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Smoothing properties for a Hirota-Satsuma systems
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Abstract

We study local existence and smoothing properties for the initial value problem associated to Hirota-
Satsuma systems that describes an interaction of two long waves with different dispersion relations.
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1 Introduction

This paper is concerned with gain in regularity of solutions of the Hirota-Satsuma system

Up — QUgpy +O0UUL, = 2bV U,
V¢ + Vg + 3uv, =0
u(z, 0) = up(x)
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3
v(x, 0) = vo(x) A4
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where x € R, t € R and u = u(x, t), v = v(x, t) are real unknown functions. a and b are real constants
with b > 0. In equation (1.1), 2bvv, acts as a force term on the Korteweg-de Vries(KdV) wave system
with the linear dispersion relation w = a k3. This system was introduced by Hirota and Satsuma [19] to
describe and interaction of two long waves with different dispersion relations. If there is no effect of one
of the long waves on the other, the latter obeys the ordinary KdV equation. They showed that for all
values of @ an b this system possesses three conservation laws. Indeed

1 2
Iliu, 125/]R|:u2+§b’02:|d$

1 (1.5)
I3 =/ [5 (1 +a)u +bv; — (1+a)u’ —buvﬂ dz.
R

They further showed that for all values of b, but only a = %, the system possesses two further conservation
laws

1
Iy = u4—2uui+guiz
4 2 8 13 4
+g<u2v2+§u’uvmm+§u’l}iE’Uiz>+1—5b2v4 (16)
I — 4% — 5u2u2 2 19

1
+ ﬁb(20u31}2 — 10%23“2 — 420UV Vgy +40u21)§+4uvvmm+56uvzvzm + 12uvfm+80§m)

20
+ ﬁbQ(uv‘l—évavi). (1.7)
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The system (1.1)-(1.4) has been studied by several authors, see [8, 19, 20] and the references there. In
1986, N. Hayashi et al. [16] showed that for the nonlinear Schrédinger equation (NLS): i uy + Uge =
AMulP~tu, (z,t) € R x R with initial condition u(z, 0) = ug(z), z € R and a certain assumption on
A and p, all solutions of finite energy are smooth for ¢ # 0 provided the initial functions in H*(R)(or
on L%(R)) decay sufficiently rapidly as |#| — co. The main tool is the operator J defined by Ju =
e /4t (20 1) (e " /4t y) = (z + 2itd,)u which has the remarkable property that it commutes with
the operator L defined by L = (i 9; + 02), namely LJ — JL = [L, J] = 0.

For the Korteweg-de Vries type equation (KdV), Saut and Temam [29] remarked that a solution « cannot
gain or lose regularity. They showed that if u(x, 0) = ug(z) € H*(R) for s > 2, then u(-, t) € H*(R)
for all ¢ > 0. The same result was obtained independently by Bona and Scott [4] though a different
method. For the KdV equation on the line, Kato [22] motivated by work of Cohen [9] showed that
if u(z, 0) = up(z) € L = H*(R) N L*(e*®dz)(b > 0) then the solution u(z, t) of the KAV equation
becomes C* for all ¢ > 0. A main ingredient in the proof was the fact that formally the semi-group
S(t) = e~ 2 in L2(R) is equivalent to Sy(t) = e~ (== in L2(R) when ¢ > 0. One would be inclined to
believe that this was a special property of the KdV equation. This is not however the case. The effect is
due to the dispersive nature of the linear part of the equation. Kruzkov and Faminskii [26] proved that
u(x, 0) = ug(x) € L*(R) such that 2® ug(x) € L*((0, +00)) the weak solution of the KdV equation has
l-continuous space derivatives for all ¢ > 0 if [ < 2 «. The proof of this result is based on the asymptotic
behavior of the Airy function and its derivatives, and on the smoothing effect of the KdV equation which
was found in [22, 26]. While the proof of Kato appears to depend on special a priori estimates, some of
this mystery has been resolved by the result of local gain of finite regularity for various others linear and
nonlinear dispersive equation due to Constantin and Saut [13], Ginibre and Velo [15] and others. However,
all of them require growth conditions on the nonlinear term. In 1992, W. Craig et al. [12] proved for fully
nonlinear KdV equation u; + f(tugza, Ugz, Uz, u, , t) = 0 and certain additional assumption over f that
C* solutions u(x, t) are obtained for all ¢ > 0 if the initial data ug(z) decays faster than polynomially
on RT = {zr € R: z > 0} and has certain initial Sobolev regularity. Following with this idea, in 2001, O.
Vera and G. Perla Menzala [33, 34] proved that the solutions of the initial value problem (P) are locally
smooth due to the dispersive of the coupled system of equations of Korteweg - de Vries type

Ut + Uggr + Q3 Vpgr + ULy + a1 VU, + a2 (wv), =0 rzeR, t>0
b1 Ut + Vgaa + b2 A3 Ugge + V0 + baasuu, +baay (uv), =0
(P) -
u(z, 0) = up(x)
v(z, 0) = vo(x)

where u = u(z, t), v = v(x, t) are real-valued functions of the variables z and ¢ and aq, as, as, b1, ba are
real constants with b1 > 0 and by > 0. The original coupled system is

Ut + Ugzr + A3 Vpge + UP Uy + a1 VP U, + a2 (WP v), =0 in —co<z <400, t>0
(]3> b1 Ut + Vpgr + b2 a3 Uzgr + VP Uy + ba a2 uP Uy + by ay (wov?), =0

u(z, 0) = ug(x)

v(x, 0) = vo(x)

where u = u(z, t), v = v(z, t) are real-valued functions of the variables x and ¢ and a1, as, as, b1, be are
real constants with by > 0 and b2 > 0. The power p is an integer larger than or equal to one. The system
(P) has the structure of a pair of Korteweg - de Vries equations coupled through both dispersive and
nonlinear effects. In the case p = 1, system (13) was derived by Gear and Grimshaw in 1984 [14] as a
model to describe the strong interaction of weakly nonlinear, long waves. Mathematical results on the
system (P) were given by J. Bona et al. [3]. They proved that (P) is globally well posed in H*(R) x H*(R)
for any s > 1 provided |az| < 1/v/b2. The system (13) has been intensively studied by several authors.
See [2, 3] and the references therein. We have the following conservation laws

o1(u) = /]Rudac, d2(v) = /]Rvdx, ¢3(u, v) = /]R(bgu2 + byv?)dz (1.8)

The time-invariance of the functionals ¢; and ¢o expresses the property that the mass of each mode
separately is conserved during interaction, while that of ¢3 is a expression of the conservation of energy
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for the system of two models taken as a whole. Solutions of (13) satisfy an additional conservation law
which is revealed by the time-invariance of the functional

[

3 3
¢4:/ <b2ui+vi+2b2a3umvzbg%b2a2u20b2a2u2vb2a1uv23) dx (1.9)
R

The functional ¢4 is a Hamiltonian for the system (ﬁ) and if bpa? < 1, ¢4 will be seen to provide an a
priori estimate for the solutions (u, v) of (P) in the space H!(R) x H'(R). Furthermore, the linearization
of (13) about the rest state can be reduced to two, linear Korteweg - de Vries equations by a process
of diagonalization. Using this remark and the smoothing properties (in both the temporal and spatial
variables) for the linear Korteweg - de Vries derived by Kato [22, 23], Kenig, Ponce and Vega [24, 25]
it will be shown that (P) is locally well-posed in H*(R) x H*(R) for any s > 1 whenever /baas # 1.
Indeed, all this appears in the following Theorem:

~

Theorem 1.1 (See [3]). Let s > 1 and (uo(z), vo(z)) € H*(R) x H*(R). Consider the system (P) to-
gether with these initial conditions. Let p > 1, p be an integer and a;, by, (real) constants /by az < 1, by >
0,b>0(j=1,2,3;k=1,2). Then, there exists To = To(||(uo(-), vo(:)|ly,,, p) > 0 and a unique solu-
tion (u(z, t), v(z, 1)) € Xo(To) x Xs(Tp), of (P) with initial data (p(x), ¥(x)) where X4(To) = C(0, Tp :
H*(R))N CY(0, Ty : H*3(R)). Moreover, the pair (u, v) depends continuously on (ug(x), vo(x)) in the
sense that the map (ug(z), vo(x)) — (u, v) is continuous from Yy into the space X(Tp) x X(Tv), where
s is a real number, Yy = H*(R) x H*(R) with the norm ||(u, v)|[3. = |lul? ‘) T Hv||§15(R).

This result was improved by J. Marshall et al.[1] They proved that the system (ﬁ)(with p=1), is globally
well-posed in L?(R) x L?(R) provided that |as| # 1/v/ba. This kind of dispersive problem exhibits the
interesting phenomenon of dispersive smoothing, that is, If the initial data belong to a certain Sobolev
space and has a good behavior as |z| — 400, then the solutions in any time ¢ # 0 are smoother than the
initial data.

