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Abstract. This paper is concerned with the following quasilinear Schrödinger equations
with critical exponent:

−∆pu + V(x)|u|p−2u− ∆p(|u|2ω)|u|2ω−2u = ak(x)|u|q−2u + b|u|2ωp∗−2u, x ∈ RN .

Here ∆pu = div(|∇u|p−2∇u) is the p-Laplacian operator with 1 < p < N, p∗ = Np
N−p is

the critical Sobolev exponent. 1 ≤ 2ω < q < 2ωp, a and b are suitable positive parame-
ters, V ∈ C(RN , [0, ∞)), k ∈ C(RN , R). With the help of the concentration-compactness
principle and R. Kajikiya’s new version of symmetric Mountain Pass Lemma, we obtain
infinitely many solutions which tend to zero under mild assumptions on V and k.
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1 Introduction and main result

In this paper, we establish the existence of infinitely many solutions which tend to zero for
the following quasilinear Schrödinger equations with critical exponent

− ∆pu + V(x)|u|p−2u− ∆p(|u|2ω)|u|2ω−2u = ak(x)|u|q−2u + b|u|2ωp∗−2u, x ∈ RN . (1.1)

The energy functional associated with (1.1) is given by

I(u) =
1
p

∫
RN

(
|∇u|p + V(x)|u|p

)
dx +

(2ω)p−1

p

∫
RN
|u|p(2ω−1)|∇u|pdx

− a
q

∫
RN

k(x)|u|qdx− b
2ωp∗

∫
RN
|u|2ωp∗dx.

(1.2)

Here ∆pu = div(|∇u|p−2∇u) is the p-Laplacian operator with 1 < p < N, p∗ = Np
N−p is the

critical Sobolev exponent. 1 ≤ 2ω < q < 2ωp, a and b are positive parameters. V(x) and k(x)
are continuous and satisfy the following conditions:
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(V) V ∈ C(RN , [0, ∞)) satisfies infx∈RN V(x) ≥ V0 > 0, and for each M > 0, meas{x ∈ RN :
V(x) ≤ M} < +∞, where V0 is a constant and meas denotes the Lebesgue measure
in RN .

(K) 0 < k(x) ∈ Lr(RN) with r = 2ωp∗
2ωp∗−q .

In recent years, a great attention has been focused on the study of solutions to quasilinear
Schrödinger equations. Such equations arise in various branches of mathematical physics. For
example, when p = 2, ω = 1, the solutions of (1.1) are related to the existence of solitary wave
solutions for quasilinear Schrödinger equations

ih
∂Ψ
∂t

= −∆Ψ + W(x)Ψ− h̃(|Ψ|2)Ψ− κ∆[ρ(|Ψ|2)]ρ′(|Ψ|2)Ψ, (1.3)

where Ψ : R×RN → C, W : RN → R is a given potential, κ, h are real constants and ρ, h̃
are real functions. This type of equations appear more naturally in mathematical physics and
have been derived as models of several physical phenomena corresponding to various types
of ρ(s). In the case ρ(s) = s, (1.3) was used for the superfluid film equation in plasma physics
by Kurihara in [12] and [13]. In the case ρ(s) = (1 + s)1/2, (1.3) models the self-channeling
of a high-power ultrashort laser in matter (see [4, 6]). Considering the case ρ(s) = sα, κ > 0
and putting Ψ(t, x) = exp(− iFt

h )u(x), F ∈ R is some real constant, it is clear that Ψ(t, x) solves
(1.3) if and only if u(x) solves the following elliptic equation:

− ∆u + V(x)u− ακ∆(|u|2α)|u|2α−2u = h̃(x, u), x ∈ RN , (1.4)

where we have renamed W(x)− F to be V(x).
For the case ακ = 1, h̃(x, u) = θ|u|p−1u, Poppenberg, Schmitt and Wang in [19] studied the

equation (1.4) by translating it into an ODE

− u′′ + V(x)u− (u2)′′u = θ|u|p−1u, x ∈ R, (1.5)

and then a ground state solution u ∈W1,2(R) of problem (1.5) was obtained. They also got that
the equation (1.5) admits a positive solution u ∈ W1,2(R) for any arbitrarily large values of θ.
Later, Liu, Wang and Wang in [17] established the existence of ground states of soliton-type
solutions for (1.4) as in the case α = 1, κ = 1

2 by the variational methods. Using a constrained
minimization argument, Liu, Wang and Wang in [16] established the existence of a positive
ground state solution for (1.4). As we know, Nehari method is used to get the existence results
of ground state solutions in [10] and the problem is transformed to a semilinear one in [2,9] by
a change of variables. Recently, the author in [23] studied the equation (1.4) and obtained that
it has a positive and a negative weak solution under proper conditions of α, V, g. A natural
question is that weather there exist infinitely many solutions for equations like (1.4). The
authors in [7, 8] investigated the following type quasilinear elliptic equation:

− ∆u + V(x)u− ∆I(u2)I′(u2)u = h(u), x ∈ RN . (1.6)

Let

g2(u) = 1 +
[(I(u2))′]2

2
.

Problem (1.6) can be reduced to the following quasilinear elliptic equations:

− div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V(x)u = h(u), x ∈ RN . (1.7)
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By using the Pohozaev identity, the author has the nonexistence result for (1.7).
To the best of our knowledge, the existence of nontrivial radial solutions for (1.4) with

g(x, u) = µu2(2∗)−1 was firstly studied by Moameni in [18], where the Orlicz space as the
same as it was used in [17]. However, it seems that there is almost no work on the existence
of infinitely many solutions to the quasilinear Schrödinger problem in RN involving critical
nonlinearities and generalized potential V(x).

