕ

uγ
dx ≥ 0.

By the arbitrariness of ϕ, this inequality also holds for −ϕ,∫
Ω
∇u∇ϕdx +

∫
Ω

φuuϕdx−
∫

Ω
|u|p−1ϕ log |u|dx− λ

∫
Ω

ϕ

uγ
dx = 0.

Hence, we can deduce that (2.13) holds. The proof of Lemma 2.5 is complete.

3 Proof of Theorem 1.1

In this section, we firstly prove that the problem (2.1) has a negative energy solution.

Lemma 3.1. Given 0 < γ < 1, there exist constants r, ρ, Λ0 > 0 such that the functional J satisfies
the following conditions for 0 < λ < Λ0:

(i) J(u)|u∈Sρ
≥ r, infu∈Bρ J(u) < 0;

(ii) There exists e ∈ H1
0(Ω) with ‖e‖ > ρ such that J(e) < 0.

Proof. (i) By (2.12) in [25], we have∫
Ω
|u|p log |u|dx ≤ 1

2
‖u‖2 + C1‖u‖q. (3.1)

Therefore, one has

J(u) =
1
2
‖u‖2dx +

1
4

∫
Ω

φuu2dx +
1
p2

∫
Ω
|u|pdx− 1

p

∫
Ω
|u|p log |u|dx− λ

1− γ

∫
Ω
|u|1−γdx

≥ p− 1
2p
‖u‖2 +

1
4

∫
Ω

φuu2dx− C1‖u‖q − λ

1− γ

∫
Ω
|u|1−γdx

≥ p− 1
2p
‖u‖2 − C1‖u‖q − C2λ ‖u‖1−γ .

Where q ∈ (p, 6). Which implies that there exist constants r, ρ, Λ0 > 0, such that J(u)|u∈Sρ
≥ r

for every λ ∈ (0, Λ0). Moreover, for u ∈ H1
0(Ω) \ {0}, it holds that

lim
t→0+

J(tu)
t1−γ

= − λ

1− γ

∫
Ω
|u|1−γdx < 0.

So we obtain that J(tu) < 0 for all u 6= 0 and t small enough. Therefore, for ‖u‖ small enough,
one has

m1 = infu∈Bρ J(u) < 0. (3.2)
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(ii) For every u+ ∈ H1
0(Ω), u+ 6= 0 and t > 0, we have

J(tu) =
t2

2
‖u‖2 +

t4

4

∫
Ω

φuu2dx +
tp

p2

∫
Ω
|u|pdx

− tp

p

∫
Ω

up log |tu|dx− λt1−γ

1− γ

∫
Ω
|u|1−γdx

→ −∞

as t → +∞. Therefore we can certainly find e ∈ H1
0(Ω) such that ‖e‖ > ρ and J(e) < 0. The

proof is complete.

Theorem 3.2. Suppose 0 < λ < Λ0, then system (1.1) has a positive function pair solution (u∗, φu∗) ∈
H1

0(Ω)× H1
0(Ω), satisfying J(u∗) < 0.

Proof. First, we claim that there exists u∗ ∈ Bρ, such that J(u∗) = m1 < 0.
By the definition of m1, we know that there exists a minimizing sequence {un} ⊂ Bρ ⊂ P

such that limn→∞ J(un) = m1 < 0. Since J(|un|) = J(un), we may assume that un(x) > 0 for
almost every x in Ω. Clearly, this minimizing sequence is of course bounded in Bρ, up to a
subsequence, there exists u∗ > 0 such that

un ⇀ u∗, weakly in H1
0(Ω),

un → u∗, strongly in Lq(Ω), 1 ≤ q < 2∗,

un(x)→ u∗(x), a.e. in Ω,

(3.3)

as n→ ∞. Set ωn = un − u∗, by the Brézis–Lieb Lemma, one has

‖un‖2 = ‖ωn‖2 + ‖u∗‖2 + o(1). (3.4)

Hence, by Lemma 2.4, we have that

m1 = lim
n→∞

J(un) = J(u∗) +
1
2

lim
n→∞
‖ωn‖2 ≥ J(u∗),

from u∗ ∈ Bρ and by definition of m1 equality holds. Hence, we obtain J(u∗) = m1 < 0 and
u∗ 6≡ 0. From the above arguments we know that u∗ is a local minimizer of J.