Our aim in this paper, is to study gain in regularity for the equation (1.1)-(1.4). Specifically, we prove
conditions on (1.1)-(1.4) for which initial data (ug,vy) possessing sufficient decay at infinity and minimal
amount of regularity will lead to a unique solution (u(t), v(t)) € C*(R) x C>*(R) for 0 < t < T, where
T is the existence time of the solution. This paper is organized as follows: Section 2 outlines briefly the
notation and terminology to be used subsequently. Section 3 we prove the main inequality. Section 4 we
prove an important a priori estimate. Section 5 we prove a basic-local-in-time existence and uniqueness
theorem. Section 6 we develop a series of estimates for solutions of equations (1.1)-(1.4) in weighted
Sobolev norms. These provide a starting point for the a priori gain of regularity. In section 7 we prove
the following theorem:

Theorem 1.2 (Main Theorem) Let T > 0, a < 0 and (u, v) be a solution of (1.1)-(1.4) in the region
R x [0, T such that

(u, v) € L=([0, T] : H*(Wor0)) x L>=([0, T]: H*(Woro)) (1.10)
for some L > 2. Then

we L°([0, T) : H¥ (W, 1)) N LA([0, T) : H (W, 1-1-1.1))
ve L0, T): H¥ (W, _1.1))NL2([0, T]: H (W, 11-1.1))

for all0 <1< L—1 and all 0 > 0 where the weight classes will be defined in Section 2.
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2 Preliminaries

We consider the initial value problem

Up — AUggr +O6UUL; = 2DV U, (2.1)
Vi + Vpge +3Uuv, =0 (2.2)
u(z, 0) = up(x) (2.3)
v(x, 0) = vo(x) (2.4)

where x € R, t € R and u = u(x, t), v = v(z, t) are real unknown functions. b and a are real constants
with b > 0.

Notation 2.1 We write d = 9/0x, 0, = 0/0t and we abbreviate u; = & u.

Definition 2.2 A function & = £(x, t) belongs to the weight class Wy ; i if it is a positive C* function
on R x [0, T, 9 > 0 and there is a constant C;j, 0 < j <5 such that

0<Cy <t ke o7z, 1) <Cy Ve<—1, 0<t<T. (2.5)
0<Cy <t ka=ig(x, t) <Oy Ve>1, 0<t<T. .
(t10eE] +107¢]) /€< C5 Y (z,t) €eRx[0,T], Vj€N. (2.7)

Remark 2.3 We shall always take 0 >0, i > 1 and k > 0.

Example 2.4 Let

_ 1+e Y% for >0
f(m)—{l forx <0

then & € Wy ;0.

Definition 2.5 Let N be a positive integer. By HN (W, ; 1) we denote the Sobolev space on R with a
weight; that is, with the norm

N
I / D0(a) 2 €(a, 1) da < + o0
7=0

forany £ € Wy ik and 0 <t < T. Even though the norm depends on &, all such choices lead to equivalent
norms.

Remark 2.6 H*(W, ;1) depends ont (because & = E(x, t)).

Lemma 2.7 (See [7]). For £ € Wy ;0 and 0 > 0,41 > 0, there exists a constant C' > 0 such that, for
(S Hl(ngo)
+oo
sup [€u?| < O (Jul® + [0ul?) & da.

zeR —00

Lemma 2.8 (The Gagliardo-Nirenberg inequality). Let q, r be any real numbers satisfying 1 < q, r < o0
and let j and m be a nonnegative integers such that j < m. Then

107 ull oy < C 0™l ey ull bty

where £ = j +a (% — m) + an) for all a in the interval # < a <1, and M is a positive constant

depending only m, j, q, v and a.

Definition 2.9 By L?([0, T] : HY (W, ;x)) we denote the space of functions v(x, t) with the norm(N
positive integer)

T
A / lo(e, )2 oy, dt < + 0.
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Remark 2.10 The usual Sobolev space is H (R) = HN (Wyo0) without a weight.

Remark 2.11 We shall derive the a priori estimates assuming that the solution is C°°, bounded as
r — — o0, and rapidly decreasing as x — + oo, together with all of its derivatives.

Considering the above notation, the Hirota-Satsuma system can be written as

ug —aug+6uu; =2bvuv
v +v3+3uvy =0

u(xz, 0) = up(x)

v(z, 0) = vo(x)

2.8
2.9

=)
NI NN

(
(
(2.1
(2.11

where x € R, t € R and u = u(x, t), v = v(z, t) are real unknown functions. b and a are real constants

with b > 0.

Throughout this paper C' is a generic constant, not necessarily the same at each occasion(it will change
from line to line), which depend in an increasing way on the indicated quantities. In this part we only

consider the case ¢t > 0. The case ¢t < 0 can be treated analogously.

3 Main Inequality

Lemma 3.1 Let (u, v) be a solution to (2.8)-(2.9) with enough Sobolev regularity(for instance, (u, v) €

HN(R) x HN(R), N > 3), then
1

/91uidz+/ﬁgvidz+/Radz:O
R R R

where
= —ﬁc’)g f <0
H1 = 1b or a
3
M2 = 555
1
01 = -5 l& —ad+60(Eu)]
1
0 = *6[§t+33§]

1 & ol
fa = %Zm(a—

a—1 |
+ BZO m Vo UB Vat1-8

Proof. Differentiating (2.8) a-times(for a > 0) over x € R leads to

Ottty — A Ug+3 + 6 (uur)e =20 (vv1)s

Let & = &(x, t), then multiplying (3.7) by 2 £ u, we have

1
—8,5/5uidx+—8t/§vidz+/ului+1dz+/u2vi+1dx
40 " Jr 6 " Jr R R

a—1 al
ﬁ)' gua UgUa+1-8 — [;0 6' (CY _

§ Ua V3 Vat1-p

(3.6)

2/£ua8tua —2a/£uaua+3d$+12/£ua (uul)adxzélb/fua (V1) q d. (3.8)
R R R R

Each term is calculated separately, integrating by parts

d
2/fuaatuadx:—/Euidm—/ftuidm
R dt Jr R
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—Qa/fuauaJrgd:c:a/83€uid$—3a/6§ui+1dx.
R R R

Using Leibniz’s Formula, we have

('LL'LLl)a - Z ﬁ' Uﬁ Ua+1— B = UUa+1 +Z 6' B) Uﬁ Ua+1— B

(Wor)e = Zﬁl (a—2 [ UB Vat1-p

12 / g (Wu)e da
R

then

12/£uuaua+1dx+1226| /«Euau5ua+1 gdx

al
—6/H§6(£u)uidx+12;m/ﬂkguau5ua+1_5d%

- al
4b/§ua VU)o dr =4b 7/51@0 Vat1—3 dx
LS o) 2 Fia = Jy 1o 00 et
Hence replacing in (3.8) and performing straightforward calculus we have

% /Eu dm——/@fua+1d$+4b/[ —& 4+ a 0% —60(Eu)]u? do

1 «
3_2 (@— 7 /fuauguaH gdx—zﬂ' @—73 /fua’l}ﬁva+1 g dzx. (3.9)
B=

Differentiating (2.9) a-times of (for o > 0) over z € R leads to
Gtva + Va+3 = — 3 (u 'Ul)a (310)

Multiply this equation by 2 v, and integrate over x € R we have

2/§va8tvadx+2/§vava+3dx:76/§va (uv1)q dx (3.11)
R R R

Performing straightforward calculations as above we obtain

G dt/&v der + = /8§va+1dz+ /[7&7335]1;3(&
o!
;m/ﬂ{fvauﬁvwrlﬁdz' (3.12)

Adding (3.9) and (3.1

2)
3a ) 3 ,
4bE/R€u d$+65/§v dx /a‘fua+1d$+§/Rafva+1dx
[rar oo § [1-a-od i
R

1 & a!
5 20 e e

o ! o !
:Zméfuavgva+l_5dx—;m/ﬂkfvawgvaﬂ_gdx. (3.13)

we have
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We take 8 = a in (3.14) we obtain

1 d 3a 3
2d ——/ 2d ——/a 2. .d —/a 2 .d
4b dt/Rgua $+6 dt Rgva -z 4b R €uo¢+1 $+2 R gva-‘rl -z

1 3 2 1 3 2
g5 [+ ade—soculidet g [ -6 -0ia

1 & al
T8 20 e

the lemma follows.

Lemma 3.2 For uq, pa € Wy ;i an arbitrary weight functions and a < 0, there exist &1, £&2 € Wy 41 &
respectively such that

3a 3
m=-1 &, and o =3 D& (3.15)
Indeed, we have
4b [T 2 [
&= 34 i (y, t) dy and &= 5/ p2(y, t) dy. (3.16)

Lemma 3.3 The expression R, in the inequality of Lemma 3.1 is a sum of terms of the form
EUyy Upy Uy, §Vyy Upy Ua,  § Uy, Vyy Vg (3.17)
where 1 < v; < vy <« and
v+ =a+1. (3.18)

Proof. The result follows using (3.6).

4 An a priori estimate

We show now a fundamental a priori estimate used for a basic local-in-time existence theorem. We con-
struct a mapping Z : L>°([0, T] : H*(R)) — L°°([0, T] : H*(R)) with the following property: Given
u™ = Z(u™1) and essSUPyc(o, 7] lu»=1||, < Cy then essSUPyc(o, 7] [ut™||s < Co, where s and Cy > 0 are
constants. This property tells us that Z : B¢, (0) — B¢, (0) where Be, (0) = {v(z, t) : [Jv(, )]s < Co}
is a ball in L*°([0, T]: H*(R)). To guarantee this property, we will appeal to an a priori estimate which
is the main object of this section.

