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Abstract. Uniqueness and comparison theorems are proved for the BVP of the form
Au(z) + g(z,u(z), |Vu(z)|) =0, =z € B,ulr=a€cR (I':=0B),

where B is the unit ball in R™ centered at the origin (n > 2). We investigate radially
symmetric solutions, their dependence on the parameter a € R, and their concavity.
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Introduction

Radially symmetric solutions to Dirichlet problem for the nonlinearly perturbed
Laplace operator are investigated by many authors, see e.g. [1]-[4].

In [1] it is proven for a wide class of perturbations that the smooth positive solutions
of the homogeneous Dirichlet problem in a ball are necessarily radially symmetric. The
perturbation of the Laplacian in the paper [2], is f(u) with a locally Lipschitz function f; a
BVP with a condition at infinity is considered, reduced to an ODE problem and sufficient
conditions are given that guarantee the solvability of the original problem. In the papers
[3], [4] nonlinear ODE-BVP-s (partly related to perturbed Laplacian) are considered on
the intervals (a,b) and (0, 1) respectively; the term y” is perturbed with the sum

n —

gz, y) + f(zy), Ly fay)

Xz

respectively (where g is locally Lipschitz), and sufficient conditions (certain additional
restrictions on f and g) of the existence and uniqueness of the positive solution y are
presented. These cases do not cover the general case of perturbations y” of the form

n—1

. v + f(z,y,y) z€(0,R), 0<R< oo,
i.e. the case of the perturbations Au with f(|z|, u, £|Vul).

We remark that fundamental results for the investigations in [1] were already given
in [5]. The contribution of the author of [5] to the theory of radially symmetric solutions
of nonlinear elliptic PDE-s (mainly on the whole space R™ and more generally for the
m-Laplacian) can be found in [6].

This paper is in final form and no version of it will be submitted for publication
elsewhere.
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Recently G. Bognar [7] considered the following BVP in the unit ball B := {z €
R"p=|z| <1} (I':=0B):

(A1) Au(z) + exp(Au(z) + k|Vu(z)|) =0 z € B; k, A <0 are constants,

(42) we C*(B)NC(B),u(x) = v(|z]) = v(p),

(A3) ulr = a = const. a > 0.

Existence and uniqueness results were established by the author and it was shown
that the solution u depends monotonically on the parameter a.

The purpose of the present paper is to prove uniqueness, monotonicity, and concavity
results for the solutions of the more general BVP: Problem 1:

(1.1) Au(z) + f(|z|, u(z), |Vu(z)]) =0 =z € B,
(1.2) ueC*B)NC(B), w:[0,1] = R:v(p)=v(|z|) =u(z) Ve B,
(1.3) ulp =a €R.

Here f € C(Go; (0,00)), a € R is arbitrarily fixed; G, := [0, 1] x [a, 00) x [0,00), B is the
unit ball centered at the origin, and p :=|z| z € B.

The method used here is, partly, a modification of that of [7]. Some results are
proved without using radial symmetricity. These proofs are based upon the techniques
communicated in [9].

To prepare our general results we formulate some of them in simplified versions:

Theorem A. If f € C(Gg;(0,00)) and f(p,t, 3) is strongly decreasing in ¢ € [a, 00),
then Problem 1 may have no more than one solution.

Theorem B. If f € C(G,; (0,00)) and f(p, t1,t2) is nonincreasing both in ¢; € [a, ),
and to € [0, 00), then for the (radially symmetric) solutions u; and uy of Problem 1 with
the property:

uilr = a1 > uglr = a2 > a

inequalities

vi(p) = wi(|z]) = va(p) = ua(|z]) @€ B, vi(p) = v3(p) pe01)

hold.

Finally a concavity result:

Theorem C. Let f € C(G,; (0,00)), and let f(p,t1,t2) be nonincreasing both in ¢4, €
[a,00), and ty € [0,00). Then there exists a constant K (a) such, that 0 < f < K(a) < oo,
and any of the assumptions (C1), (Cs)

K(a)1 —2152, Kéa)t) > K(a)(1 — %) t € [0,1],

(Cl) f(t,a—|—
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(Cy) ftat B B s ke -1y reon

guarantees the concavity of the solution of Problem 1. For the case
Flp.u, |Vul) = exp (hu+ K|Vul) Ak <0
considered in [7], the assumption (C7) turnes into (C3):

Aa 1 —t2 Aa 1
(Cs) exp {)\[a + ]+ /{e—t} >eM(1——) telo,1].
n n n

One of the simplest sufficient conditions for the concavity of u for this special case is

(Cy) k< A<L0), —1 < ke,

1. Uniqueness results.

We shall prove (under the corresponding conditions) two theorems on the uniqueness
of solution of Problem 1. The first one will be a consequence of a classical, simple
uniqueness theorem related to the problem more general than Problem 1.