Motivated by the above discussions, the main goal of this paper is to study the existence of
infinitely many solutions which tend to zero to the problem (1.1). The lack of compactness of
the embedding from W1,p(RN) into Lp∗(RN) prevents us from using the variational methods
in a standard way. To overcome the lack of compactness caused by the Sobolev embeddings
in unbounded domains and the critical exponent, some new estimates for (1.1) are needed
to be re-established. We apply Lions’ concentration-compactness principle [14, 15] to give a
more detailed analysis for the compactness of our problem. Thanks to the new version of
symmetric Mountain Pass Lemma in [11], we give the proof of our main result. As far as we
know, there are few results on this question, so the research in this paper is meaningful.

Now we first give the definition of weak solutions for problem (1.1).

Definition 1.1. We say that u ∈W1,p(RN) ∩ L∞
loc(R

N) is a weak solution of (1.1), if

∫
RN

(
|∇u|p−2∇u∇ϕ + V(x)|u|p−2uϕ

)
dx

+ (2ω)p−1
∫

RN
|u|p(2ω−1)|∇u|p−2∇u∇ϕdx + (2ω)p−1

∫
RN
|∇u|p|u|p(2ω−1)−2uϕdx

− a
∫

RN
k(x)|u|q−2uϕdx− b

∫
RN
|u|2ωp∗−2uϕdx = 0

for any ϕ ∈ C∞
0 (RN).

In the sequel we will omit the term weak when referring to solutions that satisfy the
conditions of Definition 1.1. Our main result of this paper is stated as follows.

Theorem 1.2. Suppose that (V) and (K) hold, 1 ≤ 2ω < q < 2ωp. Then

(i) ∀b > 0, ∃ a0 > 0 such that if 0 < a < a0, problem (1.1) has a sequence of solutions {un} with
I(un) < 0, I(un)→ 0 and limn→∞ un = 0.

(ii) ∀a > 0, ∃ b0 > 0 such that if 0 < b < b0, problem (1.1) has a sequence of solutions {un} with
I(un) < 0, I(un)→ 0 and limn→∞ un = 0.

Remark 1.3. From Theorem 1.2 it is natural to raise the open problems: What if 2ωp < q < p∗?
This problem would be investigated by the authors in future works.

The outline of this paper is as follows. Reformulation of the problem and some prelim-
inaries are given in the forthcoming section. In Section 3, behavior of (PS) sequences are
established. The proof of Theorem 1.2 is given in Section 4.

We denote that Lp(RN) is the usual Lebesgue space with the norm ‖u‖p
p =

∫
RN |u|pdx, 1 ≤

p < +∞. ‖u‖p =
∫

RN |∇u|pdx, ‖u‖p
V =

∫
RN (|∇u|p + V(x)|u|p)dx. S = infu∈W1,p(RN)\{0}

‖u‖p

‖u‖p
p∗

is the best Sobolev constant. Various positive constants are denoted by C and Ci.
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2 Reformulation of the problem and preliminaries

The purpose of this section is to establish the variational structure of (1.1) and the main
difficulty arises from the function space where the energy functional (1.2) is not well defined
in W1,p(RN). For example, if 1 < p < N and u is defined by

u(x) = |x|(p−N)/2ωp for x ∈ B1 \ {0},

we then have that u ∈W1,p(RN), but∫
RN
|u|p(2ω−1)|∇u|pdx = +∞.

To overcome this difficulty, we employ an argument developed by Liu, Wang and Wang in [17]
or Colin and Jeanjean in [5]. We use the change of variables v = f−1(u), where f is defined by

f ′(t) =
1

[1 + (2ω)p−1| f (t)|p(2ω−1)]
1
p

,

and f (0) = 0 on [0,+∞) and by f (t) = − f (−t) on (−∞, 0]. The following result is due to
Adachi and Watanabe in [1] which collects some properties of f .

Lemma 2.1. The function f (t) enjoys the following properties:

(1) f is uniquely defined C∞ function and invertible.

(2) | f ′(t)| ≤ 1, | f (t)| ≤ (2ω)
1

2ωp |t| 1
2ω for all t ∈ R.

(3) f (t)
t → 1 as t→ 0.

(4) f (t)

t
1

2ω
→ a > 0 as t→ +∞.

(5) 1
2ω f (t) ≤ t f ′(t) ≤ f (t) for all t ≥ 0.

(6) There exists a positive constant C such that

| f (t)| ≥

C|t|, |t| ≤ 1,

C|t| 1
2ω , |t| > 1.

After the above change of variables, we can rewrite our energy functional (1.2) in the terms
of v:

J(v) =
1
p

∫
RN

(
|∇v|p + V(x)| f (v)|p

)
dx− a

q

∫
RN

k(x)| f (v)|qdx− b
2ωp∗

∫
RN
| f (v)|2ωp∗dx.

We first give the proof of the following weakly continuous lemma.

Lemma 2.2.

(i) The functional F (v) =
∫

RN k(x)| f (v)|qdx is well defined and weakly continuous on W1,p(RN).
Moreover, F (v) is continuously differentiable, its derivative F ′ : W1,p(RN) → (W1,p(RN))∗

is given by

〈F ′(v), g〉 = q
∫

RN
k(x)| f (v)|q−2 f (v) f ′(v)gdx, ∀ g ∈W1,p(RN).
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(ii) The functional G(v) =
∫

RN f (v)2ωp∗dx is well defined. Moreover, G(v) is continuously differ-
entiable, its derivative G ′ : W1,p(RN)→ (W1,p(RN))∗ is given by

〈G ′(v), g〉 = 2ωp∗
∫

RN
| f (v)|2ωp∗−2 f (v) f ′(v)gdx, ∀ g ∈W1,p(RN).