Differentiating (2.8) and (2.9) respectively two times leads to

Oiun —aus +6uus +18uius = 2bvwvs +6bvy ve (4.1)
Osvg + U5 + 3uvy + 6uyvo + 3us vy = 0. (42)
Let u = Aw and v = Az where A = (I — 9?)7L. Then u = (I — 9*)"'w then u — uy = w where
Opus = —wy + uy, and in a similar way, dyva = — 2z + v;. Replacing on (4.1) and (4.2) respectively we
obtain
—w — aAws + 6 Aw Aws + 18 Awy Awa — [— a Aws + 6 Aw Aw] + 2b Az Azy
=2bAzAz3 +6bAz1 Azg (4.3)
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— 2zt + Nz5 + 3 Aw Azg + 6 Awy Azg + 3 Awa Az1 — [Azz +3Aw Az =0 (4.4)

The equations (4.3), (4.4) are linearized equations by substituting a new variable 6 and ¢ in each coeffi-
cient:

wy = —alws+ 6A0Aws + 18 A0y Awgy — [— a Aws + 6 A0 Awq] + 2D Ad Azq
+ 2bAp Nz3 +6b APy Aza (45)
zt = Az5+3N0Azg+6A01 Azg + 3N03 Az1 — [Az3 + 3N0 Azq] (4.6)

Equations (4.5) and (4.6) are linear equations at each iteration which can be solved in any interval of
time in which the coefficients are defined. These equations have the form

dyw = —aAws + b Aws + BV Azg + hO (4.7)
0z = Azs + k@ Aws + kD Azg + KO (4.8)

We consider the following Lemma to help us to set up the iteration scheme.

Lemma 4.1. Given initial data (ug(x), vo(x)) € (>0 HF(Woyi0) x H*(Wpi0) and a < 0. Then
there exists a unique solution of (4.7), (4.8) where h(® = R (A0), KM = (D (Ag),

RO = RO (ABs, NO1, NO, Ao, A1, A@), and k) = k) (AF),

ED = kW (Ap), kO = kO (Aby, AOL, AB, Ada, Ad1, Ap). The solution is defined in any time interval in
which the coefficients are defined.

Proof. From equations (4.7)-(4.8) we have

Wi = AANWs + BY2 AW s + 0O (4.9)

[ -a 0 L2 _ R ) ©) _ h(0) [w
A{o 1}’ B {k:@) ED | =1 o | W=
Let T > 0 be arbitrary and M > 0 a constant. Define £ = 2¢& (9; — AND® — B%2 AD?). Then in (4.9) we
have LW = 2£C©) . We consider the bilinear form

where

B:DxD— R

T
B(Ul, UQ) = <[]17 U2> :/ /e—]\/lt (u1 U + V1 ’Ug) dx dt
o Jr
where D = {U = (u, v) € C§°(R x [0, T]) x C*(R x [0, T]) : u(x, 0) = 0 and v(z, 0) = 0} and
=[] el
U1 (%]

We have

/EU -Udx = /2§[wwt+aw/\w5—h(2)w/\w3—h(l)w/\z3

R R

+zz — 2 Azs — k@ 2 Awg — ED z Azs|dx.

Each term is treated separately integrating by parts. The first two terms we have

Q/Ewwtdx = 6t/§w2dx—/€tw2dx.
R R R
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Qa/fw/\wg,dx = 2a/§/\([—82)w/\w5d$
R R
= Qa/f/\w/\w5dx—2a/£/\w2/\w5dx
R R
= - a/ ¢ (Aw)? dx+5a/ 03¢ (A )* dx —a/(58§— 03€) (Awo)? dx
R R R
7311/85 (Aw)? d.
R
The other terms are calculated the same form
—2/§h(2)w/\w3 dr = /63(§h(2))(/\w)2 dm—3/8(£h(2))(/\w1)2d:§
R R R
—/8(§h(2))(/\w2)2 dz.
R

—2/§h(1) wAzgdr = 72/82(§h(1))/\w/\zl dx72/8(§h(1))/\w1 Nz1dx
R R R
2/§h<1> Awq Azo dz+2/§h<1> Awg Azs d.
R R

Using that Aw,, = (I — (I —8?))Awp_2 = Aw,—o — w,_2 (for n positive integer) and standard estimates
follow that

/EU-Ud:nzat/wadx—i—@t/szd:E—c/wad:E—c/fz?d:E. (4.10)
R R R R R

Multiplying (4.10) for e~ *, and integrate in time ¢ for ¢t € [0, T] and U = (w, z) € D.

T T
/ /e_MtEU - Udzxdt / _Mt< /fw dz) dtJr/ e (8,5/52 dx)
0o JR
/ /ée Mt 2 dxdt—c/ /fe Mt 22 dx dt
= e_Mt/wa(ac, t)dx|0T+M/ /fe_Mthdacdt
R o JR
T
Jre*Mt/sz(z,t)dﬂngM/ /fe M2 dg dt
R o JR
T T
—c/ /wadxdt—c/ /§z2dxdt.
o Jr 0o Jr

T
/ /ethEU - Udzxdt > eth/f(:c, T)w?(z, T) dx+eth/§(:r, T)2*(z, T)dx
o Jr R

T
M—c)/ /ge—Mt Zdrdt + (M —c/ /ge—Mt 2% du dt
0o JR
T
/ /éefMtMdedtJr/ /éefMt 22 dedt = / /éefMt(quLZQ)dxdt
0o JR 0 JR o Jr

provided M is chosen large enough. Then

v

Hence

(LU, U) > (U,U), V¥ UeD.
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Let £* = 2£(—0; + AND® + BY2A0%) the formal adjoint of £. Let D* such that D* = {W = (w, 2) €
CPMR %[0, T)) x C*(Rx [0, T]): w(z, T) =0and z(z, T) = 0}.
The same form for £* the formal adjoint of £ we show that

(LW, W) > (W, W) ¥V WeD" (4.11)

From (4.11) we have that £* is one to one. Therefore (C*W, L*W) is an inner product on D*. Denote by
X the completion of D* with respect to this inner product. By the Riesz representation Theorem, there
exists a unique solution V' € X, such that for any W € D*

(ECO W) = (L*V, LW)
where we used that £ C(®) € X. Then if Z = £*V we have
(Z, W) =(CO WY or (LW, Z)= (W, £CD)

hence Z = L*V is a weak solution of £Z = ¢ C(®) with Z € L*(R x [0, T]) x L*(R x [0, T]) ~ L?([0, T :
L2(R)) x L((0, T] : L2(R)).

Remark 4.1 To obtain higher regularity of the solution, we repeat the proof with higher derivatives
included in the inner product. It is a standard approximation procedure to obtain a result for gemeral
initial data.

The following estimate is related to the existence of solutions theorem.
Lemma 4.2. Let 0, ¢, w, z € C¥([0, +o0) : HN(Wyi0)) for all k, N which satisfy (4.5), (4.6) and
a < 0. For each « there exist positive, nondecreasing functions G, E and M such that for all t > 0

0t/R§widx+8t/R§Z§dw < Gl911x, N1l Ulwllz + [12112) (4.12)
+ E(0]1x, lollx) (0115 + el2) + M (10]la, llélla)

where || - ||o s the norm in H*(Wy;0) and A = max{1, a}.
Proof. We begin by applying d to (4.5), our equation become

Ow1 = —alws+ahwg+6A0Awg+2bApAzy + 24 N01 Aws + 8b APy Nz3
+ 18 NO2 /\1U2+6b/\¢2/\2’2 — 6A0 ANws +2bAp Azg — 6 A1 Awy +2b/\¢1 Nz1

follow that

Owy = —alwe~+ arwg+6A0 Awg +2bAp Azy + 24 N0 ANws + 8D Apy Azs
+ p1(ABa, Ao, ..., NO, AD)
where
P11 = 18 NG5 Awo +6b/\¢2 Nzg — 6 N0 ANwa + 20N\p Nzg — 6 N0 Nwy + 2b/\¢1 NZq.

The similar form applying 8% to (4.5), follow that

Owes = —aAwy+ aAws+ 6A0Aws +2bAp Azs + 30 A01 Awg + 100 Apy Az
+ p2(AO3, A, ..., AO, \O)

where

P2 = 42/\92/\w3+14b/\¢2/\23*6/\9/\w3+2b/\¢)/\2’3+18/\93 /\w2+2b/\¢3/\22
— 6 A0y ANwy +2b/\¢2 Nz1 — 12 AO1 Aws +4b/\¢1 Nzo.
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Applying 0% to (4.5), our equation become

a+3
8{[1),1 = — a/\wa+5 + Z hgj)/\w]— + 7’1/\9,1+1 + 7’2(/\90“ /\90171, ceey /\9)
j=3
a+3 )
+ 3 A2y + 510G i1 + 52(Abas A - AD) (4.13)
j=3
where hgj) and hgj) are smooth functions depending on Af0;, AG;—1, ..., AO; A@;, A1, ..., A\¢ with

i=3+a—j.
Multiplying (4.13) by 2£ w,, and integrate over x € R, as follows

a+3
2/§wa8twadx:—2a/£wa/\wa+5d$+22/fhgj)wa/\wjdx
R R X R
Jj=3

a+3
+2/§T1wa /\9a+1das+2/§war2(/\9a, Moty -, ) dz+ /ghg)wa Azj da
R R - R
Jj=3

+2/§slwa/\¢a+1 dx—l—Z/fwa S2(APyy Nby_1s-- -y NO)da. (4.14)
R R

Each term in (4.14) is treated separately. The first two terms yield
2/§wa8twadx:8t/§widzf/§twidz.
R R R

- Qa/fwa Nogysdr = — 2a/£/\([—82)wa AWt dx
R R
= - 2a/ ENWo, AW y5 d + 2a/ ENWara NWot5 dT
R R
= a/ ¢ (Awy)? do — 5a/ ¢ (AMwgy1)? do + 5a/ ¢ (Mvay2)? da
R R R