Now, we prove that u∗ is a critical point of J. Note that u∗ ≥ 0 and u∗ 6≡ 0. Then for any
ψ ∈ P ⊂ H1

0(Ω), let t > 0 such that u∗ + tψ ∈ H1
0(Ω) and one has

0 ≤ J(u∗ + tψ)− J(u∗)

=
1
2
‖u∗ + tψ‖2 +

1
4

∫
Ω

φu∗+tψ(u∗ + tψ)2dx +
1
p2

∫
Ω
|u∗ + tψ|pdx

− 1
p

∫
Ω
|u∗ + tψ|p log |u∗ + tψ|dx− λ

1− γ

∫
Ω
|u∗ + tψ|1−γdx

− 1
2
‖u∗|2 −

1
4

∫
Ω

φu∗u
2
∗dx− 1

p2

∫
Ω
|u∗|pdx

+
1
p

∫
Ω
|u∗|p log |u∗|dx +

λ

1− γ

∫
Ω
|u∗|1−γdx.

(3.5)
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Actually, from (3.5), we also get

λ

1− γ

∫
Ω

[
(u∗ + tψ)1−γ − (u∗)1−γ

]
dx

≤ 1
2
(
‖u∗ + tψ‖2 − ‖u∗‖2) dx +

1
4

∫
Ω

[
φu∗+tψ(u∗ + tψ)2 − φu∗u∗

2] dx

+
1
p2

∫
Ω
[(u∗ + tψ)p − u∗p] dx− 1

p

∫
Ω
[(u∗ + tψ)p log |u∗ + tψ| − u∗p log |u∗|] dx.

Dividing by t > 0 and passing to the limit as t→ 0+, it gives

λ

1− γ
lim inf

t→0+

∫
Ω

(u∗ + tψ)1−γ − (u∗)1−γ

t
dx ≤

∫
Ω
∇u∗∇ψdx +

∫
Ω

φu∗u∗ψdx

−
∫

Ω
|u∗|p−1ψ log |u∗|dx.

(3.6)

Notice that

λ

1− γ

∫
Ω

(u∗ + tψ)1−γ − (u∗)1−γ

t
dx = λ

∫
Ω
(u∗ + ξtψ)−γψdx.

Where ξ → 0+ and (u∗ + ξtψ)−γψ→ (u∗)−γψ a.e. x ∈ Ω as t→ 0+, since (u∗ + ξtψ)−γψ ≥ 0.
Thus by using Fatou’s Lemma, we have

λ
∫

Ω
(u∗)−γψdx ≤ λ

1− γ
lim inf

t→0+

∫
Ω

(u∗ + tψ)1−γ − (u∗)1−γ

t
dx.

Therefore, we deduce from (3.6) and the above estimate that

∫
Ω
(∇u∗,∇ψ)dx+

∫
Ω

φu∗u
∗ψdx−

∫
Ω
|u∗|p−1ψ log |u∗|dx− λ

∫
Ω
(u∗)−γψdx ≥ 0, ψ ≥ 0. (3.7)

Since J(u∗) < 0, this together with Lemma 3.1, imply that u∗ 6∈ Sρ, therefore we obtain
‖u∗‖ < ρ. For u∗ there is δ1 ∈ (0, 1) such that (1 + t)u∗ ∈ Bρ for |t| ≤ δ1. Define k : [−δ1, δ1]

by k(t) = J((1 + t)u∗). Clearly, k(t) achieves its minimum at t = 0, namely

k′(t)|t=0 = ‖u∗‖2 +
∫

Ω
φu∗(u∗)