Theorem 1. Let w(t) := f(a,t,8) t€ [a,00) for every a € [0,1], [ € [0, 00) fixed
be strongly decreasing in ¢t on the interval [a, c0); then Problem 1 has no more than one
solution.

Instead of a direct proof consider Problem 2 (mentioned above) in an arbitrary
bounded domain 2 of R with the boundary I' := 90 :

Problem 2.
(4) ue C?(Q)NC®)
(5) (Au)(z) + g(z,u(x), ug, (), ..., Uz, () =0 z€Q,
(6) ulr = ¢ € C(I),
where

g€ C(Q xR,

Theorem 2. If w(t) := g(a,t,5) t € Ris strongly decreasing in ¢ for any
acf), peR"
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fixed, then Problem 2 has no more than one solution.

This theorem is very close to the Theorem 9.3 (p.208) of the book [8].

Proof. Suppose that there exist two different solutions of Problem 2: w; and us.
Define u := u; — ug and suppose that there exists a point y €  such, that u(y) # 0.
Without loss of the generality it may be supposed that u(y) < 0. Letting

m :=min u(zx)
zEB

we see, that m < 0, and there exists a point zg € ) of global minimum of the function
u(z) x € Qie Iz € Q such that

0>m =u(rg) <u(z) Vre.

Consequently we have

(7) (Au)(zo) >0, g, (z9) =0 i=1,n.
On the other hand we know, that

(8) (Auy)(wo) + g(z0, ui(wo), (grad ui)(wo)) =0,

(9) (Auz)(zo) + g(zo, u2(wo0), (grad uz)(zo)) =0,
therefore subtracting (9) from (8) we have
(10)  (Au)(zo) = g(wo, uz(wo), (grad uz)(zo)) — g(xo, u1(z0), (grad ui)(zo)).

Here arguments (grad us)(zg), (9raduy)(xg) are common in virtue of equalities
Uz, (xg) =0 i =1,n (see (7)), therefore using the relations

0 > u(zo) = m = ui(xg) — uz(xo)
and their consequence us(xg) > u1(xg); from the monotonicity condition on w(t) we get
f(xo, ua(wo), (grad uz)(wo)) — f(wo,u1(z0), (grad ui)(zo)) < 0.
So, in (10) we have
(11) (Au) (20) <0,
that contradicts inequality of (7). Theorem 2 is proved.
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Remark 1. For the proof of Theorem 1 it is enough to apply Theorem 2 for the case
Q2 := B with the nonlinear part g (appearing in Problem 2) defined by the formula

n 1/2
9T, uy Uy oy ug, ) = | 2], u, <Zu§z> T € B,
i=1

where f is the nonlinearity appearing in Problem 1.

Next we explain another result on the uniqueness of the solution to the Problem 1
without assumption on strong decrease of f(a,t,3) in t. However we need that f(«,t1,t2)
is nonincreasing both in ¢; and t5. Here in the proof we will use the radial symmetricity
of the solutions.

Theorem 3. Let function f appearing in differential equation of Problem 1 satisfy
conditions:

(i) w(t) :== f(a,t, B) is nonincreasing in ¢ € [a, o) for every fixed o, (v € [0,1], B €
[0,00)), and

(ii) w(t) := f(«, B,t) is nonincreasing in ¢t € [0, 00) for every fixed a, 5 (a € [0, 1], B €

[a,0)).

Then Problem 1 has no more, than one solution.

Proof.  Suppose, that there exist two different solutions: —wy,ug(ui(z) =
vi(lz|), wa(z) = vo(|z|)x € B) of Problem 1 with the same boundary value a € R.

We introduce the notation

v(p) :==v1(p) —va2(p) pe[0,1].