Proof. Firstly, by (3) and (4) in Lemma 2.1, it is clear that F (v) and G(v) are well defined
on W1,p(RN). Next, we prove that F (v),G(v) ∈ C1(RN). It suffices to show that both F (v)
and G(v) have continuous Gateaux derivatives on W1,p(RN). We only prove that F (v) has
continuous Gateaux derivatives on W1,p(RN) since the case of the proof for G(v) is simpler.
Our proof is the same as the proof of Lemma 3.10 in [22] , for the convenience of the readers,
we present the process. Let v, g ∈ W1,p(RN). Given 0 < |t| < 1, by the mean value theorem,
there exists λ ∈ (0, 1) such that

|| f (v + tg)|q − | f (v)|q|
|t| = q| f (v + tλg)|q−1| f ′(v + tλg)||g|

= q| f (v + tλg)|q | f
′(v + tλg)|
| f (v + tλg)| |g|

≤ C|v + tλg|
q

2ω |v + tλg|−1|g|

= C|v + tλg|
q−2ω

2ω |g|

≤ C(|v|
q−2ω

2ω |g|+ |g|
q

2ω ),

where the conclusions of Lemma 2.1 (2) and (5) are used. By the Hölder inequality and
assumption of (K), we have∫

RN
k(x)(|v|

q−2ω
2ω |g|+ |g|

q
2ω )dx ≤ ‖k(x)‖r‖g‖p∗(‖v‖

q−2ω
2ω + ‖g‖

q−2ω
2ω ).

It follows from the Lebesgue Dominated Convergence Theorem that F (v) is Gateaux differ-
entiable and

〈F ′(v), g〉 = q
∫

RN
k(x)| f (v)|q−2 f (v) f ′(v)gdx.

Now, we give the proof of continuity of Gateaux derivative. Assume that vn → v in W1,p(RN),
then f 2(vn)→ f 2(v) in W1,p(RN). By the continuity of the embedding W1,p(RN) ↪→ Lp∗(RN),
we get that f 2(vn) → f 2(v) in Lp∗(RN). Define K(v) = k(x)| f (v)|q−2 f (v) f ′(v). Then K ∈
(Lp∗(RN), C(Lp∗(RN))′). It follows that K(vn) → K(v) in (Lp∗(RN))′. Using the Hölder and
Sobolev inequalities, we have

〈F ′(vn)−F ′(v), g〉 ≤ ‖K(vn)−K(v)‖(p∗)′‖g‖p∗ ≤ C‖K(vn)−K(v)‖(p∗)′‖g‖.

Hence ‖F ′(vn)−F ′(v)‖ → 0 and F ∈ C1.

From the above analysis we can get that J(v) is well defined on W1,p(RN) under the as-
sumptions of (V) and (K). The standard arguments applied in [20,22] show that J(v) belongs
to C1(W1,p(RN), R). As in [5], we note that if v is a nontrivial critical point of J, v then is a
nontrivial solution of the problem

− ∆pv + V(x)| f (v)|p−2 f (v) f ′(v) = ak(x)| f (v)|q−2 f (v) f ′(v) + b| f (v)|2ωp∗−2 f (v) f ′(v). (2.1)

Therefore, let u = f (v) and since ( f−1)′(t) = [1 + (2ω)p−1| f (t)|p(2ω−1)]
1
p , we conclude that u

is a nontrivial solution of the problem (1.1).
Now we can restate Theorem 1.2 as follows.
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Theorem 2.3. Suppose that (V) and (K) are held, ω > 1/2, 2ω < q < 2ωp. Then

(i) ∀b > 0, ∃ ã0 > 0 such that if 0 < a < ã0, problem (2.1) has a sequence of solutions {vn} with
J(vn) < 0, J(vn)→ 0 and limn→∞ vn = 0.

(ii) ∀a > 0, ∃ b̃0 > 0 such that if 0 < b < b̃0, problem (2.1) has a sequence of solutions {vn} with
J(vn) < 0, J(vn)→ 0 and limn→∞ vn = 0.

3 Properties of (PS)c sequences

In this section, we perform a careful analysis of the behavior of minimizing sequences with
the aid of Lions’ concentration–compactness principle [14, 15], which allows us to recover the
compactness below some critical threshold.

Let E be a real Banach space and J : E→ R be a function of class C1. We say that {vn} ⊂ E
is a (PS)c sequence if J(vn)→ c and J′(vn)→ 0. J is said to satisfy the Palais–Smale condition
at level c ((PS)c for short) if any (PS)c sequence contains a convergent subsequence.

Lemma 3.1. Assume (V) and (K), {vn} ⊂ W1,p(RN) be a (PS)c sequence for J at level c < 0 and
2ω < q < 2ωp. Then

(i) there exists C > 0 such that, for all n ∈N, ‖vn‖V ≤ C;

(ii) ∀b > 0, ∃ a∗ > 0 such that if 0 < a < a∗, then J satisfies (PS)c;

(iii) ∀a > 0, ∃ b∗ > 0 such that if 0 < b < b∗, then J satisfies (PS)c.