— a/83§ (AMway2)? d:c+3a/8§ (AMway3)? do
R R

3 a/Rﬁf (Away3)? do — a/R(a% —50¢) (Mgi2)? dz

_ 5a/83§ (AMgy1)? d:c+a/85§ (Awy)? de.
R R
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The other terms in (4.14) are treated the similar form, using integrating by parts.
Oy / Ewy? dr — / & wa? da + 3a/ 06 (Mvg13)? do — a/(85§ —50¢) (Mvay2)? dz
R R R R
-5 a/ 03¢ (Mvar1)? dz + a/ 0°¢ (Awy)? da
R R
- / PERT) (hwa)? da +3 / A(ERY) (Mwasn)? do
R R
/ AERHY) (Mby2)? d + / (€ W) (Awa)? dar
R R

—2 / R (AMwggr)? da — 2 / R (Mwgpo)? da
R R

a+1
+2Z/thgj)wa/\wjder2/R§T1wa/\9a+1das+2/R§r2wadz
j=3

72/ 8(5 héa+3) wa) Nzgyodr — 2/ 8(5 hga+2) wa) Nza+1 dr
R R

a+1
JrQZ/ghgj)wa/\zjdx+2/§slwa/\¢a+1das+2/§szwadz:0. (4.15)
/R R R

Performing similar calculations to (4.6), our equation become

a+3

Oza = Azass+ Dk Awj+minags +ma(Aa, Na-i, ..., AD)
j=3
a+3 )
+ 3Tk Nzj A miAG 1 + 12(Aby A1, - AD) (4.16)
j=3
where kgj) and kéj) are smooth functions depending on A0;, AO;_1, ..., N0, Ad;, Nb;_q, ..., N¢ with

i=3+a—]
We now multiply (4.16) by 2€ z,, integrate over « € R and performing calculations we obtain

—at/Rgzg d:c+/R§t 22 dm—3/R(’)§ (AZas3)? d:c+/R(a5g—5a§) (AZato)? da

+5 / € (Nzay1)? do — / € (N2a)? da — 2 / AER 20) Aways da
R R R
a+1 )
- 2/ (¢ k%a“) Za) AWy dr + 2 Z / 51#) Zo ANWj dx + 2 / Emy 2o N0gq1 dx + 2/ Ems 2o dx
R =R R R

- / PERST) (Azo)? da + 3 / AERST) (Nzaur)? da + / A(ERST™) (N2aso)? da
R R R

+ / D*(ERST)) (M2a)? da — 2 / ERS T (Nzag)? da — 2 / ERST (Nzaga)? da
R R R
a+1 )

+ QZ/fkéj)za/\zjdx—l—Q/fnlza/\qﬁa+1d$+2/fngzadac =0. (4.17)
=R R R
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Adding (4.15) with (4.17) we have the following identity

—8t/§widzf8t/§z§dx+/§twidx+/§tz§dz+3a/8§(Awa+3)2dz
R R R R R

~3 /R 0 (N2ass)?dx —a /R (7€ — 5 0€) (AMwar2)? da + /R (%€ — 50€) (Azaye)? da
— 5a/R<93§ (/\wa+1)2dx+5/R<93§ (/\za+1)2dx+a/R<95§ (/\wa)def/Ra%’ (Azq)? da
— [ @eh ) (a4 3 [ SERT) (i dat [ DERTH) (nwaga)? da
- /R PR (N2g)2dx + 3 /R AERS Y (Nzay1)? do + /R AE RS (Nzare)? da
+ [ Oeh ) (ot do =2 [ €1 (g o =2 [ €1 (n04a)? da
+ /R 2R (Azg)2 da — 2 /]R kT (Azagr)?dz — 2 /]R €k (Nzgio)? dx
—2 /]R AERS T W) Azays dz — 2 /]R A(E RS wo) Azay da

- 2/ (& k§a+3) Za) NWato dr — 2/ (& k§a+2) Za) Aot da:
R R
a+1 ) a+1 )
+ 22/fhgj)wa/\wjdx—i—QZ/§k§J)za/\zjdx
j=3"F j=3"F

a+1 a+1

+22/§hgj)wa/\zjd$+22/fk%j)za/\wjdx

j=3 /R j=3“R

+2/£r1wa/\9a+1d$+2/fmlza/\Hade+2/£slwa/\¢a+1dx+2/{nlzaA¢a+1d$
R R R R

+2b2/£r2wadm+2/fmgzadx—i—Q/fsQwadx—i—Q/{ngzadac:O.
R R R R
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where
at/fwidm—i—@t/fzidx:/ftwidx—i—/ftzidx—i—?)a/85(Awa+3)2d$
R R R R R
-3 / 06 (Nzgys)?dx —a / (0°€ = 50€) (Mvgs2)? dr + / (0°€ —50€) (N2ay2)? dx
R R R
—5a AWaa1)“dr + 5 NZat1 T+ a AWy )" dax — NZq T
[0 wande 15 [ 06 (e dusa [ ¢ (nwa)do— [ 6 (nza)?d
R R R R
= [0 (a4 3 [ OET) (s do+ [ DERTH) (hwasa)? da
R R R
- / O (EkS™) (Aza)? da + 3 / AERS™) (Nzar1)” do + / NERS™) (N2ata)? da
R R R
+ / 2(ERT) (Mg ) da — 2 / R (Awair)? do — 2 / R (Awae)? do
R R R
+ / P(ERT) (A2g)2 da — 2 / ERST (Azaqr)? da — 2 / R (Azago)? d
R R R
- 2/ 8(5 hga+3) wa) Nzgyodr — 2/ 8(5 h§a+2) wa)/\za+1 dx
R R

- 2/ 8(5 k§a+3) Za) AWqt2 dr — 2/ 8(5 k§a+2) Za) AWat1 dx
R R
a+1 ) a+1 )
+2Z/ghgﬂ>wa/\wjdx+22/gkg)za/\zjdx
j=3 "’k j=3 /R

a+1 a+1

+22/§hgj)wa/\zjd$+22/fk%j)za/\wjdx

j=3 /R j=3 /R

+2/§r1wa/\9a+1dz+2/§m1za/\9a+1das+2/§slwa/\¢a+1dx+2/§nlza/\¢)a+1dz
R R R R

+2b2/§r2wadz+2/fmgzadx+2/552wadx+2/§ngzadz.
R R R R
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Since a < 0, then the third, fourth in the equality are non positive, then
at/fwidx—i—@t/fzidx S/«Etwidx—i—/ftzidx—i—
R R R R
—a / (05 — 508) (Mvayo)? d + / (056 — 508) (Asass)? da
R R
- 5a/ D3¢ (Mvgi1)?dx + 5/ D3¢ (Nzgq1)? do + a/ % (AMwg)? do — / D¢ (Az2o)? da
R R R R
= [0 (a4 3 [ OT) (s P do+ [ SERTH) (hwasa)? da
R R R
~ [Pk (ha do 3 [ AT (har)P o+ [ HERTD) (Nzsa) da
R R R
+ / D2 (En") (Awa)? do — 2 / ERTD (Nwgi1)? d — 2 / RS (Man)? da
R R R
+ / P(E KT (M2g)2 da — 2 / RS T (Nzgy1)? da — 2 / R T (Nzayn)? do
R R R
- 2/ 8(5 hga+3) wa) Nzgyodr — 2/ 8(5 h§a+2) wa)/\zaJrl dx
R R

- 2/ 8(5 k§a+3)za) AW yo do — 2/ 8(§ k§a+2)za) Aoyt dx
R R

a+1 a+1
+2Z/fhgj)wa/\wjdx—i—QZ/széj)za/\zjdx

j=3 "% j=3 "%

a+1 a+1

+2Z/§hgj)wa/\zjd$+22/Eky)za/\wjdx
j=3 "R j=3 7R
+2/£r1wa/\9a+1d$+2/fmlza/\(%“dx+2/£slwa/\q§a+1dx+2/Enlza/\qﬁaHda}
R R R R
+2b2/§r2wadz+2/§m22adas+2/§szwadx+2/§ngzadz.
R R R R
Using that

AWy = ANUp_o — Wp_2 (4.18)

and standard estimates, the Lemma follows.

5 Uniqueness and Existence of a Local Solution

In this section, we study the uniqueness and the existence of local strong solutions in the Sobolev space
HN(R) for N > 3 for problem (2.8), (2.9). To establish the existence of strong solutions for (2.8), (2.9)
we use the a priori estimate together with an approximation procedure.

Theorem 5.1 (Uniqueness). Let a < 0, (ug(z), vo(z)) € H3(R) x H3(R) with N an integer > 3, i € N.
We suppose that there is at least one local strong solution of (2.8), (2.9) in the interval [0, T|. Then there
is at most one strong solution (u, v) € L°°([0, T] : HN(R)) x L>([0, T] : HY(R)) of (2.8), (2.9) with
initial data u(z, 0) = ug(x) and v(z, 0) = vo(x).

Proof.Assume that (u, v) and (v, v') are two solutions of (2.8), (2.9) in L>°([0, T] : HN(R))x L>([0, T :
HY(R)) with the same initial data (uo(z), vo(x)). From (2.8), (2.9), u, vy, u}, v, € L>=([0, T] : L*(R)),
so the integrations below are justified. Therefore, the difference (u — u') satisfies

(u—u')—a(u—u)s+uu —u' v =2bvv —2b0v V). (5.1)
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Multiplying (5.1) by 2¢ (u — u’), and integrating over 2z € R our equation becomes

Q/H{f(ufu’)(ufu’)tdzf2a/R§(u7u’)(u7u’)3dx

+QAf(u—u’)uuldzfQAf(u—u’)u’uﬁdx
:4b/ﬂ{§(u—u/)vv1dz74b/R§(u7u')v'v/1dx.

