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Abstract. In this paper we study the behaviour of the solutions of the following cyclic
system of difference equations with maximum:

xi(n + 1) = max
{

Ai,
xi(n)

xi+1(n− 1)

}
, i = 1, 2, . . . , k− 1,

xk(n + 1) = max
{

Ak,
xk(n)

x1(n− 1)

}
where n = 0, 1, 2, . . . , Ai, i = 1, 2, . . . , k, are positive constants, xi(−1), xi(0), i =
1, 2, . . . , k, are real positive numbers. Finally for k = 2 under some conditions we find
solutions which converge to periodic six solutions.

Keywords: difference equations with maximum, equilibrium, eventually equal to equi-
librium, periodic solutions.
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1 Introduction

Max operators play an important role in the study of some problems in automatic control
(see [16, 17]). This fact was one, among others, which motivated some authors to consider
differences equations with maximum (see [1–7, 10–15, 20, 21, 23–37, 40–42, 45–47]).

In the beginning, majority of the papers in the topic studied special cases of difference
equations in the following form:

yn+1 = max
{

A0

yn
,

A1

yn−1
, . . . ,

Ak

yn−k

}
, n = 0, 1, 2, . . . ,

where k is a natural number, whereas the coefficients Aj, j = 0, 1, . . . , k, are real numbers (see,
for example, [2, 5, 7, 12–15, 23, 45–47]).

The study of positive solutions of the following difference equation with maximum

xn+1 = max
{

A
xn

,
B

xn−2

}
, n = 0, 1, 2, . . . ,
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conducted in [14] showed that a suitable change of variables transforms it to the difference
equation with maximum of the form:

yn+1 = max
{

D,
yn

yn−1

}
(1.1)

where D = AB−1, which suggested the investigation of the equation. Among other things,
[14] studied the periodicity of positive solutions of equation (1.1).

This also naturally suggested investigations of difference equations in the following form:

yn+1 = max
{

D,
yn−k

yn−m

}
, n = 0, 1, 2, . . . ,

where k and m are nonnegative integers (for some important results on the difference equation
see [1]), which was soon after publication of [1] continued in a comprehensive study of the
following difference equation

yn+1 = max

{
D,

yp
n−k

yq
n−m

}
, n = 0, 1, 2, . . . ,

and its natural generalizations, by S. Stević and his collaborators (see, for example, [10,11,25–
31, 35–37, 40, 42]).

On the other hand, equation (1.1) suggested also studying of the corresponding close-to-
symmetric systems of difference equations (some related rational ones had been previously
studied for example in [18, 19]).

In [6] the authors studied the periodicity of the positive solutions of the system of differ-
ence equations with maximum which is a close-to-symmetric cousin of equation (1.1) :

xn+1 = max
{

A,
yn

xn−1

}
,

xn+1 = max
{

B,
xn

yn−1

}
,

where n = 0, 1, 2, . . . , and the initial values x−1, x0, y−1, y0 are positive real numbers.
Some other results on systems of difference equations with maximum can be found in

[21, 24, 33–35, 37, 42]. Recall also that many difference equations and systems with maximum
are connected with periodicity (see, e.g., [3–5, 12, 29, 32, 34, 41, 45–47]), a typical characteristic
of positive solutions of the equations and systems. For some results on the boundedness
character of difference equations and systems with maximum see [1, 3, 13, 20, 40]. The paper
[1] is interesting since it also considers real solutions to a difference equations with maximum,
unlike great majority of other ones.

On the third side, in [8] Iričanin and Stević suggested investigation of cyclic systems of
difference equations, which later motivated some further investigations in the direction (see,
for example, [9, 22, 38]).

In what follows we use the following convention (see [8]). If i and j are integers such that
i = j (mod k), then we will regard that Ai = Aj and xi(n) = xj(n). For example, we identify
the number A0 with Ak, and identify the sequence xk+1(n) with x1(n) (the convention is used
in the systems which follows).
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Motivated by above mentioned facts, in this paper we study the behaviour of the solutions
of the following cyclic system of difference equations with maximum:

xi(n + 1) = max
{

Ai,
xi(n)

xi+1(n− 1)

}
, i = 1, 2, . . . , k, (1.2)

where n = 0, 1, 2, . . . , the coefficients Ai, i = 1, 2, . . . , k, are positive constants, and the initial
values xi(−1), xi(0), i = 1, 2, . . . , k, are positive real numbers. Moreover for k = 2 under some
conditions we find solutions which converge to periodic six solutions.

