Electronic Journal of Qualitative Theory of Differential Equations

Corrigendum to Multiplicity of positive weak solutions to subcritical singular elliptic Dirichlet problems

Tomas Godoy ${ }^{\boxtimes}$ and Alfredo Guerin
FaMAF, Universidad Nacional de Cordoba, Ciudad Universitaria, Cordoba, 5000, Argentina

Received 19 June 2018, appeared 27 July 2018
Communicated by Maria Alessandra Ragusa

Abstract

This paper serves as a corrigendum to the paper "Multiplicity of positive weak solutions to subcritical singular elliptic Dirichlet problems", published in Electron J. Qual. Theory Differ. Equ. 2017, No. 100, 1-30. We modify one of the assumptions of that paper and we present a correct proof of the Lemma 2.11 of that paper.

Keywords: singular elliptic problems, positive solutions, sub- and supersolutions, bifurcation problems.
2010 Mathematics Subject Classification: Primary 35J75; Secondary 35D30, 35J20.

1 Introduction

Lemma 2.11 in [1], under the assumptions stated there, is false. In order to correct this situation, the assumption H2) of [1], Theorem 1.1 (assumed, jointly with H1) and H3)-H5), in the quoted lemma and throughout the whole article [1]) must be replaced (throughout the whole article [1]) by the (slightly stronger) following new version of it:

H2) $a \in L^{\infty}(\Omega), a \geq 0$ a.e. in Ω, and there exists $\delta>0$ such that $\inf _{A_{\delta}} a>0$.
Here and below, for $\rho>0$,

$$
A_{\rho}:=\left\{x \in \Omega: d_{\Omega}(x) \leq \rho\right\},
$$

where $d_{\Omega}:=\operatorname{dist}(\cdot, \partial \Omega)$; and, for a measurable subset E of $\Omega, \inf _{E}$ means the essential infimum on E. In the next section we give (assuming the stated new version of H 2)) a correct proof of [1, Lemma 2.11]. With these changes, all the results contained in [1] hold.

[^0]
2 Correct proof of [1, Lemma 2.11]

Below, "problem (2.4)" refers to the problem labeled (2.4) in [1]; i.e., refers to the problem

$$
\left\{\begin{array}{l}
-\Delta u=\chi_{\{u>0\}} a(x) u^{-\alpha}+\zeta \text { in } \Omega, \\
u=0 \text { on } \partial \Omega, \\
u \geq 0 \text { in } \Omega, u>0 \text { a.e. in }\{a>0\},
\end{array}\right.
$$

where $\zeta \in L^{\infty}(\Omega)$. Recall that the new version of $H 2$) is assumed in the following lemma.
Lemma 2.1 ([1, Lemma 2.11]). Assume $1<\alpha<3$, and let $\zeta \in L^{\infty}(\Omega)$ be such that $\zeta \geq 0$. Let u be the solution to problem (2.4) given by [1, Lemma 2.5] (in the sense stated there). Then there exists a positive constant c, independent of ζ, such that $u \geq c d_{\Omega}^{\frac{2}{1+\alpha}}$ in Ω.

Proof. From [1, Lemma 2.5], there exists a positive constant c^{\prime}, independent of ζ, such that $u \geq c^{\prime} d_{\Omega}$ a.e. in Ω. Then (since $\inf _{\Omega \backslash A_{\frac{\delta}{4}}} d_{\Omega}>0$), there exists a positive constant $c^{\prime \prime}$ (that depends on δ, but not on ζ) such that

$$
\begin{equation*}
u \geq c^{\prime \prime} d_{\Omega}^{\frac{2}{1+\alpha}} \quad \text { a.e. in } \Omega \backslash A_{\frac{\delta}{4}} . \tag{2.1}
\end{equation*}
$$

Let U be a $C^{1,1}$ domain such that $A_{\frac{3 \delta}{4}} \subset U \subset A_{\delta}$. Note that $\partial U \backslash \partial \Omega \subset \Omega \backslash A_{\frac{\delta}{2}}$. Indeed, let $z \in \partial U \backslash \partial \Omega$. Since $\bar{U} \subset A_{\delta} \cup \partial \Omega$, we have $z \in \Omega$. If $z \in A_{\frac{\delta}{2}}$, then, for some open set V_{z} such that $z \in V_{z} \subset \Omega$, we would have $d_{\Omega} \leq \frac{3}{4} \delta$ on V_{z}, and so $V_{z} \subset A_{\delta} \subset U$, which contradicts that $z \in \partial U$. Then $\partial U \backslash \partial \Omega \subset \Omega \backslash A_{\frac{\delta}{2}}$.