Each term in (5.2) is treated separately integrating by parts. The first two terms yield
2/§(u7u’)(u7u')tdz = 8t/§(u7u’)2dz—/ét(u—u’)de
R R R

—2a/£u—u (u—u')zde = /03 dx—Sa/agu—u) dz.

The other terms in (5.2) are also treated the similar form, using integrating by parts.

— )V dr — — a2 dr — 2 3 N2
at/Rg(u u')? dx /th(u u')* dx 3a/R@§(u u)ldx—i—a/R@f(u u')? dx
/2

+/R£(u—u’)@(uQ)dx—/Rf(u—u’)a(u ) dz
:2b/R£(u—u’)(’)(v2)dx—Qb/Rf(u—u’)@(v %) da

then

8t/R§(u7u')2dz—/Rét(u—u’)def3a/R<9§(u—u’)?daera/R@B&(ufu')de

+ /Ré (u —u') O(u® — u’2) dx = 2b/R§ (u —u') O(v? — 0’2) dx.
Moreover

/é(ufu’)(?(zﬁfu’?)dz = /8 u—u') u7u2)d
R
= /8§ u—) (u® — o dasf/fu—u (u 7u2)dz

(5.2)

- f/Rag (=) (u— ) (u+ o) das—/Rf w— ) (u— o)y (u+ o) do

—/R@E(u—l—u')(u—u')2d$—/Rf(u—i—u')(u—u')(u—u’)ldx
—/R@E(u—l—u')(u—u')Qd:C—l—%/R@(«E(u—i—u'))(u—u’fdx.

20 [€w-w)o0? —var = 20 [ Ol 02 v ao

= 72()/}1{85(11,7’(,&/)(’027’[)/2)d3572b/R§(U7’U/>1(1)27’0/2>d1'

= 72b/ﬂ§8§(u7u’)(vfv’)(v+v’)dz72b/R§(u—u’)1(va’)(erv’)dz.
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hence in (5.3) we have
8,5/R§(u—u’)de—/th(u—u')Qd:C—Sa/R@f(u—u')%dm—i—a/ﬂ{{@%(u—u’)QdJc
—/8§(u+u’)(u—u’)2dac+%/8(§(u+u’))(u—u')2d$
R R
= —2b/af(u—u’)(v—v')(v—i—v’)dx—Qb/f(u—u’)l (v—"2") (v+')da.
R R
where using that a < 0 we obtain
at/Rf(U—Ul)de—/th(U—UI)2d$+a/Ra3f(U—Ul)2d$
—/af(u—i—u’) (u—u’)de—l—%/a(f(u—i—u’))(u—u’)Qdm
R R
< —2b/8§(u—u’)(v—v’)(U—I—U’)dx—Qb/f(u—u’)l(v—v’)(v—i—v’)dac. (5.4)
R R
The difference (v — v’) satisfies

(v—v")e+ (v —2")3+3uvy —3u' v] =0. (5.5)

Multiplying (5.5) by 2& (v — ), integrating over € R and performing the similar calculations our
equation becomes

at/f(v—U’)Qd:C—/ft(v—vl)2d$+3/85(1}—v')%dx—/83£(v—vl)2dac
R R R R
+6/«5(1}—U’)uvldx—6/«5(1}—1}’)1@’1}’16[:6:0
R R
then
8t/§(va’)2dzf/§t(va’)2dz+3/8§(v—v’)%dx—/83§(va’)2dz
R R R i
:76/§(v—v’)(uvl—u’v’1)das. (5.6)
R
Moreover

uvy —u' v =u(vy —v) + (u—u)v] =uv—20) + (u—u)v]

hence in (5.6) we have
8t/R§(va/)2dzf/th(va/)2dz+3/Ra§(v—v')%daz—/ﬂ{a%(va/fdz
:f3/]1{5(1)—1/)[u(v—v')lJr(ufu')v'l]dz.
then
_ 2 _ 2 N2 _ 3 N2
at/]RE(v v')* dx /th(v U)dac—l—?)/R@{(v v')] dx /R@E(v v dx
:—3/§(U—v')u(v—1}’)1d$—3/f(v—v')(u—u’)v'ldx
i i
:—g/ﬂ@fua[(v—vl)Q]dx—S/R«Evll(U—v')(u—u’)dac
—§ AV _ / R/ o
—2/R@(§u)(v v dx 3/Rfvl(v V') (u—u)dx
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where
8,5/R§(U—v')de—/th(v—vl)Qd:U—/R@3§(v—v')2dx
< g/ﬂ@@(fu) (U—U’)Qdac—?)/REv'l (v—2") (u—u')dr (5.7)

Adding (5.4) with (5.7) and using straightforward calculus it follows that (£ € Wy, o)

at/Rf(uu’)2dx+8t/R§(vv’)2dx§c</R§(uu’)2das+/R§(vv’)2dz>

for some positive constant ¢. Using that u(z, 0) — u/(z, 0) = 0 and v(z, 0) —v'(z, 0) = 0, and Gronwall’s
inequality it follows that

/f(u—u’)Qd:C—l—/f(v—v')dego.
R R

We conclude that v = v’ and v = v'. This proves the uniqueness of the solution. ~We construct the
mapping

Z . L®([0, T] : H*(R)) x L=([0, T] : H*(R)) — L>([0, T] : H*(R)) x L=([0, T] : H*(R))

where the initial condition is given by u(®) = ug(x), 00 = vo(x) and the first approximation is given by
u™ = Z(u=D), (™ = Z(™=D) for n > 1, where u(»~ b is in a place of 8, v("~1) is in a place of ¢, u(™
is in a place of u, v(™ is in a place of v in the equations (4.5), (4.6) which are the solution of the equations
(4.5), (4.6). By Lemma 4.1, (u™, v(™) exists and is unique in C((0, +00) : HMN)(R)) x C((0, +o0) :
HW)(R)). A choice of Cy and the use of the a priori estimate in Section 4 show that Z : Bg, — Bg,
where B¢, is a bounded ball in L>°([0, T] : H*(R)).

Theorem 5.2 (Local solution). Let a < 0 and N an integer > 3. If (uo(z), vo(x)) € HY(R) x HY (R),
then there are T > 0 and (u, v) such that (u, v) is a strong solution of (2.8), (2.9), (u, v) € L*>([0, T :
HN(R)) x L*([0, T] : HN(R)) and u(z, 0) = ug(x), v(z, 0) = vo(z).

Proof. We prove that for ug, vo € H*(R) = (5 HY(R) there exists a solution (u, v) € L([0, T :
HN(R)) x L>=([0, T] : HY(R)) with initial data (u(z, 0), v(z, 0)) = (uo(z), vo(x)). where the time of

existence T' > 0 only depends on the norm of ug(x) and vo(x). We define a sequence of approximations
to equations (4.5)-(4.6)

w = —arw™ +6 Aw™ D Aw( +a Aw( =26 A2 A £ 18 Aw™TD AW
—6b A Z§"_1) A zén) —6 Aw™™ D A wi”) +2b Az7D A zgn) (5.8)
20 = A 13 A A A 46 AT AR
+3 A0 A g Aw®™ AW (5.9)

where the initial conditions u(™(z, 0) = ug(z) — 0%ug(x) and v™ (x, 0) = wvo(x) — O%vo(z). The first
approximation are given by u(®)(z, 0) = ug(z) — %uo(z) and v (z, 0) = wvo(x) — 0?vo(x). Equations
(5.8)-(5.9) are linear equations at each iteration which can be solved in any interval of time in which the
coefficients are defined. This is shown in Lemma 4.1. By Lemma 4.2, it follows that

at/uaf[w&”)]deJfat/RE[z&”)]de < G Pl 12071 Q™12 + 112113

+ B(lw™ V127V (o2 + 1120D)12)
+ M([[w Vo, 127V a). (5.10)

Let

N =20 / ¢ w2 dz + o, / €[22 da (5.11)
R R
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where £ € Wyi0. (= &(x, 0) = &(z, t)). Then we have
N < GV, 1271 (™12 + [12™12)
+ B[Vl 1207V (V2 + 1207 0)12)
+ M (Vo 12 7V]a) (5.12)
where A\ = max{1, a}.

Choose o = 1 and ¢ > |Jug — %uoll1 > ||luollz; ¢ > |lvo — 8%voll1 > ||vol3. For each iterate n, w(™, 2"
[w™ (., 1) [, 2 (-, t)]| are continuous in ¢ € [0, T] and [w™ (-, 0)[1 = o — D¢l < ¢, [, 0)|h =

|l — 0291 < . Define ¢y = (1 + %) , ch = (1 + %) . Let To(n) be the maximum time such that:
[w® (-, )1 < co, |2®C t)]l1 < ch for 0 <t < T™ and 0 < k < m, i. e,

T = sup{t : Jw® (-, D1 <co, ]2F(C, D1 <) for 0<i<t, 0<k<n}.
Integrating (5.12) over [0, ¢] we have that for 0 < ¢ < TO(") and j =0, 1.

[w™2 + 22 < 4+ Gleo, ) 2t + Gleo, ch) eyt
+ E(co, 06) cgt + E(co,cg) c62t+ M (o, cf))t.