Proof. At first, we prove that {vn} is bounded in W1,p(RN). Let {vn} be a (PS)c sequence in
W1,p(RN) such that for all φ ∈ C∞

0 (RN), we have that

c + on(‖vn‖) = J(vn) =
1
p

∫
RN

(
|∇vn|p + V(x)| f (vn)|p

)
dx

− a
q

∫
RN

k(x)| f (vn)|qdx− b
2ωp∗

∫
RN
| f (vn)|2ωp∗dx,

(3.1)

and

on(‖vn‖) = 〈J′(vn), ϕ〉 =
∫

RN

(
|∇vn|p−2∇vn∇ϕ + V(x)| f (vn)|p−2 f (vn) f ′(vn)ϕ

)
dx

− a
∫

RN
k(x)| f (vn)|q−2 f (vn) f ′(vn)ϕdx

− b
∫

RN
| f (vn)|2ωp∗−2 f (vn) f ′(vn)ϕdx.

(3.2)

Choose ϕ = ϕn = [1+ (2ω)p−1| f (vn)|p(2ω−1)]
1
p f (vn), we have ϕn ∈W1,p(RN) and then |ϕn| <

2ω|vn|. Since

∇ϕn =

[
1 +

(2ω− 1)(2ω)p−1| f (vn)|p(ω−1)

1 + (2ω)p−1| f (vn)|p(ω−1)

]
∇vn ≤ (2ω)∇vn, f ′(vn)ϕn = f (vn),

we get ‖ϕn‖ ≤ C‖vn‖. It follows from (3.2) that

on(‖vn‖) = 〈J′(vn), ϕn〉 ≤
∫

RN
(2ω|∇vn|p + V(x)| f (vn)|p)dx

− a
∫

RN
k(x)| f (vn)|qdx− b

∫
RN
| f (vn)|2ωp∗dx.

(3.3)
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Since

|∇ f 2ω(vn)|p = |2ω f 2ω−1(vn) f ′(vn)∇vn|p

= (2ω)p | f 2ω−1(vn)|p

1 + (2ω)p−1| f (vn)|p(2ω−1)
|∇vn|p

=

[
2ω

(2ω)p−1| f (vn)|p(2ω−1)

1 + (2ω)p−1| f (vn)|p(2ω−1)

]
|∇vn|p

≤ 2ω|∇vn|p,

(3.4)

we get

0 > c + on(‖vn‖) = J(vn)−
1

2ωp∗
〈J′(vn), ϕn〉

≥ 1
N

∫
RN
|∇vn|pdx +

(
1
p
− 1

2ωp∗

) ∫
RN

V(x)| f (vn)|pdx− a
qr

∫
RN

k(x)| f (vn)|qdx

≥ 1
N

∫
RN

(|∇vn|p + V(x)| f (vn)|p)dx− a
qr
‖k(x)‖r

(∫
RN
| f 2ω(vn)|p

∗
dx
) q

2ωp∗

≥ 1
N

∫
RN

(|∇vn|p + V(x)| f (vn)|p)dx− a
qr

C1

(∫
RN
|∇ f 2ω(vn)|pdx

) q
2ωp

≥ 1
N

∫
RN

(|∇vn|p + V(x)| f (vn)|p)dx− C2

[∫
RN
|∇vn|pdx

] q
2ωp

≥ 1
N

∫
RN

(|∇vn|p + V(x)| f (vn)|p)dx− C2

[∫
RN

(|∇vn|p + V(x)| f (vn)|p)dx
] q

2ωp

,

(3.5)

which implies that for n large enough, there exists C > 0 such that∫
RN

(|∇vn|p + V(x)| f (vn)|p)dx ≤ C. (3.6)

In the following, we need to show {vn} is bounded in W1,p(RN). From (3.6), we need to prove
that

∫
RN V(x)|vn|pdx is bounded. By (V),

∫
{x:|vn|>1}

V(x)|vn|pdx ≤ M
∫
{x:|vn|>1}

|vn|p
∗
dx ≤ MS−

p∗
p

(∫
{x:|vn|>1}

|∇vn|pdx
) p∗

p

,

and using Lemma 2.1 (6),∫
{x:|vn|≤1}

V(x)|vn|pdx ≤ 1
C2

∫
{x:|vn|≤1}

V(x)| f (vn)|pdx ≤ 1
C2

∫
RN

V(x)| f (vn)|pdx.

These estimates imply that {vn} is bounded in W1,p(RN). Then { f (vn)} is also bounded in
W1,p(RN). Therefore we can assume that

vn ⇀ v weakly in W1,p(RN),

vn → v a.e. in RN ,

vn → v strongly in Lt
loc(R

N) for all t ∈ [1, p∗).

Since f ∈ C∞, we have

f 2ω(vn) ⇀ f 2ω(v) weakly in W1,p(RN),

f 2ω(vn)→ f 2ω(v) a.e. in RN .
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In view of the concentration–compactness principle [14, 15], there exist a subsequence, still
denoted by { f (vn)}, µ, ν ∈ M(RN ∪ {∞}) which are the positive finite Radon measures on
RN ∪ {∞}, an at most countable set J , a set of different points {xj} ⊂ RN , and real numbers
µj, νj such that the following convergence hold in the sense of measures

|∇ f 2ω(vn)|p ⇀ dµ ≥ |∇ f 2ω(v)|p + ∑
j∈J

µjδxj ,

| f 2ω(vn)|p
∗
⇀ dν = | f 2ω(v)|p∗ + ∑

j∈J
νjδxj .