2 Study of system (1.2)

First we study the existence of equilibrium point for (1.2).

Proposition 2.1. Consider system (1.2) where Ai, i = 1, 2, . . . , k, are positive constants and xi(−1),
xi(0), i = 1, 2, . . . , k, are positive real numbers. Then the following statements are true:

I. Suppose that
Ai > 1, i = 1, 2, . . . , k. (2.1)

Then (1.2) has a unique equilibrium (x1, x2, . . . , xk) = (A1, A2, . . . , Ak).

II. Suppose that there exists an r, r ∈ {1, 2, . . . , k} such that

(Ar − 1)(Ar+1 − 1) < 0. (2.2)

Then (1.2) has no equilibrium.

III. Let
0 < Ai < 1, i = 1, 2, . . . , k (2.3)

be satisfied. Then system (1.2) has a unique equilibrium (x1, x2, . . . , xk) = (1, 1, . . . , 1).

Proof. I. We consider the system of algebraic equations

xi = max
{

Ai,
xi

xi+1

}
, i = 1, 2, . . . , k. (2.4)

We would like to point out that in (2.4) we use the following convention: if i and j are integers,
then we regard that xi = xj if i = j (mod k) (see the previous section). Since xi ≥ Ai > 1,
i = 1, 2, . . . , k it is obvious that

xi 6=
xi

xi+1
, i = 1, 2, . . . , k.

From this it easily follows that system (2.4) has a unique solution

(x1, x2, . . . , xk) = (A1, A2, . . . , Ak).

II. Suppose that there exists r ∈ {1, 2, . . . , k} such that inequalities (2.2) hold. Then either

Ar < 1, Ar+1 > 1 (2.5)

or
Ar > 1, Ar+1 < 1 (2.6)
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are satisfied.
Suppose firstly that (2.5) hold. From (2.4) we get

xr = max
{

Ar,
xr

xr+1

}
. (2.7)

Relations (2.4) and (2.5) imply that xr+1 ≥ Ar+1 > 1. Hence we have

xr

xr+1
≤ xr

Ar+1
< xr

and so from (2.7) we take xr = Ar. Moreover, from (2.4) we get

xr−1 = max
{

Ar−1,
xr−1

xr

}
= max

{
Ar−1,

xr−1

Ar

}
≥ xr−1

Ar

which is a contradiction since 0 < Ar < 1, r = 1, 2, . . . , k. So (1.2) has no equilibrium.
Assume now that (2.6) is satisfied. Suppose that there exists a j ∈ {1, 2, . . . , r} such that

Aj < 1. Let s = max{j : Aj < 1, j ∈ {1, 2, . . . , r}}. Then it is obvious that

As < 1, As+1 > 1. (2.8)

Then arguing as in the case where (2.5) hold, system (1.2) has no equilibrium. Assume that
there exists a j ∈ {r + 2, r + 3, . . . , k} such that Aj > 1. Let v = min{j : Aj > 1, j ∈
{r + 2, r + 3, . . . , k}}. Then we get

Av−1 < 1, Av > 1. (2.9)

So, arguing again as above we have that (1.2) has no equilibrium.
Finally suppose that

Aj > 1, j = 1, 2, . . . , r, Av < 1, v = r + 1, r + 2, . . . , k. (2.10)

Then since from (2.10) A1 > 1 we take xk
x1
≤ xk

A1
< xk. Thus we get from (2.4)

xk = max
{

Ak,
xk

x1

}
= Ak < 1. (2.11)

Moreover, from (2.4), (2.10) and (2.11) it holds,

xk−1 = max
{

Ak−1,
xk−1

xk

}
= max

{
Ak−1,

xk−1

Ak

}
≥ xk−1

Ak
> xk−1

which is a contradiction and so (1.2) has no equilibrium.
III. We claim that there exists r ∈ {1, 2, . . . , k} such that

xr

xr+1
≥ 1. (2.12)

Suppose on the contrary that

xi

xi+1
< 1, i = 1, 2, . . . , k,



Study of a cyclic system of difference equations with maximum 5

(recall that for i = k it means xk
x1

< 1). Then we get

1 =
x1

x2

x2

x3
· · · xk

x1
< 1

which is not true.
Therefore there exists an r such that (2.12) holds. From (2.3), (2.7) and (2.12) we have

xr =
xr

xr+1
.