Claim TO(") does not approach 0.
On the contrary, assume that To(n) — 0. Since ||w™ (-, t)|| and ||z (-, )|| are continuous for ¢ > 0, there
exists 7 € [0, T] such that [w® (-, 7)|1 = ¢o and [|z2®) (-, )|y = ¢, for 0 < 7 < T{™, 0 < k < n. Then

2+ c’O2 < P47+ G(co, ) 2 TO(") + G(co, ¢) 062 To(n)
+ E(co, cj) cp TO(") + E(co, ¢) c’O2 TO(") + M (co, cp) TO(")

4 14
(1+c2+%)+ <1+c’2+%> <4’
A o

which is a contradiction. Consequently To(n) +# 0. Choosing T' = T'(c, ) sufficiently small, and T not
depending on n, one concludes that

as n — +00, we have

where

sup [lw™ |} + sup M7 <C (5.13)
0<t<T 0<t<T

for 0 < ¢t < T. This show that TO(") > T. Hence, from (5.13) we imply that there exist subsequences

wms) om0 L0 guch that
w™ 2w weakly on  L°([0, T] : H'(R)) (5.14)
() Xy weakly on  L*([0, T : Hl(R)). (5.15)

Claim. u = Aw and v = Az are solutions.
In the linearized equation (5.8) we have

A = NI = (I =)™ = Awl” —w§™ = 2(hl™) — (V) € H(R).
N—— N——
€L2(R) €H—2(R)
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Since A = (I — 8%)~! is bounded in H'(R), nwl” € H-2(R). w™ is still bounded in L>([0, T] :
H'(R)) < L*([0, T] : H'(R)) and since A : L*(R) — H2(R) is a bounded operator |[Aw(™ |2 <
cng")HLz(R) < HU}EH)HHI(R). Consequently Aw(™ is bounded in L2([0, T] : H2(R)) — L2([0, T] :
L?(R)). Tt follows that 82(/\w§")) is bounded in L2([0, T]: H~2?(R)) and

/\wgn) is bounded in  L*([0, T]: H *(R)). (5.16)

Similarly, the other terms are bounded. By (5.8)-(5.9) we have that w\™ and 2™ is a sum of terms
each of which is the product of a coefficient, uniformly bounded on n and a function in L2([0, T] :

H~2(R)) uniformly bounded on n such that w{™ is bounded in L2([0, T] : H~2(R)) and 2" is bounded

in L2([0, T] : H~2(R)). On the other hand, H} (R) <> H/*(R) < H~2(R). By the Lions-Aubin
compactness Theorem, there are subsequences such that w(™i) 4w and 2() € L) guch that

w™ — w strongly on L%([0, T] : Hllo/f(R)) and z(") — 2 strongly on L?([0, T7] : Hllo/f(R)). Hence,
4w and 2) 2 we have w™ — w ae. in L2([0, T) : Hllo/f(]R))

and 2™ — z ae. in L2([0, T] : Hllo/f(R)). Moreover, from (5.16), Aw!™ — Aws weakly in L2([0, T :
H72(R)). Similarly, for the other nonlinear terms, /\wg") — Aws weakly in L%([0, T] : H~?(R)). Since
[Aw™]| sy < ¢llw™]| @) < e w™| gr/2@) and w™ — w strongly on L2([0, T1 : Hy/2(R)) then
Aw™ — Aw strongly on L2([0, T] : H} (R)). It follow that d(Aw(™) — 9(Aw) strongly on L2([0, T7 :
H2 _(R)) and we have Aw{™ — Awy strongly on L2([0, T] : H2_(R)). Thus, the second term on the right-
hand side of (5.8), Aw™ D Aw(™ — Aw Aws weakly in L2([0, T] : L _(R)) as AwS™” — Aws weakly in
L2([0, T]: H7%(R)) and [Aw(™[? — |Aw|? strongly on L2([0, T] : H7,(R)). Similarly, the other terms in
(R)) and

for a subsequence w()

(5.8) and (5.9) converge to their corrects limits, implying w™ — w, weakly in L([0, T] : LL,
2™ — 2 weakly in L2([0, T : L. (R)). Passing to the limit

loc
wy = —aws+6AwAws + aAws —2bAzNz3 + 18 Awy Aws
—6bAz1 Nzg — 6 AW AW +2b Az Az
ze = NAzs +3AwAzz — Azg + 6 Awy Azg + 3 Awa Az1 — 3 Aw Azq.
Thus
w; = 0*(— aAws+6AwAw, +2bAzAz1) — (— a Aws + 6 Aw Awy +2b Az Azp)
ze = O} Nz +3AwAz1) — (Az+3AwAz;)
where
wy = —(I—0% (—arws+6AwAwy +2bAzAz1)
2z = —(I—0% (Az+3AwAzy).
Hence

wi 4 (I —0%) (= aAws + 6 Aw Awy +2bAzAz1) =0
2+ (I — 0% (Az +3AwAz) = 0.

This way, we have (2.8) and (2.9) for u = Aw and v = Az. Now, we prove that there exists a solution
of (2.8), (2.9) with (u, v) € L>=([0, T] : HN(R)) x L>([0, T] : HY(R)) and N > 4, where T depends
only on the norm [|ugl| g3 r) and [|vol| s ). We already know that there is a solution (u, v) € L*°([0, T7 :
H3(R)) x L=([0, T] : H3(R)). Tt is suffices to show that the approximating sequence (w(™, z(™) is
bounded in L>([0, T] : HN72(R)) x L>=([0, T] : H¥~2(R)). Taking o = N — 2 and consider (5.12) for
o > 2. We define cy_3 = (3|uol|% + 1) and cy_3 = (5]lvol|3 +1) . Let T](\,nzg be the largest time such
that [|w® (-, )|la < en_s and [2F) (-, 1)[la < cy_g for 0 <t < T, 0 <k <. ie.,

T, =sup{t : [w® (- D)o <enos, |28 D)o <cy_y for 0<i<t, 0<k<n}
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Integrating (5.12) over [0, ¢] we have for 0 <t < T](V"_)3 (¢ =N —2for N > 4).

o™ (-, 0)II2 + [12(, 0)]12
t
+/0 {G(lw™ Do, 27V a) (™2 + [120712)

+ E(Jw™ Vo, 2 Va) (lw™ D)2 +[]2071)12)

+ M(Jw™ Ve, 2V a)} dt

[[uoll%r + llvoll %y

+ Gen-s, dy_3) (en—3)"t + Glen—s, dy_3) (cy_3)°t
+ E(en—3, ¢y_3) (en-3)*t + E(cn-3, ¢y_3) (€y_3)*t
+ M(en—3, cy_3)t.

o™ ¢, 2 + 120, D5 <

IN

Claim. T](\,"_)3 does not approach 0.
Proof. On the contrary, assume that TZ(\,"_)3 — 0. Since [[w™ (-, )| and ||z (., t)|| are continuous
in t > 0, there exist 7 € [0, T](Vn_)g], such that |w® (-, 7)o = en—3 and ||z (-, 7)|la = cy_5 for
0<7<T{",, 0<k<n. Then
[en—s]? +[ev—s]* < Jluolly + lloll%
+ Glen_3, dy_3) (en—3)? T](Vn_)g + Glen—s, y_3) (Cy_3)? Tz(vn—)s
+ E(en—3, €y_3) (cn—3)? TJ(V",)g + E(cn—s, cy_3) (cy_3)? Tz(\rnzs

+ M(en-3, Ey_3) TJ(\/nZS'

As n — + oo follow that

SRS 731 W RPN 1 2 WA
+lluol3 + 2 ) (1 flool + ) < fuollf + ol

where
[[uolly [[vol| 3
14— 1+ ——X <0
( + 1 + + 1 <

hence TJ(V"Zg #» 0. Choosing Tn—3 = Tn—3(|Juol|%, [[vol|%) sufficiently small with Ty_3 not depending on
n, one concludes that

sup  w™( OI2+  sup (2 1)) < enves (5.17)
0<t<TN-_3 0<t<TnN-_3
for all 0 < ¢t < Ty_3. This shows that T](\,nzg > Tyn_3. Therefore w™ is a bounded sequence in

L=([0, Ty_3] : HVN72(R)) weakly convergent on w € L=([0, Ty_3] : HN72(R)) and 2("™ is a bounded
sequence L>([0, T_3] : HN72(R)) weakly convergent on z € L>([0, T_3] : HN~2(R)). Thus

(u, v) = (Aw, Az) € L=([0, Tn] : HY(R)) x L>=([0, Tn] : HY(R)).

We denote by Ty _, the maximal number such that u = Aw € L>=([0, T] : HY(R)) and v = Az €
L>=([0, T]: HY(R)) for all 0 < t < T%_5. In particular T = Ty < T} _5, and, thus, a time of existence T’
can be chosen depending only on norm ||ug|3 and ||vo||3. We now approximate ug and vy by {u)}, {v}} €
C§°(R) in such a way that

j—+ oo

, , _
luo — wpll g~y * — 0, lvo — v | vy = 0.
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Let (u;, v;) be the solution to (2.8)-(2.9) with w/(z, 0) = u? (z) and v’ (z, 0) = v} (x). According to the
above argument, there exist 7" which is independent of n but depending on sup; [luy|| and sup, || vy || such
that u?, v7 exists on [0, T and a subsequence

—+ o0

W TTE 0y in o L([0, T]: HY(R))
W ITEXw i 1[0, T) - HY(R)).
As a consequence of Theorem 5.1 and 5.2 and its proof, one obtains the following result.

Corollary 5.3 Let a < 0 and let (ug, vo) € H*(R) x H3(R) with N > 3 such that
uéﬂ —uy in HY(R), v(()'Y) — vy i HY(R).