From the above two equations and the Sobolev inequalities, it follows easily that

µj ≥ Sν
p

p∗

j for all j ∈ J . (3.7)

Concentration at infinity of the sequence {un} is described by the following quantities:

µ∞ := lim
R→∞

lim sup
n→∞

∫
{x:|x|>R}

|∇ f 2ω(vn)|pdx,

ν∞ := lim
R→∞

lim sup
n→∞

∫
{x:|x|>R}

| f 2ω(vn)|p
∗
dx.

We claim that

J is finite and, for j ∈ J , either νj = 0 or νj ≥ (b−1S)N/2.

In fact, for ε > 0, letting xj be a singular point of the measures µj and νj, φj(x) be a
smooth cut–off function centered at xj such that 0 ≤ φj(x) ≤ 1, φj(x) ≡ 0 on |x − xj| ≥ 2,
φj(x) ≡ 1 on |x − xj| ≤ 1, and |∇φj(x)| ≤ 2 for all x ∈ RN . Letting φε

j (x) = φj(
x
ε ), ψn =

[1 + (2ω)p−1| f (vn)|p(2ω−1)]
1
p f (vn), then we get that {ψn} is bounded in W1,p(RN). Testing

J′(vn) with ψnφε
j , we obtain limn→∞〈J′(vn), ψnφε

j (x)〉 = 0, that is

− lim
n→∞

∫
RN

[1 + (2ω)p−1| f (vn)|p(2ω−1)]
1
p f (vn)|∇vn|p−2∇vn∇φε

j dx

= lim
n→∞

[ ∫
RN

1 + 2ω(2ω)p−1| f (vn)|p(2ω−1)

1 + (2ω)p−1| f (vn)|p(2ω−1)
|∇vn|pφε

j dx +
∫

RN
V(x)| f (vn)|pφε

j dx

− a
∫

RN
k(x)| f (vn)|qφε

j dx− b
∫

RN
| f (vn)|2ωp∗φε

j dx
]

.

(3.8)

In the following we estimate each term in (3.8). By Lemma 2.1 (5) and the expression of f ′,
we have

| f (vn)|
f ′(vn)

≤ 2ω|vn| ⇒ [1 + (2ω)p−1| f (vn)|p(2ω−1)]
1
p | f (vn)| ≤ 2ω|vn|.

Thus

0 ≤ lim
ε→0

lim
n→∞

∣∣∣∣∫
RN

[1 + (2ω)p−1| f (vn)|p(2ω−1)]
1
p f (vn)|∇vn|p−2∇vn∇φε

j dx
∣∣∣∣

≤ lim
ε→0

lim
n→∞

∫
RN

∣∣∣2ωvn|∇vn|p−2∇vn∇φε
j

∣∣∣dx

≤ lim
ε→0

lim
n→∞

2ω
( ∫

RN
|∇vn|pdx

) p−1
p
( ∫

RN
|vn∇φε

j |pdx
) 1

p

≤ lim
ε→0

lim
n→∞

C
( ∫

RN
|vn∇φε

j |pdx
) 1

p

≤ C lim
ε→0

( ∫
B(xj,2ε)

|vn|p·
p∗
p dx

) 1
p∗
( ∫

B(xj,2ε)
|∇φε

j |
p· Np dx

) 1
N
= 0.

(3.9)
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Also we have

lim
n→∞

∫
RN
|∇ f 2ω(vn)|pφε

j dx =
∫

RN
φε

j dx ≥
∫

RN
|∇ f 2ω(v)|pφε

j dx + µj, (3.10)

and
lim
n→∞

∫
RN
| f (vn)|2ωp∗φε

j dx =
∫

RN
φε

j dν ≥
∫

RN
| f (v)|2ωp∗φε

j dx + νj. (3.11)

By the weak continuity of F (v), we get

lim
ε→0

lim
n→∞

∫
RN

k(x)| f (vn)|qφε
j dx = 0. (3.12)

From (3.9)–(3.12), by the weak continuity of F , we have

0 = lim
ε→0

lim
n→∞

[ ∫
RN

1 + 2ω(2ω)p−1| f (vn)|p(2ω−1)

1 + (2ω)p−1| f (vn)|p(2ω−1)
|∇vn|pφε

j dx +
∫

RN
V(x)| f (vn)|pφε

j dx

− a
∫

RN
k(x)| f (vn)|qφε

j dx− b
∫

RN
| f (vn)|2ωp∗φε

j dx
]

≥ lim
ε→0

lim
n→∞

[∫
RN
|∇ f 2ω(vn)|pφε

j dx− a
∫

RN
k(x)| f (vn)|qφε

j dx− b
∫

RN
| f (vn)|2ωp∗φε

j dx
]

= µj − bνj.

(3.13)

Combining with (3.7), we obtain

either (i) νj = 0 or (ii) νj ≥ (b−1S)
N
p ,

which implies that J is finite. The claim is thereby proved.
To analyze the concentration at ∞, we follow closely the argument used in [21]. By

choosing a suitable cut-off function ϕ ∈ C∞
0 (RN , [0, 1]) such that ϕ(x) ≡ 0 on |x| ≤ 1 and

ϕ(x) ≡ 1 on |x| ≥ 2. Setting ϕR(x) = ϕ( x
R ), then {ϕRψn} is bounded in W1,p(RN), and

limn→∞〈J′(vn), ϕRψn〉 = 0, that is

− lim
n→∞

∫
RN

[1 + (2ω)p−1| f (vn)|p(2ω−1)]
1
p f (vn)|∇vn|p−2∇vn∇ϕRdx

= lim
n→∞

[ ∫
RN

1 + 2ω(2ω)p−1| f (vn)|p(2ω−1)

1 + (2ω)p−1| f (vn)|p(2ω−1)
|∇vn|p ϕRdx +

∫
RN

V(x)| f (vn)|p ϕRdx

− a
∫

RN
k(x)| f (vn)|q ϕRdx− b

∫
RN
| f (vn)|2ωp∗ϕRdx

]
.