2dx−
∫

Ω
|u∗|p log |u∗|dx− λ

∫
Ω
(u∗)1−γdx = 0. (3.8)

Suppose for any υ ∈ H1
0(Ω), and ε > 0. Define Ψ ∈ P by

Ψ = (u∗ + ευ)+.
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By (3.7) and (3.8), we have

0 ≤
∫

Ω

[
(∇u∗,∇Ψ) + φu∗u∗Ψ− |u∗|p−1Ψ log |u∗| − λ(u∗)−γΨ

]
dx

=
∫
{u∗+ευ>0}

(∇u∗,∇(u∗ + ευ))dx

+
∫
{u∗+ευ>0}

[
φu∗u∗(u∗ + ευ)− |u∗|p−1(u∗ + ευ) log |u∗| − λ(u∗)−γ(u∗ + ευ)

]
dx

=

(∫
Ω
−
∫
{u∗+ευ≤0}

)
[(∇u∗,∇(u∗ + ευ))

+ φu∗u∗(u∗ + ευ)− |u∗|p−1(u∗ + ευ) log |u∗| − λ(u∗)−γ(u∗ + ευ)]dx

≤ ‖u∗‖2 +
∫

Ω
φu∗u

2
∗dx−

∫
Ω
|u∗|p log |u∗|dx− λ

∫
Ω
(u∗)1−γdx

+ ε
∫

Ω

[
(∇u∗,∇υ) + φu∗u∗υ− |u∗|p−1υ log |u∗| − λ(u∗)−γυ

]
dx

−
∫
{u∗+ευ≤0}

[(∇u∗,∇(u∗ + ευ)) + φu∗u∗(u∗ + ευ)] dx

+
∫
{u∗+ευ≤0}

[
|u∗|p−1(u∗ + ευ) log |u∗|+ λ(u∗)−γ(u∗ + ευ)

]
dx

≤ ε
∫

Ω

[
(∇u∗,∇υ) + φu∗u∗υ− |u∗|p−1υ log |u∗| − λ(u∗)−γυ

]
dx

− ε
∫
{u∗+ευ≤0}

(∇u∗∇υ + φu∗u∗υ)dx.

(3.9)

Since the measure of the domain of integration {u∗ + ευ ≤ 0} → 0 as ε→ 0, it follows that

lim
ε→0

∫
{u∗+ευ≤0}

(∇u∗∇υ + φu∗u∗υ)dx = 0.

Therefore, dividing by ε and setting ε→ 0 in (3.9), one has∫
Ω
(∇u∗,∇υ)dx +

∫
Ω

φu∗u∗υdx−
∫

Ω
|u∗|p−1υ log |u∗|dx− λ

∫
Ω
(u∗)−γυdx ≥ 0. (3.10)

By the arbitrariness of υ, the inequality also holds for −υ,∫
Ω
(∇u∗,∇υ)dx +

∫
Ω

φu∗u∗υdx−
∫

Ω
|u∗|p−1υ log |u∗|dx− λ

∫
Ω
(u∗)−γυdx = 0. (3.11)

Since u∗ 6≡ 0. From (3.10), there holds

−∆u∗ + φu∗u∗ ≥ 0.

Note that φu∗ > 0, then, by the strong maximum principle, it suggests that u∗ > 0 in Ω.
From the above arguments, we obtain that (u∗, φu∗) is a positive solution of system (1.1) with
J(u∗) = m1 < 0. This proof is complete.

Now, we only need prove that system (1.1) has another positive solution.

Theorem 3.3. Suppose 0 < λ < Λ0, then system (1.1) has a positive function pair solution (v∗, φv∗) ∈
H1

0(Ω)× H1
0(Ω), such that J(v∗) > 0.
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Proof. By Lemma 3.1, J satisfies the geometric structure of mountain pass Lemma. Applying
the Mountain pass Lemma [5] and Lemma 2.4, there exists a sequence {vn} such that

|DJ|(vn)→ 0, J(vn)→ c as n→ ∞.