We claim that

$$
\begin{equation*}
d_{U}=d_{\Omega} \quad \text { in } A_{\frac{\delta}{8}}, \tag{2.2}
\end{equation*}
$$

where $d_{U}:=\operatorname{dist}(\cdot, \partial U)$. Indeed, let $x \in A_{\frac{\delta}{\delta}}$, let $y_{x} \in \partial \Omega$ be such that $d_{\Omega}(x)=\left|x-y_{x}\right|$, and let $w \in \partial U \backslash \partial \Omega$. Since $\partial U \backslash \partial \Omega \subset \Omega \backslash A_{\frac{\delta}{2}}$, we have $\left|w-y_{x}\right| \geq d_{\Omega}(z)>\frac{\delta}{2}$. Also, $\left|x-y_{x}\right|=d_{\Omega}(x) \leq \frac{\delta}{8}$. Therefore, by the triangle inequality, $|w-x| \geq\left|w-y_{x}\right|-\left|x-y_{x}\right|>$ $\frac{\delta}{2}-\frac{\delta}{8}=\frac{3 \delta}{8}$. Then $\operatorname{dist}(x, \partial U \backslash \partial \Omega) \geq \frac{3 \delta}{8}$ for any $x \in A_{\frac{\delta}{8}}$, and so (since $\left.d_{\Omega}(x) \leq \frac{\delta}{8}\right), d_{U}(x)=$ $\min \left\{\operatorname{dist}(x, \partial U \backslash \partial \Omega), d_{\Omega}(x)\right\}=d_{\Omega}(x)$ for all $x \in A_{\frac{\delta}{8}}$

Since $U \subset A_{\delta}$ we have that $\underline{a}:=\inf _{U} a>0$. Let σ_{1} be the principal eigenvalue for $-\Delta$ in U with homogeneous Dirichlet boundary condition and weight function a, and let ψ_{1} be the corresponding positive principal eigenfunction, normalized by $\left\|\psi_{1}\right\|_{\infty}=1$. Observe that $\psi_{1}^{\frac{2}{1+\alpha}} \in H_{0}^{1}(U) \cap L^{\infty}(U)$ (because $1<\alpha<3$), and that a computation gives

$$
\begin{aligned}
-\Delta\left(\psi_{1}^{\frac{2}{1+\alpha}}\right) & =\frac{2}{1+\alpha} \sigma_{1} a \psi_{1}^{\frac{2}{1+\alpha}}+\frac{2}{1+\alpha} \frac{\alpha-1}{1+\alpha}\left(\psi_{1}^{\frac{2}{1+\alpha}}\right)^{-\alpha}\left|\nabla \psi_{1}\right|^{2} \\
& \leq \beta a\left(\psi_{1}^{\frac{2}{1+\alpha}}\right)^{-\alpha} \quad \text { a.e. in } U
\end{aligned}
$$

where $\beta:=\frac{2}{1+\alpha} \sigma_{1}+\frac{2}{1+\alpha} \frac{\alpha-1}{1+\alpha} \frac{1}{\underline{a}}\left\|\nabla \psi_{1}\right\|_{\infty}^{2}$. Then

$$
-\Delta\left(\beta^{-\frac{1}{1+\alpha}} \psi_{1}^{\frac{2}{1+\alpha}}\right) \leq a\left(\beta^{-\frac{1}{1+\alpha}} \psi_{1}^{\frac{2}{1+\alpha}}\right)^{-\alpha} \quad \text { in } U
$$

in the weak sense of [1, Lemma 2.5] (i.e., with test functions in $H_{0}^{1}(U) \cap L^{\infty}(U)$). Moreover, again in the weak sense of [1, Lemma 2.5], $-\Delta u \geq a u^{-\alpha}$ in U. Also $u \geq \beta^{-\frac{1}{1+\alpha}} \psi_{1}^{\frac{2}{1+\alpha}}$ in ∂U. Then, by the weak maximum principle in [2, Theorem 8.1], $u \geq \beta^{-\frac{1}{1+\alpha}} \psi_{1}^{\frac{2}{1+\alpha}}$ a.e. in U; therefore, for some positive constant $c^{\prime \prime \prime}$ independent of $\zeta, u \geq c^{\prime \prime \prime} d_{U}^{\frac{2}{1+\alpha}}$ a.e. in U. In particular,

$$
\begin{equation*}
u \geq c^{\prime \prime \prime} d_{U}^{\frac{2}{1+\alpha}} \quad \text { a.e. in } A_{\frac{\delta}{\delta}} . \tag{2.3}
\end{equation*}
$$

From (2.1), (2.3), and (2.2), we get $u \geq c d_{\Omega}^{\frac{2}{1+\alpha}}$ a.e. in Ω, with $c:=\min \left\{c^{\prime \prime}, c^{\prime \prime \prime}\right\}$ and the lemma follows.

References

[1] T. Godoy, A. Guerin, Multiplicity of positive weak solutions to subcritical singular elliptic Dirichlet problems, Electron. J. Qual. Theory Differ. Equ. 2017, No. 100, 1-30. https://doi.org/10.14232/ejqtde.2017.1.100; MR3750159
[2] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin Heidelberg New York, 2001. https://doi.org/10.1007/ 978-3-642-96379-7; MR1814364

[^0]: ${ }^{\boxtimes}$ Corresponding author. Email: godoy@mate.uncor.edu