Hence xr+1 = 1. In addition from (2.4) we take

1 = xr+1 = max
{

Ar+1,
xr+1

xr+2

}
= max

{
Ar+1,

1
xr+2

}
.

Then from (2.3) it is obvious that xr+2 = 1. Working inductively we take xj = 1, j = r +
1, . . . , k. From (2.4) we get

1 = xk = max
{

Ak,
xk

x1

}
= max

{
Ak,

1
x1

}
and so x1 = 1. Then we get

1 = x1 = max
{

A1,
1
x2

}
.

Then since (2.3) is satisfied it is obvious that x2 = 1. Working inductively we take xj = 1, j =
1, 2, . . . , r. This completes the proof of the proposition.

Proposition 2.2. Suppose that (2.1) is satisfied. Then every solution of (1.2) is eventually equal to the
unique equilibrium of (1.2) (x1, x2., , , , xk) = (A1, A2, . . . , Ak).

Proof. Let (x1(n), x2(n), . . . , xk(n)) be an arbitrary solution of (1.2). From (1.2) we get

xi(n) ≥ Ai, i = 1, 2, . . . , k. (2.13)

Let s ∈ {1, 2, . . . , k}. We prove that there exists an ms ≥ 3 such that

xs(ms) = As. (2.14)

Suppose on the contrary that for all n ≥ 3

xs(n) > As. (2.15)

Then from (1.2), (2.13) and (2.15) we take for n ≥ 3

xs(n) = max
{

As,
xs(n− 1)

xs+1(n− 2)

}
=

xs(n− 1)
xs+1(n− 2)

≤ xs(n− 1)
As+1

.

Then we take

xs(3) ≤
xs(2)
As+1

, xs(4) ≤
xs(2)
A2

s+1
, . . . , xs(n) ≤

xs(2)
An−2

s+1

.

Since from (2.1) As+1 > 1 there exists an n0 ≥ 3 such that

xs(2)
An−2

s+1

< As, n ≥ n0
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which implies that xs(n) < As, n ≥ n0. This contradicts to (2.15) and so there exists a ms ≥ 3
such that (2.14) holds. From (1.2) we have

xs(ms + 1) = max
{

As,
xs(ms)

xs+1(ms − 1)

}
. (2.16)

In addition relations (2.1), (2.14) imply that

xs(ms)

xs+1(ms − 1)
≤ As

As+1
< As

and so from (2.16) it holds
xs(ms + 1) = As.

Working inductively we can prove that

xs(n) = As, n ≥ ms. (2.17)

So, if m = max {m1, m2, . . . , mk} we have that xi(n) = Ai, i = 1, 2, . . . , k, for n ≥ m. This
completes the proof of the proposition.

In the following proposition we prove that all solutions of (1.2) are unbounded if (2.2) are
satisfied.

Proposition 2.3. Consider system (1.2). Suppose that there exists an r ∈ {1, 2, . . . , k} such that (2.2)
hold. Then all the solutions of system (1.2) are unbounded.

Proof. Let (x1(n), x2(n), . . . , xk(n)) be an arbitrary solution of system (1.2).
Suppose firstly that there exists an r ∈ {1, 2, . . . , k} such that (2.5) is satisfied. Then since

Ar+1 > 1, and using the same argument in the proof of relations (2.14) and (2.17) we can prove
that there exists an nr ≥ 3 such that

xr(n) = Ar, n ≥ nr. (2.18)

Then from (1.2) and (2.18) we obtain

xr−1(nr + 2) = max
{

Ar−1,
xr−1(nr + 1)

xr(nr)

}
≥ xr−1(nr + 1)

xr(nr)
=

xr−1(nr + 1)
Ar

,

and working inductively

xr−1(nr + 3) ≥ xr−1(nr + 1)
A2

r
, . . . , xr−1(nr + n) ≥ xr−1(nr + 1)

An−1
r

.