From the assumption, that f > 0 and uq, ug are solutions of Problem 1 (especially they
are superharmonic and radially symmetric in B) easily follows that

v e C%([0,1))nC([0,1]), v(1)=0, 2'(0)=0,
12)  Au@) + Izl wi@), [Vuile)]) =

Z%Wﬁ+n_1%@%+ﬂmw@%—%wnzo r€B, pec(0,1) i=1,2,

n—1

and the multiplied by p version of the last equality of(12) holds:

(13) (pn_lvz/'(p))/ + pn_lf(pa Ui(p>7 —'Ué(p» =0 pe [07 1)7 i1 =1,2.

It can be supposed — without loss of the generality — that there exists a point a; € [0, 1]
such, that v(aj) > 0. Using the continuity of v on [0, 1] it is trivial, that the interval (0, 1)
also contains a point a; such, that v(a;) > 0. Let us fix such a point a; for the sequel.
Our aim is to construct an interval [«, 5] C [0, 1] such that

v(p) >0 p€la,b], v'(p) <0pé€(a,p8], v'(a) =0.
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Let be

b:=sup{p € [0,1) v(p) > 0}
It is clear, that

be (0,1], v(b) =0,
and that
ay € (O, b)

Further let

d :=inf{p € (a1, b]|v(p) = 0}.
It is clear, that

v(d) = 0.
Then let be
(14) c:=0 if v(p)>0 pel0,a1],
and
(15) c:=sup{p € [0,a1)|v(p) =0} otherwise.
In the case of (2.43)

v(c) =0

holds automatically. Further, denoting by M the maximum of the function v on [, d]
(M > 0) let us introduce
e :=sup{p € [c,d]|v(p) = M }.

We remark that for the case of (14) e € [¢,d] = [0, d] and

(16) v'(e) =0'(0) =0

in virtue of (12) if e = ¢ = 0; and v'(e) = 0 if e € (¢,d) = (0,d) using the fact that
v(e) = M i.e. e is a point of interior global maximum of the function v on the interval
[c, d]. In the case of (15)

(17) e € (c,d), vie)=M, v'(e) =0

hold automatically because e is an interior point of global maximum of v on [, d].
The assumption v'(p) > 0 p € [e,d) leads to contradiction in both cases (14) and
(15), because if d; < d, and dy — d then

v(e) —i—/ 1 v'(p) dp — v(d) =0

and

dy dq
v(e) -l—/ v'(p) dp = M—I—/ v'(p)dp>M >0 (Vd; € (e,d)).
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Consequently there exists a point 8 € (e,d) such, that v'(3) < 0. Fixing such a point, it
is easy to show — using (16) and continuity of v’ on [0,1) — that there exists an interval
[a, B8] C [e, d] such, that

(18) v'(p) <0 pe(a, 6], v'(a) =0, v(p) >0 pé€la,g].
Namely, for the both of the cases (14) and (15) a may be choosen as
(19) a :=sup{p € [¢, B)|v'(p) = 0} = sup M
because the set M is non empty (e € M), and using the property v’ € C[0, 1) (see (12))
(20) ac€le,B), v'(a)=0.

The next step of the proof is the using of the validity of differential equation of
Problem 1 for vy, vy on the interval I = («, 3) choiced above:

(pn_ll)i (p))/ + ,On_lf(pv 'Ul(p)v —'Ui([))) - O’
(" 1h(p)) + " f(p, va(p), —vh(p)) = 0,
from which after subtracting we get
(p" M (p) + p" M f(p, v1, —v1) — f(p,v2, —v5)] =0

i.e.
(0" 1" (p)) = "M f (py vz, —v3) = f(p,v1, —v1)]-
Subtracting and adding in the brackets of the right hand side the term

f(p, vi(p), —v3(p))

we get

(21) (0" ' (p)) = d1(p) + b2(p) = 6(p) p € [, ],

where
81(p) == p" 1 [f (p, v2(p), —v5(p)) — fp,v1(p), —vh(p)] p € [, B],

S2(p) := p" M [f(p,v1(p), —v5(p)) — f(p,v1(p), —vi(p)] p € [a, B).