(3.14)

Similar to the process of (3.9), we can get

lim
R→∞

lim
n→∞

∫
RN

[1 + (2ω)p−1| f (vn)|p(2ω−1)]
1
p f (vn)|∇vn|p−2∇vn∇ϕRdx = 0. (3.15)

Using the weak continuity of F , we have

lim
R→∞

lim
n→∞

∫
RN

k(x)| f (vn)|q ϕRdx = 0.

Therefore,
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0 = lim
R→∞

lim
n→∞

[ ∫
RN

1 + 2ω(2ω)p−1| f (vn)|p(2ω−1)

1 + (2ω)p−1| f (vn)|p(2ω−1)
|∇vn|p ϕRdx +

∫
RN

V(x)| f (vn)|p ϕRdx

− a
∫

RN
k(x)| f (vn)|q ϕRdx− b

∫
RN
| f (vn)|2ωp∗ϕRdx

]
≥ lim

R→∞
lim
n→∞

[ ∫
RN
|∇ f 2ωvn|p ϕRdx− a

∫
RN

k(x)| f (vn)|q ϕRdx− b
∫

RN
| f (vn)|2ωp∗ϕRdx

]
= µ∞ − bν∞. (3.16)

By

µ∞ ≥ Sν
p

p∗
∞ , (3.17)

we get

either (iii) ν∞ = 0 or (iv) ν∞ ≥ (b−1S)
N
p .

Next, we claim that (ii) and (iv) cannot occur if a and b are chosen properly. In fact, by
(3.4) and (V), we have∫

RN
(|∇v|p + V(x)| f (v)|p)dx ≥

∫
RN
|∇v|pdx ≥ 1

2ω

∫
RN
|∇ f 2ω(v)|pdx.

Then if (iv) holds, from the weak lower semicontinuity of the norm and the weak continuity
of F , we have,

0 > c = lim
n→∞

[
J(vn)−

1
2ωp∗

〈J′(vn), ϕn〉
]

≥ lim
n→∞

[(
1
p
− 1

p∗

) ∫
RN

(|∇vn|p + V(x)| f (vn)|p)dx− a
qr
‖k(x)‖r‖ f 2ω(vn)‖

q
2ω
p∗

]
≥ 1

N

∫
RN

(|∇v|p + V(x)| f (v)|p)dx− a
qr
‖k(x)‖r‖ f 2ω(v)‖

q
2ω
p∗

≥ 1
N
· 1

2ω

∫
RN
|∇ f 2ω(v)|pdx− a

qr
‖k(x)‖r‖ f 2ω(v)‖

q
2ω
p∗

≥ 1
2ωN

S‖ f 2ω(v)‖p
p∗ −

a
qr
‖k(x)‖r‖ f 2ω(v)‖

q
2ω
p∗ .

This inequality implies that

‖ f 2ω(v)‖p∗ ≤ Ca
2ω

2ωp−q .

Therefore from (3.17) and (iv),

0 > c = lim
n→∞

[
J(vn)−

1
2ωp∗

〈J′(vn), ϕn〉
]

≥ lim
n→∞

[(
1
p
− 1

p∗

) ∫
RN

(|∇vn|p + V(x)| f (vn)|p)dx− a
qr
‖k(x)‖r‖ f 2ω(vn)‖

q
2ω
p∗

]
≥ lim

R→∞
lim
n→∞

[
1
N

∫
RN

(|∇vn|p + V(x)| f (vn)|p)φRdx− a
qr
‖k(x)‖r‖ f 2ω(vn)‖

q
2ω
p∗

]
≥ 1

N
µ∞S

N
p − Ca

2ω
2ωp−q

≥ 1
N

b
p−N

p S
N
p − Ca

2ω
2ωp−q .
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However, if a > 0 is given, we can choose small b∗ so that for every 0 < b < b∗, the last term
on the right-hand side above is greater than zero, which is a contradiction. Similarly, if b > 0
is given, we can take small a∗ so that for every 0 < a < a∗, the last term on the right-hand side
above is greater than zero. Similarly, we can prove that (ii) cannot occur for each j. Hence

‖ f 2ω(vn)‖p∗ → ‖ f 2ω(v)‖p∗ as n→ ∞,

and ∫
RN

k(x)(| f (vn)|q − | f (v)|q)dx ≤ ‖k(x)‖r‖| f (vn)|q − | f (v)|q‖ 2ωp∗
q

.

Thus, from the weak lower semicontinuity of the norm and F ∈ C∞ we have

o(‖vn‖) = 〈J′(vn), ϕn〉

=
∫

RN
(|∇vn|p + V(x)| f (vn)|p)dx +

∫
RN

[
(2ω− 1)(2ω)p−1| f (vn)|p(2ω−1)

1 + (2ω)p−1| f (vn)|p(2ω−1)

]
|∇vn|pdx

− a
∫

RN
k(x)| f (vn)|qdx− b

∫
RN
| f (vn)|2ωp∗dx

=
∫

RN
(|∇vn −∇v|p + |∇v|p + V(x)| f (v)|p)dx

+
∫

RN

[
(2ω− 1)(2ω)p−1| f (v)|p(2ω−1)

1 + (2ω)p−1| f (v)|p(2ω−1)

]
|∇v|pdx

− a
∫

RN
k(x)| f (v)|qdx− b

∫
RN
| f (v)|2ωp∗dx + o(‖vn‖)

=
∫

RN
|∇vn −∇v|pdx + o(‖vn‖)

since J′(v) = 0. Thus we prove that {vn} strongly converges to v in W1,p(RN).