Since Ar < 1 we have that lim
n→∞

xr−1(n) = ∞. So, the solution of (1.2) is unbounded.
Finally suppose that (2.6) hold. If there exists either an s such that (2.8) hold or a v such that

(2.9) are satisfied, then arguing as in the case (2.18) we take that the solution is unbounded.
Suppose that (2.10) are satisfied. Therefore since A1 > 1, arguing as in (2.17) we take that
there exists an nk such that

xk(n) = Ak, n ≥ nk

and so using the same argument as above we take

xk−1(nk + n) ≥ xk−1(nk + 1)
An−1

k

.

Thus since Ak < 1 it holds and so limn→∞xk−1(n) = ∞. This completes the proof of the
proposition.
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In the next proposition we find unbounded solutions for the system (1.2) in the case where
(2.3) hold and k is an even number.

Proposition 2.4. Consider system (1.2) where k is an even number and let condition (2.3) hold. Let
(x1(n), x2(n), . . . , xk(n)) be a solution of (1.2). Suppose that there exists an s, s ∈ {0, 1, . . . , } such
that either

x2r(s)
x2r+1(s− 1)

> 1,
x2r(s)

x2r+1(s− 1)x2r+1(s)
> 1, r = 1, 2, . . . ,

k− 2
2

,

x2r−1(s)
x2r(s− 1)

< A2r−1, x2r(s) > 1, r = 1, 2, . . . ,
k
2

,

xk(s)
x1(s− 1)

> 1,
xk(s)

x1(s− 1)x1(s)
> 1

(2.19)

or

x2r−1(s)
x2r(s− 1)

> 1,
x2r−1(s)

x2r(s− 1)x2r(s)
> 1, x2r−1(s) > 1, r = 1, 2, . . . ,

k
2

,

x2r(s)
x2r+1(s− 1)

< A2r, r = 1, 2, . . . ,
k− 2

2
,

xk(s)
x1(s− 1)

< Ak,
xk(s)

x1(s− 1)x1(s)
< Ak

(2.20)

are satisfied. Then if (2.19) holds we get

lim
n→∞

x2r(n) = ∞, x2r−1(n) = A2r−1, n ≥ s + 1, r = 1, 2, . . . ,
k
2

(2.21)

and if (2.20) is satisfied we have

lim
n→∞

x2r−1(n) = ∞, x2r(n) = A2r, n ≥ s + 1, r = 1, 2, . . . ,
k
2

. (2.22)

Proof. Suppose that the conditions in (2.19) are satisfied. Then form (1.2) and (2.19) we get

x2r−1(s + 1) = max
{

A2r−1,
x2r−1(s)

x2r(s− 1)

}
= A2r−1, r = 1, 2, . . . ,

k
2

,

x2r(s + 1) = max
{

A2r,
x2r(s)

x2r+1(s− 1)

}
=

x2r(s)
x2r+1(s− 1)

> 1, r = 1, 2, . . . ,
k− 2

2
,

xk(s + 1) = max
{

Ak,
xk(s)

x1(s− 1)

}
=

xk(s)
x1(s− 1)

> 1.

Moreover,

x2r−1(s + 2) = max
{

A2r−1,
x2r−1(s + 1)

x2r(s)

}
= max

{
A2r−1,

A2r−1

x2r(s)

}
= A2r−1,

x2r(s + 2) = max
{

A2r,
x2r(s + 1)
x2r+1(s)

}
= max

{
A2r,

x2r(s)
x2r+1(s)x2r+1(s− 1)

}
=

x2r(s)
x2r+1(s− 1)x2r+1(s)

> 1,

xk(s + 2) = max
{

Ak,
xk(s + 1)

x1(s)

}
=

xk(s)
x1(s)x1(s− 1)

> 1.
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In addition

x2r−1(s + 3) = max
{

A2r−1,
x2r−1(s + 2)
x2r(s + 1)

}
= max

{
A2r−1,

A2r−1

x2r(s + 1)

}
= A2r−1,

x2r(s + 3) = max
{

A2r,
x2r(s + 2)

x2r+1(s + 1)

}
= max

{
A2r,

x2r(s)
x2r+1(s)x2r+1(s− 1)A2r+1

}
=

x2r(s)
x2r+1(s− 1)x2r+1(s)A2r+1

> 1,

xk(s + 3) = max
{

Ak,
xk(s + 2)
x1(s + 1)

}
=

xk(s)
x1(s)x1(s− 1)A1

> 1.