According to Lemma 2.4, we know that {vn} ⊂ H1
0(Ω) has a convergent subsequence, still

denoted by {vn}, we may assume that vn → v∗ in H1
0(Ω), and

J(v∗) = lim
n→∞

J(vn) = c, |DJ|(vn)→ 0.

Similar to Theorem 3.2, v∗ satisfies equation (2.1) with J(v∗) = c > 0. Thus (v∗, φv∗) is a
positive solution of system (1.1). Thereby, we obtain that the function pairs (u∗, φu∗) and
(v∗, φv∗) are different positive solutions. This completes the proof of Theorem 1.1.

Acknowledgements

The authors thanks an anonymous referees for careful reading and some helpful comments,
which greatly improve the manuscript. This work was supported the National Natural Science
Foundation of China (No. 11661021; No. 11861021); Science Fund Grants of Guizhou Minzu
University (No. KY[2018]5773-YB03).

References

[1] A. Ambrosetti, D. Ruiz, Multiple bound states for the Schrödinger–Poisson prob-
lem, Commun. Contemp. Math. 10(2008), No. 3, 391–404. https://doi.org/10.1142/
S021919970800282X; MR2417922; Zbl 1188.35171

[2] A. Azzollini, P. D’Avenia, On a system involving a critically growing nonlinearity, J.
Math. Anal. Appl. 387(2012), No. 1, 433–438. https://doi.org/10.1016/j.jmaa.2011.09.
012; MR2845762; Zbl 1229.35060

[3] V. Benci, D. Fortunato, An eigenvalue problem for the Schrödinger–Maxwell equations,
Topol. Methods. Nonlinear. Anal. 11(1998), No. 2, 283–293. https://doi.org/10.12775/
TMNA.1998.019; MR1659454; Zbl 0926.35125

[4] Y. Bouizem, S. Boulaaras, B. Djebbar, Some existence results for an elliptic equation
of Kirchhoff-type with changing sign data and a logarithmic nonlinearity, Math. Meth
Appl. Sci. 42(2019), No. 7, 2465–2474. https://doi.org/10.1002/mma.5523; MR3936413;
Zbl 1417.35031

[5] A. Canino, M. Degiovanni, Nonsmooth critical point theory and quasilinear elliptic
equations, in: Topological methods in differential equations and inclusions (Montreal, PQ, 1994),
NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., Vol. 472, Kluwer, Dordrecht, 1995. https:
//doi.org/10.1007/978-94-011-0339-8_1; MR1368669; Zbl 0851.35038

[6] S. Chen, X. Tang, Ground state sign-changing solutions for elliptic equations with log-
arithmic nonlinearity, Acta. Math. Hungar. 157(2019), No. 1, 27–38. https://doi.org/10.
1007/s10474-018-0891-y; MR3911157; Zbl 1438.35192

https://doi.org/10.1142/S021919970800282X
https://doi.org/10.1142/S021919970800282X
https://www.ams.org/mathscinet-getitem?mr=2417922
https://zbmath.org/?q=an:1188.35171
https://doi.org/10.1016/j.jmaa.2011.09.012 
https://doi.org/10.1016/j.jmaa.2011.09.012 
https://www.ams.org/mathscinet-getitem?mr=2845762
https://zbmath.org/?q=an:1229.35060
https://doi.org/10.12775/TMNA.1998.019
https://doi.org/10.12775/TMNA.1998.019
https://www.ams.org/mathscinet-getitem?mr=1659454
https://zbmath.org/?q=an:0926.35125
https://doi.org/10.1002/mma.5523 
https://www.ams.org/mathscinet-getitem?mr=3936413
https://zbmath.org/?q=an:1417.35031
https://doi.org/10.1007/978-94-011-0339-8_1
https://doi.org/10.1007/978-94-011-0339-8_1
https://www.ams.org/mathscinet-getitem?mr=1368669
https://zbmath.org/?q=an:0851.35038
https://doi.org/10.1007/s10474-018-0891-y
https://doi.org/10.1007/s10474-018-0891-y
https://www.ams.org/mathscinet-getitem?mr=3911157
https://zbmath.org/?q=an:1438.35192