Let (u, v) and (u™), v() be the corresponding unique solutions given by Theorem 5.1. and 5.2. in
L>([0, T]: HN(R))x L>([0, T] : HY(R)) with T depending only on sup., ||u(()7)||H3(]R) and sup,, ||U(()'Y)||H3(R).
Then

u 2w weakly on L°([0, T]: HY (R))

v X w weakly on L°([0, T]: HY (R))
and

u)—u  strongly on  L*([0, T) : HNTL(R))

v — v strongly on  L*([0, T] : HNTL(R)).

6 Persistence Theorem

As a starting point for the a priori gain of regularity results that will be discussed in the next section,
we need to develop some estimates for solutions of (2.8), (2.9) in weighted Sobolev norms. The existence
of these weighted estimates is often called the persistence of a property of the initial data (ug, vg). We
show that if (ug, vo) € H3(R) N HE(Wyio) x H*(R) N HY(Wy,0) for L > 0, @ > 1 then the solution
(u(-, t), v(-, t)) € HE(Wyi0) x HE(Wy o) for t € [0, T]. The time interval of that persistence is at least
as long as the interval guaranteed by the existence Theorem 5.2.

Theorem 6.1 (Persistence). Let i > 1, L > 3 be non negative integers and 0 < T < 4o00. Assume that
(uo(z), vo(x)) = (u(x, 0), v(x, 0)) € H3(R) x H3(R) and a < 0. If (uo(x), vo(z)) = (u(z, 0),v(x, 0)) €
HL(WOZ'()) X HL(WOZ'()) then

(u, v) € L=([0, T] : H3R) N HY(Wyi0)) x L=([0, T : H3(R) N HE(Wp40)) (6.1)
T

/0 /}R }8L+1u(x, t)|2 p1 dxdt < +00 (6.2)

/0 /R‘@LHU(:E, t)‘ng dx dt < +o0 (6.3)

where o is arbitrary, pi, po € Wy i—1,0 fori > 1.
Proof. (Induction on «)
u, v € L¥([0, T): H}R)NH*(Wyio)) for 0<a< L.

We derive formally some a priori estimate for the solution where the bound, involves only the norms of
(u, v) in L>=([0, T] : H3(R)) x L>=([0, T] : H3(R)) and the norm of ug(z), vo(z) in H3>(Wy o). We do
this by approximating (u(z, t), v(x, t)) by smooth solutions, and weight functions by smooth bounded
functions. By Theorem 5.2, we have

(u(z, t), v(z, t)) € L=([0, T]: HY(R)) x L>=([0, T]: HY(R))  with N =max{L, 3}.
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In particular
(uj(z, t), vi(z, t)) € L=([0, T] x R) x L*°([0, T] x R) for 0<j<N-1.

To obtain (6.1)-(6.2) and (6.3) there are two ways of approximations. We approximate general solutions
by smooth solutions, and we approximate general weight functions by bounded weight functions. The
first of these procedure has already been discussed, so we shall concentrate on the second. Given a
smooth weight function pi(z) € Wy, ;1,0 with o > 0, we take a sequence pus, () of smooth bounded
weight functions approximating uq(2) from below, uniformly on any half line (—oo, ¢). Similarly, given
a smooth weight function ps(z) € W, ;_1, ¢ with o > 0, we take a sequence us, (z) of smooth bounded
weight functions approximating us(z) from below, uniformly on any half line (—oo, ¢). Define the weight
functions for the ath induction step as

4b [* 2 "
&, = 7% sy (y, t) dy and o, = g/ Hso (ya t) dy (64)

— 00 — 00

then the &5, and &5, are bounded weight functions which approximate a desired weight functions &;, & €
Wo i o respectively from below, uniformly on a compact set.
For ae = 0 (simple case), multiplying (2.8) by 2 &5 u and integrating over z € R we have

2/§5u8tudas—Qa/fguU3dx+12/§5u2u1dz:4b/§5uvv1dz. (6.5)
R R R R

Each term is treated separately. In the first term we have

2/§5u8tudx:(%/équdx—/@tfqudx
R R R

72a/§5UU3dx:a/83§5u2dx—3a/8§5u%dz.
R R R

For the others terms, using integration by parts, we have

12/§5u2u1dz:74/8§5u3dx
R R

4b/§5uvvldx:72b/8(§5u)v2dx.
R R

Replacing in (6.5), we obtain
at/£5u2d$—3a/afgu%dx—/at&;?fdx—i—a/ 3¢5 u? da
R R R R

- 4Aagau3dx = 2b/Ra(55u)u2 dx (6.6)

We multiply (2.9) by 2&s5 v and integrating over € R

2/551}8tvdz+2/§5vv3dz+6/fguvvldz:(). (6.7)
R R R

Each term is treated separately. Performing straightforward calculations as above we obtain

8t/§51)2 dx+3/8§5vf dzf/até(;vQ dzf/83§5v2dx:3/8(§5u)1)2dx (6.8)
R R R R R

Adding (6.6) and (6.8) we have
at/§5u2dx+8t/£51)2d$—3a/afgu%dx—i—é‘)/@&;u%dx
R R R R

= /[at@; —ad3s +40& u] u® dx + / [0:&5 + 03¢5 +30(Esu) — 200(&5u)] vida.  (6.9)
R R
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Using (2.7) and Gagliardo-Nirenberg’s inequality, we obtain

at/£5u2d$+8t/£51)2d$—3a/afgufdx—i—é‘)/@fgu%dx
R R R R

§C</R§5u2dz+/R§502dx>.
Gt/]R£5u2d$+0t/]R£(;v2d:v§C(Afqudx+/Rﬁav2dx>.

We apply Gronwall’s lemma to conclude

thus

) / €5 do + 0, / gsv2dz < C = C(T, Juol), Ilvoll) (6.10)
R R

for 0 <t < T and C not depending on d > 0, the weighted estimate remains true for § — 0.
Now, we assume that the result is true for (« — 1) and we prove that it is true for . To prove this, we
start from the main inequality (3.1)

1 1
_at/fguidqu—8t/§5vidx+/uglui+1dx+/u52vi+ldx
4b " Jr 6 " Jr R R

/951uidx+/952uidz+/Radz:()
R R R

where
_ _3a o€ f <0
Hey = 4b 4 or a
3
pe, = 506
1
9(51 = — E) [at€5 - a83€5 + 66(6(5 U)]
1
b5, = — 5 [0:&5 4 0°Es]
1 o O[! ol Oé!
Bo = 33 ; Blla — g1 &0 o o ek ﬁz Bia— )1 o Ve V2 k1o
a—1 Oé'
P2 e ERERR
then

1 1
—(')t/ftguadm—i——at/«f(;vidx—i—/,u(;luiﬂdx—i-/u(;zviﬂdx
b R 6 R R R

4
S—/G(sluidx—/(?(;Zuidx—/Radx
R R R
‘/951uidx/952uidx/Radz
R R

R
§/|951|uidx+/|952|uid:v+/|Ra|d:v.
R R R

Using (2.7) and the Gagliardo-Nirenberg in the first term of the right side we obtain

/|951|uid$§C/£5uid$, /|952|uid$§(}'/§5vid$
R R R R

EJQTDE, 2011 No. 61, p. 24

IN




thus

—at/€5U dr + — at/g(s’l} dl“f’/ﬂ(ﬁ a+1dl‘+//1/62 a+1d$

§C</§5uid$+0/§§vidﬂﬁ)+/|Ra|dgg_
R R R

According to (3.17), [, Ra dz contains a term of

/ &6 Un,y Uy, Uq dT (6.11)
R

the other terms are estimate the same form. If v, < a — 2, using integrating by parts and the Holder

inequality
1/2 1/2 1/2
([ootas) s (fet) ] ([0
R R R
by the induction hypothesis we have is bounded. If 11 = vo = @ — 1, then by (3.18) we have o = 3 and
} [ vads] < Juanil e ( JCI dz>
R R
1/2 1/2
< Mtocilimge ([@dae) ([ o)
R R
1
< gloilmge ([0 ot [Guda
2 R R
< C(/&;uid:v—i—l).
R

If 1 = a—2 and vo = @ — 1, then by (3.18) we have o = 4 and

IN

/§5u2u3u4dz < ||U2\/gg||L°°(]R)”U3”L2(]R) uz /€5 uad
R R

1/2 1/2
[[u2 Vsl Loe () </ uj dx) </ &5 u? das)
R R
1/2
C [lus|lL2(r) </ &5 uj d$>
R
The other terms. Using those estimate and straightforward calculus
1 2 1 2 2 2
— Oy | Ssugdr+ — 0 | Esvydr+ | ps, gy de+ [ ps, vo, dx
b R 6 R R R
1 1
< " — 2dr + — 2dv ).
<C+C (41)/]1@56”0‘ x+6/R§5va r
Applying the Gronwall’s argument, we obtain for 0 <t < T,
/55“ dr + = /55’0 dz+/ﬂ51 a+1d$+/u621’§+1d$
gCoeclt( /«E(;and:E-i- /févoadl‘)

where Cy and C are independent d such that letting the parameter 6 — 0 the desired estimates (6.2)-(6.3)
are obtained.