Working inductively we can prove that

x2r−1(s + v) = A2r−1, v = 1, 2, . . . , r = 1, 2, . . . ,
k
2

,

x2r(s + v) =
x2r(s)

x2r+1(s− 1)x2r+1(s)Av−2
2r+1

, v = 2, 3, . . . , r = 1, 2, . . . ,
k− 2

2
,

xk(s + v) =
xk(s)

x1(s)x1(s− 1)Av−2
1

.

Then (2.21) is true if inequalities (2.19) hold. Similarly we can prove that if inequalities (2.20)
are satisfied, then (2.22) hold. This completes the proof of the proposition.

Now we find solutions of system (1.2) where k = 2 which converge to period six solutions.
A related situation appears in [33]. For simplicity we set

x1(n) = xn, x2(n) = yn.

We use a product-type system of difference equations, which is solvable. There has been some
considerable recent interest on solvable product-type systems of difference equations (see, for
example, [39, 43, 44], and the related references therein).

Proposition 2.5. Consider system

xn+1 = max
{

A,
xn

yn−1

}
, yn+1 = max

{
B,

yn

xn−1

}
(2.23)

where A, B are positive constants which satisfy

0 < A < 1, 0 < B < 1.

Let ε be a positive number such that

0 < ε < min{1− A, 1− B}. (2.24)

Let (xn, yn) be a solution of (2.23) such that

x0

y0
=

(
x−1

y−1

)λ

, λ =
1−
√

5
2

(2.25)

and
Cn ≥ r = max

{
A

1− ε
,

B
1− ε

}
, (2.26)
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where

Cn =



(x0y0)1/2, when n = 6k,

( x0y0
x−1y−1

)1/2, when n = 6k + 1,

(x−1y−1)
−1/2, when n = 6k + 2,

(x0y0)−1/2, when n = 6k + 3,

( x0y0
x−1y−1

)−1/2, when n = 6k + 4,

(x−1y−1)
1/2, when n = 6k + 5.

Then there exists an n0 such that for n ≥ n0 (xn, yn) the form

xn = Cn

(
x−1

y−1

) 1
2 λn+1

, yn = Cn

(
x−1

y−1

)− 1
2 λn+1

(2.27)

and so (xn, yn) tends to a period six solution of (2.23).

Proof. First of all we prove that there exist x0, x−1, y0, y−1 such that (2.26) is satisfied. It is
obvious that 0 < r < 1 since (2.24) holds. We choose a number θ such that

0 < −r +
√

r < θ < 1− r. (2.28)

Let now numbers v, w be such that

r < r + θ < v < (r + θ)−1 < r−1, r < r + θ < w < (r + θ)−1 < r−1. (2.29)

From (2.28) we get r < (r + θ)2. So,

r < (r + θ)2 <
v
w

< (r + θ)−2 < r−1.

Then if we choose x0, x−1, y0, y−1, such that the numbers

v = (x0y0)
1/2, w = (x−1y−1)

1/2

satisfy inequalities (2.29), relation (2.26) is true.
We consider the system of difference equations

xn+1 =
xn

yn−1
, yn+1 =

yn

xn−1
, n = 0, 1, 2, . . . (2.30)

Let (xn, yn) be a solution of (2.30) which satisfies (2.25) and (2.26). Then we get

xn+4 =
x2

n+3xn

xn+2

which implies that
ln xn+4 − 2 ln xn+3 + ln xn+2 − ln xn = 0.

By setting
zn = ln xn (2.31)

we get
zn+4 − 2zn+3 + zn+2 − zn = 0. (2.32)
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The characteristic equation of (2.32) is the following

p4 − 2p3 + p2 − 1 = (p2 − p− 1)(p2 − p + 1) = 0. (2.33)

Then zn has the form

zn = d1µn + d2λn + d3 cos
(nπ

3

)
+ d4 sin

(nπ

3

)
, (2.34)

where µ = 1+
√

5
2 , λ = 1−

√
5

2 , d1, d2, d3, d4 are constants.
If we set

wn = ln yn (2.35)

from (2.30) we get

wn = zn+1 − zn+2 = d1(1− µ)µn+1 + d2(1− λ)λn+1

+ d3

(
cos

(
(n + 1)π

3

)
− cos

(
(n + 2)π

3

))
+ d4

(
sin
(
(n + 1)π

3

)
− sin

(
(n + 2)π

3

))
= − d1µn − d2λn + d3 cos

(nπ

3

)
+ d4 sin

(nπ

3

)
.