4 Proofs of the main results

In this section, we use the minimax procedure (see [20]) to prove the existence of infinitely
many solutions. Let X be a Banach space and Σ be the class of subsets of X \ {0} which are
closed and symmetric with respect to the origin. For A ∈ Σ, we define the genus γ(A) by

γ(A) = min{n ∈N : ∃φ ∈ C(A, Rn \ {0}), φ(z) = −φ(−z)}.

If there is no mapping as above for any n ∈N, then γ(A) = +∞. Let Σn denote the family
of closed symmetric subsets A of X such that 0 6∈ A and γ(A) ≥ n. We list some properties of
the genus (see [11, 20]).

Proposition 4.1. Let A and B be closed symmetric subsets of X which do not contain the origin. Then
the following hold:

(i) If there exists an odd continuous mapping from A to B, then γ(A) ≤ γ(B);

(ii) If there is an odd homeomorphism from A to B, then γ(A) = γ(B);

(iii) If γ(B) < ∞, then γ(A\B) ≥ γ(A)− γ(B);

(iv) n-dimensional sphere Sn has a genus of n + 1 by the Borsuk–Ulam Theorem;



12 L. Wang, J. Wang and X. Li

(v) If A is compact, then γ(A) < +∞ and there exists δ > 0 such that Nδ(A) ⊂ Σ and γ(Nδ(A)) =

γ(A), where Nδ(A) = {x ∈ X : ‖x− A‖ ≤ δ}.

Thanks to the work of Kajikiya in [11], we take the following version of the symmetric
mountain-pass lemma.

Proposition 4.2. Let E be an infinite-dimensional space and J ∈ C1(E, R) and suppose the following
conditions hold:

(A1) J(u) is even, bounded from below, J(0) = 0 and J(u) satisfies the local Palais–Smale condition
(PS for short).

(A2) For each k ∈N, there exists an Ak ∈ Σk such that supu∈Ak
J(u) < 0.

Then either (i) or (ii) below holds.

(i) There exists a sequence {uk} such that J′(uk) = 0, J(uk) < 0 and {uk} converges to zero.

(ii) There exist two sequences {uk} and {vk} such that J′(uk) = 0, J(uk) = 0, uk 6= 0,
limk→∞ uk = 0; J′(vk) = 0, J(vk) < 0, limk→∞ J(vk) = 0, and {vk} converges to a
non-zero limit.

Remark 4.3. From Proposition 4.2 we have a sequence {uk} of critical points such that J(uk) ≤
0, uk 6= 0 and limk→∞ uk = 0.

In order to get infinitely many solutions we need some lemmas. Let J(v) be the functional
defined as before, 1 < 2ω < q < 2ωp, and a > 0, b > 0. Then, by (3.4),

J(v) =
1
p

∫
RN

(|∇v|p + V(x)| f (v)|p)dx− a
q

∫
RN

k(x)| f (v)|qdx− b
2ωp∗

∫
RN
| f (v)|2ωp∗dx

≥ 1
p

∫
RN

(|∇v|p + V(x)| f (v)|p)dx− a
q
‖k(x)‖r‖ f 2ω(v)‖

q
2ω
p∗ −

b
2ωp∗

∫
RN
| f (v)|2ωp∗dx

≥ 1
p

∫
RN

(|∇v|p + V(x)| f (v)|p)dx− a
q

C1

( ∫
RN
|∇ f 2ω(v)|pdx

) q
2ωp

− b
2ωp∗

C2

( ∫
RN
|∇ f 2ω(v)|pdx

) p∗
p

≥ 1
p

∫
RN

(|∇v|p + V(x)| f (v)|p)dx− aC3

q

( ∫
RN
|∇v|pdx

) q
2ωp − bC4

2ωp∗
( ∫

RN
|∇v|pdx

) p∗
p

≥ C5‖v‖p − aC6‖v‖
q

2ω − bC7‖v‖p∗ .

Define
g(t) = C5tp − aC6t

q
2ω − bC7tp∗ .

Since 1 < 2ω < q < 2ωp, it is easy to see that, for the given b > 0, we can choose small a∗ > 0
such that if 0 < a < a∗, there exists 0 < t0 < t1 such that g(t) < 0 for 0 < t < t0; g(t) > 0 for
t0 < t < t1; g(t) < 0 for t > t1.

Similarly, for the given a > 0, we can choose small b∗ > 0 such that if 0 < b < b∗, there
exists 0 < t0 < t1 such that g(t) < 0 for 0 < t < t0; g(t) > 0 for t0 < t < t1; g(t) < 0 for t > t1.

Clearly, g(t0) = 0 = g(t1). Following the same idea as in [3], we consider the truncated
functional

J̃(v) =
1
p

∫
RN

(|∇v|p + V(x)| f (v)|p)dx− a
q

∫
RN

k(x)| f (v)|qdx− b
2ωp∗

ψ(v)
∫

RN
| f (v)|2ωp∗dx,
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where ψ(v) = τ(‖v‖) and τ : R+ → [0, 1] is a non-increasing C∞ function such that τ(t) = 1
if t ≤ t0 and τ(t) = 0 if t ≥ t1. Obviously, J̃(v) is even. Thus, following Lemma 3.1, we obtain
the following lemma.