Of course ¢; € Cla, 8] i = 1,2. Moreover, taking into account the choice of the interval
[, 5] we have the relations

(22)  w(p)=vi(p) —v2(p) >0 p€a,B], V'(p) =vi(p) —v3(p) <O pé€ (e,
They imply the inequalities
(23) di(p) 20 pé€la,f
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in virtue of the monotonicity - assumptions (i), (ii) of the theorem. Summarising the
precedings results, we get

(24) 6€Cla,B], 6(p) =0 pé€la,pl.
Integrating equality (21) over the interval (o, ) we get after rearranging:

154
B0 (8) = "o (@) + / 5(p) dp.

from which using equality v'(a) = 0 we get

B
571/ (8) = / 5(p) dp > 0,

consequently v’(3) > 0 that contradicts the choice of 5 as a point, such, that v'(3) < 0.
Theorem is proved.
Now, let us formulate a weakly generalized Problem 1, namely Problem 3:

(25) u e C*(B§h) N C(BE),

(26) Au(z) + f(lz|,u(z), [Vu(z)]) =0 =€ By,
(27) Jv:[0,R] > R, v(jz]) =u(z) z€B, (x| €0,R]),
(28) ulp = a € R,

where a € R is arbitrarily fixed; R € (0, 00),

Bt .= {z € R"| |z| < R}, T = dBY = {x ¢ R"| |z| = R},

(29) f € C(Ga,R; (07 OO),

Go.r = [0, R] X [a,00) X [0, 00).

Theorem 4. Let function f satisfy the monotonicity conditions: (i) w(t) := f(«,t, 3)
is nonincreasing in ¢ € [a, o) for every fixed a, 3 (« € [0, R], 8 € [0, 00)),

(ii) w(t) := f(«a,B,t) is nonincreasing in ¢t € [0,00) for every fixed o, (a0 €
0, R], B € [a,0)).

Then Problem 3 has no more than one solution.
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Proof. The arguments used in the proof of Theorem 3 applied to [0, R| instead of
[0, 1] show the validity of Theorem 4.

2. Comparison results
Theorem 5. Suppose that all of the assumptions included in the formulation of

Problem 3 are fulfilled, moreover assumptions (i), (ii) of Theorem 4 hold. Consider the
problems

(30) u € CHBMNC(BE) i=1,2,

(31) Aui(z) + f(|2], wi(x), [Vui(z))) =0 ze€ By, i=1,2,
(32) Ju;: [0,R] — R, vi(|z]) =ui(x) z€By (z|€[0,R]), i=12,
(33) wilr=a; ER i=1,2,

where

ai,,az €R, a3 > as > a.

If u; ~v; i =1,2 are solutions of problems (30) - (33), then

(34) vi(p) > va(p) p €0, R],

(35) (0 =)vi(p) = v5(p) p € [0, B], v1(0) = v5(0) =0.
Proof. Let us begin with the proof of inequality (34). We introduce the notation
v(p) :=v1(p) —va2(p) p€[0,R]

The arguments used for the derivation of the relations (12), (13) applied to B{t instead
1 .
of By give

(36) v e C?([0,R)NC([0,R)])), v(R) =a; —az >0, 2'(0)=0,
and
(37) (P i(p) + " f(psvilp), —vi(p)) =0 pe[0,R); i=1,2.

If v(p) >0 p€0,R]is also fulfilled, then vy(p) > va(p) p € [0, R] and (34) is proved.
In the case, when there exists a point by € [0, R) such that v(b;) = 0 let

(38) b:= sup{p € [0, R)|v(p) = 0}.
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It is clear that
bel0,R), wv(b)=0.

If b= 0, then
(39) vi(p) > va(p) p€(0,R], vi(0) =v2(0),
so (34) is fulfilled. If b > 0, then b € (0, R) and Theorem 4 applied to the ball B gives
(40) vi(p) = v2(p) p€[0,0].
On the other hand v(R) > 0, and the definition of b implies the inequality
(41) vi(p) > v2(p) p € (b, R].
Relations (40) combined with (41) give
vi(p) = v2(p) p €0, R].

Next we prove the inequality (35). Suppose the contrary. Then using also the first
one of the relations in (36) there exists a point ¢; € (0, R) such that v’(¢;) < 0. Introduce
the notation
(42) ¢ :=sup{c; € (0, R]|v'(¢1) < 0}.

It is clear that ¢ € (0, R] and v'(c) < 0. Then we consider the three possible cases

(A) v(p) >0 pel0, R,
(B) v(0)=0, v(p)>0 pe(0,R (b=0),
(C) vip)=0 pel0,b], v(p)>0 pe (bRl (be(0,R)).