(2.36)

From (2.34) and (2.36) we get

z−1 = d1µ−1 + d2λ−1 + d3
1
2
− d4

√
3

2
,

z0 = d1 + d2 + d3,

w−1 = −d1µ−1 − d2λ−1 + d3
1
2
− d4

√
3

2
,

w0 = −d1 − d2 + d3.

(2.37)

From (2.37) we have

d1 =
1 +
√

5
8
√

5

(
2(z0 − w0)− (1−

√
5)(z−1 − w−1)

)
,

d2 =

(
1
4
− 1

4
√

5

)
(z0 − w0)−

1
2
√

5
(z−1 − w−1),

d3 =
z0 + w0

2
,

d4 =

√
3

6
(−2(z−1 + w−1) + z0 + w0) .

(2.38)

Relation (2.25) implies that

2(z0 − w0)− (1−
√

5)(z−1 − w−1) = 2(ln x0 − ln y0)− (1−
√

5)(ln x−1 − ln y−1)

= 2
(

ln
x0

y0
− λ ln

x−1

y−1

)
= 0

and so d1 = 0.
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From (2.25), (2.34), (2.36), (2.38) we get

zn =
1
2
(z−1 − w−1)λ

n+1 +
z0 + w0

2
cos

nπ

3
+

√
3

6

(
−2(z−1 + w−1) + z0 + w0

)
sin

nπ

3

wn = − 1
2
(z−1 − w−1)λ

n+1 +
z0 + w0

2
cos

nπ

3
+

√
3

6

(
−2(z−1 + w−1) + z0 + w0

)
sin

nπ

3
.

By using (2.31) and (2.35) we get

ln xn =
1
2

ln
(

x−1

y−1

)
λn+1 +

1
2

ln(x0y0) cos
nπ

3
+

√
3

6
(−2 ln(x−1y−1) + ln(x0y0)) sin

nπ

3
,

ln yn = − 1
2

ln
(

x−1

y−1

)
λn+1 +

1
2

ln(x0y0) cos
nπ

3
+

√
3

6
(−2 ln(x−1y−1) + ln(x0y0)) sin

nπ

3
.

From this and by some standard algebraic calculations we can easily prove that the relations
in (2.27) are satisfied, with the constants Cn as defined in above.

Since |λ| < 1 it is obvious that

lim
n→∞

(
x−1

y−1

) 1
2 λn+1

= 1, lim
n→∞

(
x−1

y−1

)− 1
2 λn+1

= 1.

Then if ε is a positive number which satisfy (2.24) there exists a n0 such that for n ≥ n0(
x−1

y−1

) 1
2 λn+1

> 1− ε,
(

x−1

y−1

)− 1
2 λn+1

> 1− ε. (2.39)

Therefore using (2.27), (2.39) we get for n ≥ n0

xn ≥ max
{

A
1− ε

,
B

1− ε

}
(1− ε) = max{A, B},

yn ≥ max
{

A
1− ε

,
B

1− ε

}
(1− ε) = max{A, B}.

(2.40)

Then from (2.30) and (2.40) we have that (xn, yn) is a bounded solution of (2.23) where for
n ≥ n0 satisfies system (2.30). This completes the proof of the proposition.
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[4] E. M. Elsayed, S. Stević, On the max-type equation xn+1 = max{ A
xn

, xn−2}, Nonlinear
Anal. 71(2009) 910–922. https://doi.org/10.1016/j.na.2008.11.016

[5] J. Feuer, On the eventual periodicity of xn+1 = max{ 1
xn

, An
xn−1
} with a period-four pa-

rameter, J. Difference Equ. Appl. 12(2006), No. 5, 467–486. https://doi.org/10.1080/

10236190600574002

[6] N. Fotiades, G. Papaschinopoulos, On a system of difference equations with maximum,
Appl. Math. Lett. 221(2013), 684–690. https://doi.org/10.1016/j.amc.2013.07.014

[7] E. A. Grove, C. Kent, G. Ladas, M. A. Radin, On xn+1 = max{ 1
xn

, An
xn−1
} with a period

3 parameter, in: Topics in functional differential and difference equations (Lisbon, 1999), Fields
Inst. Commun., Vol. 29, Amer. Math. Soc., Providence, RI, 2001, pp. 161–180. MR1821780
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