Lemma 4.4. Let c < 0 and 2ω < q < 2ωp. Then

(1) J̃ ∈ C1 and J̃ is bounded below.

(2) If J̃(v) < 0, then ‖v‖ < t0 and J̃(v) = J(v).

(3) ∀b > 0, ∃ ã∗ = min{a∗, a∗} > 0 such that if 0 < a < ã∗, then J̃ satisfies (PS)c.

(4) ∀a > 0, ∃ b̃∗ = min{b∗, b∗} > 0 such that if 0 < b < b̃∗, then J̃ satisfies (PS)c.

Proof. The aforementioned (1) and (2) are immediate. To prove (3) and (4), observe that all
(PS) sequences for J̃ with c < 0 must be bounded. Similar to the proof of Lemma 3.1, there
exists a strong convergent subsequence in W1,p(RN).

Remark 4.5. Denote Kc = {v ∈W1,p(RN); J̃′(v) = 0, J̃(v) = c} If a, b are as in (3) or (4) above,
it then follows from (PS)c that Kc(c < 0) is compact.

Lemma 4.6. Assume that (K) is held, then for the given n ∈N, there exists εn < 0 such that

γ( J̃εn) := γ({v ∈W1,p(RN) : J̃(v) ≤ εn}) ≥ n.

Proof. Let Xn be a n-dimensional subspace of W1,p(RN). For any v ∈ Xn, v 6= 0, write v = rnw
with w ∈ Xn, ‖w‖ = 1 and then rn = ‖v‖. From the assumption (K), it is easy to see that, for
every w ∈ Xn with ‖w‖ = 1, there exists dn > 0 such that

∫
RN k(x)|w|

q
2ω dx ≥ dn. Thus for

0 < rn < t0 and Lemma 2.1 (2),(5), we have

J̃(v) = J(v) =
1
p

∫
RN

(|∇v|p + V(x)| f (v)|p)dx− a
q

∫
RN

k(x)| f (v)|qdx− b
2ωp∗

∫
RN
| f (v)|2ωp∗dx

≤ 1
p

∫
RN

(|∇v|p + V(x)(C|v|
p

2ω + C))dx

− a
q

∫
RN

k(x)(C|v|
q

2ω + C)dx− b
2ωp∗

∫
RN

(|v|p∗ + C)dx

≤ 1
p

∫
RN

(|∇v|p + V(x)C|v|
p

2ω )dx− Ca
q

∫
RN

k(x)|v|
q

2ω dx− Cb
2ωp∗

∫
RN
|v|p∗dx− C

≤ C1rp
n + C2r

p
2ω
n − adnr

q
2ω
n − bC3rp∗

n − C4

= εn.

Therefore we can choose small rn ∈ (0, t0) such that J̃(v) ≤ εn < 0. Let

Srn = {v ∈ Xn : ‖v‖ = rn}. (4.1)

Then Srn ∩ Xn ⊂ J̃εn . Hence by Proposition 4.1,

γ( J̃εn) ≥ γ(Srn ∩ Xn) = n.

According to Lemma 4.4 we denote Σn = {A ∈ Σ : γ(A) ≥ n} and let

cn = inf
A∈Σn

sup
v∈A

J̃(v). (4.2)

Then −∞ < cn ≤ εn < 0 since J̃εn ∈ Σn and J̃ is bounded from below.
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Lemma 4.7. Let a, b be as in (3) or (4) of Lemma 4.4. Then all cn (given by (4.2)) are critical values
of J̃ and cn → 0.

Proof. It is clear that cn ≤ cn+1. By (4.2) we have cn < 0. Hence cn → c̄ ≤ 0. Moreover, since
that all cn are critical values of J̃ [20], we claim that c̄ = 0. If c̄ < 0, then by Remark 4.5,
Kc̄ = {v ∈ W1,p(RN); J̃′(v) = 0, J̃(v) = c̄} is compact and Kc̄ ∈ Σ, then γ(Kc̄) = n0 < +∞ and
there exists δ > 0 such that γ(Kc̄) = γ(Nδ(Kc̄)) = n0, here Nδ(Kc̄) = {x ∈ X; ‖x− Kc̄‖ ≤ δ}.
By the deformation lemma [22] there exist ε > 0 (c̄ + ε < 0) and an odd homeomorphism η

such that
η( J̃ c̄+ε \ Nδ(Kc̄)) ⊂ J̃ c̄−ε.

Since cn is increasing and converges to c̄, there exists n ∈N such that cn > c̄− ε and cn+n0 ≤ c̄.
Choose A ∈ Σn+n0 such that supv∈A J̃(v) < c̄ + ε. By the properties of γ, we have

γ(A \ Nδ(Kc̄)) ≥ γ(A)− γ(Nδ(Kc̄))) ≥ n, γ(η(A \ Nδ(Kc̄))) ≥ n.

Therefore η(A \ Nδ(Kc̄)) ∈ Σn. Consequently supv∈η(A\Nδ(Kc̄))
J̃(v) ≥ cn > c̄− ε, a contradic-

tion, hence cn → 0.

Proof of Theorem 2.3. By Lemma 4.4 (2), J̃(v) = J(v) if J̃ < 0. This and Lemma 4.7 give the
result.

Proof of Theorem 1.2. This follows from Theorem 2.3 since um = f (vm) 6= un = f (vn) if vm 6= vn

and f ∈ C∞.
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