14 L. Peng, H. Suo, D. Wu, H. Feng and C. Lei

[7] T. D’Aprile, D. Mugnai, Solitary waves for nonlinear Klein–Gordon–Maxwell and
Schrödinger–Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134(2004), No. 5, 893–
906. https://doi.org/10.1142/S021919970800282X; MR2099569; Zbl 1064.35182

[8] T. D’Aprile, D. Mugnai, Non-existence results for the coupled Klein–Gordon–Maxwell
equations, Adv. Nonlinear. Stud. 4(2004), No. 3, 307–322. https://doi.org/10.1515/
ans-2004-0305; MR2079817; Zbl 1142.35406

[9] P. d’Avenia, A. Azzollini, V. Luisi, Generalized Schrödinger–Poisson type systems, J.
Commun. Pure. Appl. Anal. 12(2013), No. 2, 867–879. https://doi.org/10.3934/cpaa.
2013.12.867; MR2982795; Zbl 1270.35227

[10] P. d’Avenia, E. Montefusco, M. Squassina, On the logarithmic Schrödinger equa-
tion, Commun. Contemp. Math. 16(2014), No. 2, 706–729. https://doi.org/10.1142/
S0219199713500326; MR3195154; Zbl 1292.35259

[11] C. Ji, A. Szulkin, A logarithmic Schrödinger equation with asymptotic conditions on the
potential, J. Math. Anal. Appl. 437(2016), No. 3, 241–254. https://doi.org/10.1016/j.
jmaa.2015.11.071; MR3451965; Zbl 1333.35010

[12] M. Jing, Z. D. Yang, Existence of solutions to p-Laplace equations with logarithmic non-
linearity, Electron. J. Differential Equations 2009, No. 87, 1–10. MR2519912; Zbl 1175.35067

[13] A. C. Lazer, P. J. McKenna, On a singular nonlinear elliptic boundary-value problem,
Proc. Amer. Math. Soc. 111(1991), No. 3, 721–730. https://doi.org/10.2307/2048410;
MR1037213; Zbl 0727.35057

[14] C. Y. Lei, G. S. Liu, H. M. Suo, Positive solutions for a Schrödinger–Poisson system with
singularity and critical exponent, J. Math. Anal. Appl. 483(2019), No. 2, 123647, 21 pp.
https://doi.org/10.1016/j.jmaa.2019.123647; MR4037579; Zbl 1433.35073

[15] C. Y. Lei, H. M. Suo, Positive solutions for a Schrödinger–Poisson system involving
concave-convex nonlinearities, Comput. Math. Appl. 74(2017), No. 6, 1516–1524. https:
//doi.org/10.1007/s00526-017-1229-2; MR3693350; Zbl 1394.35172

[16] X. Q. Liu, Y. X. Guo, J. Q. Liu, Solutions for singular p-Laplacian equation in RN , J. Syst.
Sci. Complex. 22(2009), No. 4, 597–613. https://doi.org/10.1007/s11424-009-9190-6;
MR2565258; Zbl 1300.35039

[17] H. L. Liu, Z. S. Liu, Q. Z. Xiao, Ground state solution for a fourth-order nonlinear
elliptic problem with logarithmic nonlinearity, Appl. Math. Lett. 79(2018), No. 1, 176–181.
https://doi.org/10.1016/j.aml.2017.12.015; MR3748628; Zbl 1459.35123

[18] D. Ruiz, The Schrödinger–Poisson equation under the effect of a nonlinear local term,
J. Funct. Anal. 237(2006), No. 2, 655–674. https://doi.org/10.1016/j.jfa.2006.04.005;
MR2230354; Zbl 1136.35037