IN

IN

EJQTDE, 2011 No. 61, p. 25



7 Main Theorem

In this section we state and prove our main theorem, which states that if the initial data (ug, vo) decays
faster than polynomially on R = {z € R : x > 0} and possesses certain initial Sobolev regularity, then the
solution (u(zx, t), v(z, t)) € C*°(R) x C*°(R) for all ¢ > 0. For the main theorem, we take 4 < o < L+ 2.
For a < L + 2, we take

1 € Wo L—ag2,a-3 = £ € W5 L_at3,a-3 (7.1)
2 €Wo —ag2,a-3 = £ € W5 L_at3,a-3 (7.2)

Lemma 7.1 (Estimate of Error Terms). If 4 < a < L+ 2 and the weight functions are chosen as in
(7.1), then

T
/ /(91u§+92u§+R) dedt| < C (7.3)
0 R

where C' depends only on the norms of u, v in
L([0, T] : H(Wo, p-p43,5-3)) N L*((0, T] : H7*H(Wo, 1-p12,5-3))
for 3 < B <a—2, and the norm of u, v in L>=([0, T] : H*(WoLo0)).
Proof. We must estimate R, #; and 03. We begin with a term of the form
E Uy, Upy Ug, (7.4)

(the other terms are calculated the similar form) assuming that 14 < a— 2. By the induction hypothesis,
u is bounded on L>([0, T] : H?(W, 1_(5-3)+,(s5—3)+)) for all o > 0 and 0 < # < a — 1. By Lemma 2.7

sup sup Eu% < +oo (7.5)
t x

for 0 < B <a—2and Z € W, —(3—2)+, (3—2)+- Then in the term of the form {u,, u,,u, we estimate u,,
using (7.5). We estimate u,, and u, using the weight L? bounds

T
/ / CUIQIZ dr dt < +o00 for (e WgyL,(Vz,g)t (va—4a)+ (7.6)
0 R

and the same with v, replaced by a. It is sufficient to check the powers of ¢, and the powers z as x — +o00
and the exponentials z as x — —oc.
For x > 1. In the term (7.4), the factor { contributes according to (7.1)-(7.2)

f(.’L‘, t) — t(oz—3) x(L—a+3) t—(oz—3) .’L'_(L_a+3)§(l', t) < C2t(oz—3) x(L—a+3)
by (2.6). Then
E(my ) Upy Uyy U < o tla=3) p(L—at3) Uy, Uy Ug,-

Moreover

=2t L@ -2t - -2t - -2t
Upyy Upy o = L 2 T 2 t 2 x 2 Uy,

(o-t  L-(p-3)T —(p-t —@-y-3h)
2 2 t 2 2

T Uy,

(et  L-(a-3)T —(a-nt —(@E-(a—3")
2 2 t— 2 T 2 Uy

It follows that

§ Uy, Uy, Ug

-2t L@ -2t (o—t  L-(o-3)t (-t L—(a—3)F
2 2 2 2

< CytM 2T ¢ T Uy, t— 2 Uyt 2 T Ug (7.7)
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where

M = (0473)7%(V172)+7%(V274)+7%(0474)+
T = (L-at8)—5(L—(n -2~ 5 (L (n—4") 1 (L (a—3))

Claim M > 0 is large enough, that the extra power of ¢ can be bounded by a constant.
Proof.

2M = 2a—-6-1n+2—wmtd—a+d=a+4—(v1+wr)
= a+4f(a+1):3.

Claim 7T < 0 so that the extra power 7 can be bounded as  — +00.
Proof.
2T = 2L-2a+6—L+ (w1 —2)t—L+(we—4)" L+ (a—-3)"
= —L—a+6+1v1—-24+1n—-4—-3=—L—a—-3+ (1 +12)
¥ L a-3+atl=-L-2=—(L+2)<0.
Thus

T
/ / E Uy, Uy, U da dit
o Jr

e /Ttm;)* :Cu(ulzfz)+ y, <u2—24>+ xu(u%—sﬁ Uy, t(a—24>+ wL—(a;S)* v da dt
OT 1/2 T 1/2
OT 1/2 T 1/2 i

< C / /zu,%lg“u,%zdxdt] V /g“uidxdt]
o Jr 0o JR

12 [ o1 Y2 5 1/2
< C (supsupgul%l) [/ /CU?,Z dx dt] [/ / Cu? da dt]
t T 0 R 0 R

which is bounded. If v = v5 = @ — 1 then by (3.18)
mtrm=a+l<=2a-2 < a=3

but « > 4. Thus is not the case. If 4 = o — 2, v = a — 1, then again by (3.18), 11 + 1» = a + 1 <=
2a—3=a+1<«= «a =4. Thus, if @ = 4 then we have the term fR & us ug ug dr and integrating by parts
— % fR & ug u3 dv — % fRfug dx where £ € Wy, —1,1. For this term we use the interpolation inequality
|5 < Juls’ [u”|3"*. Then

T +oo T +oo 1/2 T “+oo
/ / tat 1 ug|® de dt < T supsup |us| / / ot de dt / / Pt de dt
0 J1 t o w 0 J1 0 J1

which is bounded. For x < 1 the estimate is similar except for the exponential weight. This completes
the estimate of R.

Now we estimate the terms 6, ui and 0y vi where 0 and 6, are given in the fundamental inequality,
follow that #; and 6y involves derivatives of u and v only up to order 1 and hence 67 u2 and 602 is a
sum of terms of the same type we have already encountered in R, so that its integral can be bounded in
the same manner. This completes the proof of Lemma 7.1.

1/2
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Theorem 7.2 Let T > 0, a < 0 and (u, v) be a solution of (2.8), (2.9) in the region R x [0, T| such that
(u, v) € L=([0, T] : H*(Woro)) x L=([0, T] : H*(WoL0)) (7.8)
for some L > 2 and all 0 > 0. Then
we L®([0, T] : H*"' (Wo, p—1,0)) N L2([0, T : H* "' (Wy, 1_1-1,1))
ve L>(0, T : H¥' (W, 1—1.1)) N L*([0, T] : H* (W, —1-1,1))
forall 0 <1 <L —1.

Remark 7.3 If the assumption (7.8) holds for all L > 2, the solution is infinitely differentiable in the
x-variable. From the equations (2.8), (2.9) itself the solution is C°° in both of its variables.

Proof. We use induction on a. For o = 4. Let (u, v) be a solution of (2.8), (2.9) satisfying (7.8), then
the equations itself imply that w;, vy € L>([0, T]: L*(WyLo)) then

u,v€C([0,T]: L*(Woro)) N Cu([0, T] : H*(WoL0)).
Hence u, v : [0, T] — H?*(WpLo) are weakly continuous functions. In particular u(-, t), v(-,t) €
H3Wy 1) for all t. Let ty € (0,7) and u(-, to), v(-, to) € H3(Woro), then there are {ul(-)},
{v{M()} € C(R) such that u”(-) — u(-, to) strong in H3(Wyp0) and v{™(-) — v(-, to) strong
in H3(Wy 1.0). Let (u™ (z, t), v™ (2, t)) be the unique solution of (2.8), (2.9) with u(™ (z, to) = u{™ ()

and v (z, to) = ’U(()n)(l') then by Theorem 5.1 and 5.2 is guaranteed in a time interval [tg, to + ], 6 > 0
and the unique solution of (2.8), (2.9) u(™, v(") € L=([ty, to + 6] : H3>(Wy10)) with u(™ (z, tg) =

ugn)(x) — u(x, to) = ug(z) strong in H*(Wy o) and v (z, o) = vé") (x) — v(x, tg) = vo(x) strong in
H?*(Wy 1,0). Hence by Theorem 6.1 we do i = L then u(™, v(") € L>=([tg, to + 6] : H>(Wy o)) and

to+0 to+d
/ / 1™ (z, £)|? ndx dt < +oo0, / / |00 (z, )2 pdx dt < +o0
to R to R

where o is arbitrary and n € Wy 11,0 for L > 1. Thus
u(") S Lm([to, to + (5] : H3(WOL0)) n L2([t0, to + (S] : H4(W07L_170))
o™ € L>([to, to + 0] : H*(Woro)) N L3 ([to, to + 0] : H* (W, L-1,0))

with a bound that depends only on the norm of ug and vg € H3(Wp ;). Furthermore, Theorem 6.1
guarantees the non-uniform bounds

sup sup (14 [z ¥ [0z, 1)] < oo
[to, t0+6] zeR

sup sup (1 + |z4|)¥ [0%™ (2, t)| < 400
[to, to+d] z€R

for each k, n, and a. Therefore, the main inequality (3.1) and (7.3) are justified for each (™), v(™ in the
interval [to, to + ¢]. The multipliers ;1 and pe may be chosen arbitrarily in its weight class (7.1)-(7.2)
and then ¢ is defined by (3.15) and the constants ¢, ca, 3, ¢4 are independent on n. From (3.1) and
(7.1)-(7.2) we have

sup /é[ug’)]QdﬂH sup /5
[to, to+4] [to, to+4]

to+0 to+9o
/ /ul dxdtJr/ //LQ 2dedt < C (7.9)

where by (7.3), C' is independent on n. Estimate (7.9) is proved by induction for a« = 4, 5, 6, .... Thus
uw™, (™ are also bounded on

Lw([to, to + (S] : HQ(W07L_Q+3,Q_3)) n LQ([ﬁo, to + (5] : Ha-’_l(WU, L—a+2,a—3)) (710)
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for o > 4. Since u(™) — u strong in L>([to, to + 6] : H*(Woro)) and v(™ — v strong in L>®([tg, to+ 0] :
H3(Wo o)). By Corollary 5.3, it is follow that u and v belong to the space (7.10). Since § > 0 is fixed,
this result is valid over the whole interval [0, T7].
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