In the cases (A),(B) let us choose a point d € (0, ¢) such, that v'(d) < 0. Then we define
the set M:
M :={pe0,d)|v'(p) =0}

It is obvious, that M # () because v'(0) = 0 (see the last of the relations in (36)). Then
let
e :=sup M.

It is trivial that
e € [0,d), v'(e) =0, v'(p) <0 pe (ed.

Summarising, in the cases (A), (B) we have
v(p) >0 pe(ed], v(e)>0; v'(p) <0 pc(ed, v'(e) =0,
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consequently, the same arguments as in the proof of Theorems 3, 4, applied to the interval
(a, B) := (e, d) lead to the inequality v’(d) > 0 that contradicts the choice of d for which
v'(d) < 0.

For the case (C), first, remark that in virtue of the inequality (41)

(43) v(p) >0 pe€ (bR
(44) v(b) =0, v(p)=0 pel0,b) (vi(p)=ri(p) pe€l0,b))

according to the definition of b and to Theorem 4 on the uniqueness in the ball Bf. Now
(44) - using the property v € C?2[0,1)- implies v'(b) = 0, consequently we have the same
situation as in the case (B), but on the interval [b, R] instead of interval [0, R]. The theorem
is proven.

Remark 2. In fact, we proved a stronger result, than inequality (34) : namely, may
occour three and only the following three cases:

(A) vi(p) > v2(p) p €0, R,
(B) vi(p) > v2(p) p€(0,R], v1(0) =v2(0),

or there exists a number b € (0, R) such that
(C) vi(p) =v2(p) p€0,b], wvi(p) >wv2(p) pe€ (b R]
On the other hand inequality (35)

(0=) vi(p) = v3(p) p€[0,R] (vi(0) =v5(0) =0)

— in general — cannot be replaced by another, stronger one under assumptions of Theorem
5 (see e.g. the case, when f does not depend on argument ).

Theorem 6. All of the statements of Theorem 5 remain - except for inequality (35) -
if in conditions of Theorem 5 assumptions (i), (ii) of Theorem 4 are replaced by condition:

w(t) ;= f(lzl, t, [Vul) ~ fe,t, 5)

is strongly decreasing in ¢ € [a, 00) for every fixed a, 8 (o € [0, R], [ € [0,00)).
This theorem is a corollary of a general comparison result, namely:

Theorem 7. Let uy,us be solutions of Problem 2 satisfying conditions
Uz‘FIQDZ €C<F) i1=1,2 Y1 = P2,
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and suppose that function
w(t) == f(a,t,8) teR

is strongly decreasing in ¢ € R for any o € §2, 8 € R" fixed. Then
up(x) > ug(x) x €.

Moreover, if there exists a point y € I" such that ¢1(y) > ¢2(y), then may occour two, and
only the following two cases:

(A) up(x) > us(z) Va e,
or there exists a subset €7 # () of € such that
0 < p(h) < p()
( p is the n -dimensional Lebesgue measure) and
(B) up(z) > ug(x) Vo e Qy; ui(z) =ux(x) Vre Q\Q.
Proof. Let u := u; — ug, and suppose that there exists a point y € ) such that
u(y) < 0. Then there is a point 2y € 2 with the property:

u(xp) = minu(x) =m < 0,
e

and all that remains is to repeat the proof of Theorem 2 for to get a contradiction. Theorem
is proven.

3. Concavity results.

Here we will present certain results on the concavity of the function v : [0,1] — R,
defined in the Introduction ((1.2)) by the relation v(|z|) = u(x) x € B, where the function
u is supposed to be a solution of Problem 1.