[19] M. Squassina, A. Szulkin, Multiple solutions to logarithmic Schrödinger equations with
periodic potential, Calc. Var. Partial Differ. Equ. 54(2015), No. 1, 585–597. https://doi.
org/10.1007/s00526-014-0796-8; MR3385171; Zbl 1326.35358

https://doi.org/10.1142/S021919970800282X
https://www.ams.org/mathscinet-getitem?mr=2099569
https://zbmath.org/?q=an:1064.35182
https://doi.org/10.1515/ans-2004-0305 
https://doi.org/10.1515/ans-2004-0305 
https://www.ams.org/mathscinet-getitem?mr=2079817
https://zbmath.org/?q=an:1142.35406
https://doi.org/10.3934/cpaa.2013.12.867
https://doi.org/10.3934/cpaa.2013.12.867
https://www.ams.org/mathscinet-getitem?mr=2982795
https://zbmath.org/?q=an:1270.35227
https://doi.org/10.1142/S0219199713500326
https://doi.org/10.1142/S0219199713500326
https://www.ams.org/mathscinet-getitem?mr=3195154
https://zbmath.org/?q=an:1292.35259
https://doi.org/10.1016/j.jmaa.2015.11.071
https://doi.org/10.1016/j.jmaa.2015.11.071
https://www.ams.org/mathscinet-getitem?mr=3451965
https://zbmath.org/?q=an:1333.35010
https://www.ams.org/mathscinet-getitem?mr=2519912
https://zbmath.org/?q=an:1175.35067
https://doi.org/10.2307/2048410
https://www.ams.org/mathscinet-getitem?mr=1037213
https://zbmath.org/?q=an:0727.35057
https://doi.org/10.1016/j.jmaa.2019.123647 
https://www.ams.org/mathscinet-getitem?mr=4037579
https://zbmath.org/?q=an:1433.35073
https://doi.org/10.1007/s00526-017-1229-2
https://doi.org/10.1007/s00526-017-1229-2
https://www.ams.org/mathscinet-getitem?mr=3693350
https://zbmath.org/?q=an:1394.35172
https://doi.org/10.1007/s11424-009-9190-6 
https://www.ams.org/mathscinet-getitem?mr=2565258
https://zbmath.org/?q=an:1300.35039
https://doi.org/10.1016/j.aml.2017.12.015 
https://www.ams.org/mathscinet-getitem?mr=3748628
https://zbmath.org/?q=an:1459.35123
https://doi.org/10.1016/j.jfa.2006.04.005 
https://www.ams.org/mathscinet-getitem?mr=2230354
https://zbmath.org/?q=an:1136.35037
https://doi.org/10.1007/s00526-014-0796-8 
https://doi.org/10.1007/s00526-014-0796-8 
https://www.ams.org/mathscinet-getitem?mr=3385171
https://zbmath.org/?q=an:1326.35358


Multiple positive solutions for a logarithmic Schrödinger–Poisson system 15

[20] Y. J. Sun, S. J. Li, Some remarks on a superlinear-singular problem: Estimates of λ∗,
Nonlinear. Anal. 69(2008), No. 8, 2636–2650. https://doi.org/10.1016/j.na.2007.08.
037; MR2446359; Zbl 1237.35076

[21] Y. J. Sun, X. P. Wu, An exact estimate result for a class of singular equations with critical
exponents, J. Funct. Anal. 260(2011), No. 5, 1257–1284. https://doi.org/10.1016/j.jfa.
2010.11.018; MR2749428; Zbl 1237.35077

[22] Y. J. Sun, X. P. Wu, Y. M. Long, Combined effects of singular and superlinear nonlineari-
ties in some singular boundary value problems, J. Differential. Equations 176(2001), No. 2,
511–531. https://doi.org/10.1006/jdeq.2000.3973; MR1866285; Zbl 1109.35344

[23] S. Tian, Multiple solutions for the semilinear elliptic equations with the sign-changing
logarithmic nonlinearity, J. Math. Anal. Appl. 454(2017), No. 2, 816–828. https://doi.org/
10.1016/j.jmaa.2017.05.015; MR3658801; Zbl 1379.35140

[24] F. Y. Wang, J. L. Wu, Compactness of Schrödinger semigroups with unbounded be-
low potentials, Bull. Sci. Math. 132(2008), No. 8, 679–689. https://doi.org/10.1016/j.
bulsci.2008.06.004; MR2474487; Zbl 1156.47043

[25] L. Wen, X. H. Tang, S. T. Chen, Ground state sign-changing solutions for Kirchhoff
equations with logarithmic nonlinearity, Electron. J. Qual. Theory Differ. Equ. 2019, No. 47,
1–13. https://doi.org/10.14232/ejqtde.2019.1.47; MR3991096; Zbl 1438.35159

[26] H. T. Yang, Multiplicity and asymptotic behavior of positive solutions for a singular
semilinear elliptic problem, J. Differential Equations 189(2003), No. 2, 487–512. https://
doi.org/10.1016/S0022-0396(02)00098-0; MR1964476; Zbl 1034.35038

[27] Q. Zhang, Existence, uniqueness and multiplicity of positive solutions for Schrödinger–
Poisson system with singularity, J. Math. Anal. Appl. 437(2016), No. 1, 160–180. https:
//doi.org/10.1016/j.jmaa.2015.12.061; MR3451961; Zbl 1334.35048

[28] K. G. Zloshchastiev, Logarithmic nonlinearity in theories of quantum gravity: origin
of time and observational consequences, Gravit. Cosmol. 16(2010), No. 4, 288–297. https:
//doi.org/10.1134/S0202289310040067; MR2740900; Zbl 1232.83044

https://doi.org/10.1016/j.na.2007.08.037 
https://doi.org/10.1016/j.na.2007.08.037 
https://www.ams.org/mathscinet-getitem?mr=2446359
https://zbmath.org/?q=an:1237.35076
https://doi.org/10.1016/j.jfa.2010.11.018 
https://doi.org/10.1016/j.jfa.2010.11.018 
https://www.ams.org/mathscinet-getitem?mr=2749428
https://zbmath.org/?q=an:1237.35077
https://doi.org/10.1006/jdeq.2000.3973 
https://www.ams.org/mathscinet-getitem?mr=1866285
https://zbmath.org/?q=an:1109.35344
https://doi.org/10.1016/j.jmaa.2017.05.015 
https://doi.org/10.1016/j.jmaa.2017.05.015 
https://www.ams.org/mathscinet-getitem?mr=3658801
https://zbmath.org/?q=an:1379.35140
https://doi.org/10.1016/j.bulsci.2008.06.004 
https://doi.org/10.1016/j.bulsci.2008.06.004 
https://www.ams.org/mathscinet-getitem?mr=2474487
https://zbmath.org/?q=an:1156.47043
https://doi.org/10.14232/ejqtde.2019.1.47
https://www.ams.org/mathscinet-getitem?mr=3991096
https://zbmath.org/?q=an:1438.35159
https://doi.org/10.1016/S0022-0396(02)00098-0 
https://doi.org/10.1016/S0022-0396(02)00098-0 
https://www.ams.org/mathscinet-getitem?mr=1964476
https://zbmath.org/?q=an:1034.35038
https://doi.org/10.1016/j.jmaa.2015.12.061 
https://doi.org/10.1016/j.jmaa.2015.12.061 
https://www.ams.org/mathscinet-getitem?mr=3451961
https://zbmath.org/?q=an:1334.35048
https://doi.org/10.1134/S0202289310040067 
https://doi.org/10.1134/S0202289310040067 
https://www.ams.org/mathscinet-getitem?mr=2740900
https://zbmath.org/?q=an:1232.83044

	Introduction and main result
	Preliminaries
	Proof of Theorem 1.1