Theorem 8. Let a € R in Problem 1 be fixed, and suppose that

(i) w(t) := f(a,t, )

is nonincreasing in t € [a, 00) for every a, 3 fixed (a € [0,1], 8 € [0, 00)),

(i) w(t) := f(a, B,1)
is nonincreasing in t € [0, 00) for every «, 8 fixed (« € [0,1], 5 € [a, 0)).
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If, in addition,

K,1-t* K, 1
(iii) flt,a+ =2 L) > K.(1— =) teo,1),

n 2 n n

where

K, :=sup f(= max f(p,a,0))
Ga p€[0,1]

then function v is concave (in non strong sense) on the interval [0, 1).
In other words - if v = (71,72,73) is a curve in R? :

K,(1-1t Kt
ﬁy:’)/l:taf)/?:a'i'%?’)%: . t€[071)7
n n
then condition (iii) means that
. 1
(iv) fly = Kqo(1 - E)

Proof. Assumptions of the Theorem guarantee the uniqueness (see Theorem 3 in
above) of the solution u ~ v to the Problem 1. We know (see (12), (13)) that v has the
following properties:

veC?0,1)NnCl0,1], v(l)=a, v'(0)=0,
(45) Au(z) + f(|2|, u(z), [Vu(@)]) = v"(p) +

xr€B, pe(0,1),

n—1

v'(p) + f(p,v(p), —v'(p)) =0

and

(46) (0" (p)) + P f(psv(p), —v'(p)) =0 p€[0,1).
Integrating equality (46) over the inteval [d,](0 < § <t < 1) we get

t
(47) P ) = 80 = [ F(pv(e) — () dp

from which passing to the limit as § — 0 4+ 0 we obtain

(48) ) = = [ (o)~ () dp e (0.1),
Using the notation
vi=—v" (v(t):=-2'(t) Vtel0,1])
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the first and second of the relations of (45) give
ty
v(t) —ov(ty) = / v(s)ds 0<t<t; <1, v(t)—v(t) > v(t)—aast; —1—0,
t
consequently there exists the improper integral

1 t1
/ v(s)ds:= lim v(s)ds te]0,1),
t

t1—1—-0 t

and
(49) v(t) =a+ /1 v(s) ds Yte|0,1],

From (48),(49) we obtain that function v satisfies equality

t

(50) v(t) = /Ot <£>n_1 f(p,a+ /1 v(s) ds, v(p))dp te€[0+0,1)

which is understood at ¢ = 0+ 0 in the limit sense. From the definition of K, and equality
(50) we get the inequality

(51) 0 <)w(t) < =%t Vtel0,1).

K,
n
To prove the theorem we have to show that

(52) V() >0  te0,1),

i.e.~using the last of the equalities in (45) for p € [0 + 0,1) combined with (50) - the
inequality

V(t) = f(t,a+ 1 v(s)ds, v(t))—
(53) /t

S L) e | (s, () dp >0 pe[040,1)

From (51) we obtain that

K, 1-t? K n—1
") > f(t - ) —
V() 2 f(tat 2o, =) -

(54)

K,1-t* K, -1K,
iy~ DT s 0 e o, 1)
n 2 n t n
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in virtue of conditon (iii). Theorem is proven.

Some concrete sufficient conditions for the special case of Problem 1, when
(55) fp,u,|Vul) = VA K eR; A K <0

are presented in the following

Theorem 9. Let a € R be arbitrarily fixed in Problem 1 with nonlinearity f of the
form in (55). Then solution u ~ v of Problem 1 exists ([7]), is unique, and any of the
following conditions (i) - (vi) guarantees the nonstrong concavity of solution v on [0, 1);
where we use the notation

1 n
dn::ln[(l—g)] neN, n isfixed n>2 (d, <0),

(i) A=K =0,

(ii) A=0,0>K>d,,

(i) K=0 0> AZM > d,,

(iv) K<A<0, Ke>d,,

(v) K=X<0, A >d,,

(vi) A< K <0, eh;“(uf—j)z d,.

Proof. It is enough to prove that inequality (iii) of Theorem 8 is fulfilled in every of
the cases (i) - (vi) of the present Theorem. Using that

f(t1,ta,t3) ~ flta, t3) = eM2TR 1) € [a,00), t3 € [0,00)
and relations
f(a,O) = 6)\“ Z f(t27t3) t? S [CL, 00)7 t3 € [07 OO)

we get that K, = e*. Substituting this value into inequality (iii) of Theorem 8, the
desirable inequality gains the form

eNa 1-¢2 eNa

Ma+5— S5—]+K &t >e)\a(1_

e Ly e

n
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i.e.

i.e.

eekap\#—klct]% Z (]_ — %) t e [07 1)

Ll k=g 2w~ )= a, tep)

e)\a[)\
2 n

It is easy to prove in every of the cases (i) - (vi) that

i t) > dn7
iy o002

which completes the proof.

1]
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