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Abstract. This paper is concerned with the following fourth-order three-point boundary
value problem {

u(4)(t) = f
(
t, u(t)

)
, t ∈ [0, 1],

u′(0) = u′′(0) = u′′′(η) = u(1) = 0,

where η ∈
[ 1

3 , 1
)
. In spite of sign-changing Green’s function, for arbitrary positive inte-

ger n (≥ 2), we still obtain the existence of at least n− 1 decreasing positive solutions
to the above problem by imposing some suitable conditions on f . The main tool used
is the fixed point index theory.
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1 Introduction

Boundary value problems (BVPs for short) of fourth-order ordinary differential equations
have received much attention due to their striking applications in engineering, physics, mate-
rial mechanics, fluid mechanics and so on. Many authors have studied the existence of single
or multiple positive solutions to some fourth-order BVPs by using Banach contraction the-
orem, Guo–Krasnosel’skii fixed point theorem, Leray–Schauder nonlinear alternative, fixed
point index theory in cones, monotone iterative technique, the method of upper and lower
solutions, degree theory, critical point theorems in conical shells and so forth. However, it is
necessary to point out that, in most of the existing literature, the Green’s functions involved
are nonnegative, which is an important condition in the study of positive solutions of BVPs.

Recently, there have been some works on positive solutions for second-order or third-order
BVPs when the corresponding Green’s functions are sign-changing. For example, Zhong and
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An [20] studied the existence of at least one positive solution for the following second-order
periodic BVP with sign-changing Green’s function{

u′′ + ρ2u = f (u), 0 < t < T,

u(0) = u(T), u′(0) = u′(T),

where 0 < ρ ≤ 3π
2T . The main tool used was the fixed point index theory of cone mapping. In

2008, for the singular third-order three-point BVP with an indefinitely signed Green’s function{
u′′′(t) = a(t) f (t, u(t)), 0 < t < 1,

u(0) = u(1) = u′′(η) = 0,

where η ∈
( 17

24 , 1
)
, Palamides and Smyrlis [14] discussed the existence of at least one positive

solution. Their technique was a combination of the Guo–Krasnosel’skii fixed point theorem
and properties of the corresponding vector field. In 2012, by applying the Guo–Krasnosel’skii
and Leggett–Williams fixed point theorems, Sun and Zhao [17, 18] obtained the existence of
single or multiple positive solutions for the following third-order three-point BVP with sign-
changing Green’s function {

u′′′(t) = f (t, u(t)), t ∈ [0, 1],

u′(0) = u(1) = u′′(η) = 0,

where η ∈
( 1

2 , 1
)
. For relevant results, one can refer to [3, 4, 9, 10, 13, 15, 16, 19].

It is worth mentioning that there are other type of achievements on either sign-changing
or vanishing Green’s functions which prove the existence of sign-changing solutions, positive
in some cases, see [1, 2, 5, 7, 8, 12].

Motivated and inspired by the above-mentioned works, in this paper, we are concerned
with the following fourth-order three-point BVP with sign-changing Green’s function{

u(4)(t) = f
(
t, u(t)

)
, t ∈ [0, 1],

u′(0) = u′′(0) = u′′′(η) = u(1) = 0.
(1.1)

By imposing some suitable conditions on f and η, we obtain the existence of at least n − 1
decreasing positive solutions to the BVP (1.1) for arbitrary positive integer n (≥ 2).

To end this section, we state some knowledge of the classical fixed point index for compact
maps [6].

Let K be a cone in a Banach space X. If Ω is a bounded open subset of K (in the relative
topology) we denote by Ω and ∂Ω the closure and the boundary relative to K. When D is an
open bounded subset of X we write DK = D ∩ K, an open subset of K.

Theorem 1.1. Let D be an open bounded set with DK 6= ∅ and DK 6= K. Assume that T : DK → K is
a compact map such that x 6= Tx for x ∈ ∂DK. Then the fixed point index iK (T, DK) has the following
properties.

(1) If there exists e ∈ K\{0} such that x 6= Tx + λe for all x ∈ ∂DK and all λ > 0, then
iK (T, DK) = 0.

(2) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂DK, then iK (T, DK) = 1.

(3) Let D1 be open in X with D1 ⊂ DK. If we have iK (T, DK) = 1 and iK(T, D1
K) = 0, then T has

a fixed point in DK\D1
K. The same result holds if iK (T, DK) = 0 and iK(T, D1

K) = 1.
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2 Preliminaries

Let X = C [0, 1] be equipped with the norm ‖u‖ = maxt∈[0,1] |u(t)|. Then X is a Banach space.

Lemma 2.1. Let η ∈ (0, 1). Then for any given y ∈ X, the BVP{
u(4)(t) = y(t), t ∈ [0, 1],

u′(0) = u′′(0) = u′′′(η) = u(1) = 0

has a unique solution

u(t) =
∫ 1

0
G(t, s)y(s)ds, t ∈ [0, 1],

where

G(t, s) =
1
6


3(1− t)(1 + t− s)s, s ≤ min{η, t},
3s− 3s2 + s3 − t3, t ≤ s ≤ η,

(t− s)3 − (1− s)3, η < s ≤ t,

−(1− s)3, s > max{η, t}.

Proof. In view of u(4)(t) = y(t), t ∈ [0, 1] and u′′′(η) = 0, we have

u′′′(t) =
∫ t

η
y(τ)dτ, t ∈ [0, 1],

which together with the boundary condition u′′(0) = 0 implies that

u′′(t) =
∫ t

0

∫ τ

η
y(s)dsdτ, t ∈ [0, 1].

If t ∈ [0, η], then

u′′(t) = −
[∫ t

0

∫ t

τ
y(s)dsdτ +

∫ t

0

∫ η

t
y(s)dsdτ

]
= −

[∫ t

0

∫ s

0
y(s)dτds +

∫ η

t

∫ t

0
y(s)dτds

]
= −

[∫ t

0
sy(s)ds +

∫ η

t
ty(s)ds

]
,

so, in view of the boundary condition u′(0) = 0, we have

u′(t) = −
[∫ t

0

∫ τ

0
sy(s)dsdτ +

∫ t

0

∫ η

τ
τy(s)dsdτ

]
= −

[∫ t

0

∫ τ

0
sy(s)dsdτ +

∫ t

0

∫ t

τ
τy(s)dsdτ +

∫ t

0

∫ η

t
τy(s)dsdτ

]
= −

[∫ t

0

∫ t

s
sy(s)dτds +

∫ t

0

∫ s

0
τy(s)dτds +

∫ η

t

∫ t

0
τy(s)dτds

]
=

1
2

[∫ t

0

(
s2 − 2ts

)
y(s)ds−

∫ η

t
t2y(s)ds

]
,
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and so, by the boundary condition u(1) = 0, we get

u(t) = − 1
2

[ ∫ 1

t

∫ τ

0

(
s2 − 2τs

)
y(s)dsdτ −

∫ 1

t

∫ η

τ
τ2y(s)dsdτ

]
= − 1

2

[ ∫ 1

t

∫ t

0

(
s2 − 2τs

)
y(s)dsdτ +

∫ 1

t

∫ τ

t

(
s2 − 2τs

)
y(s)dsdτ

−
∫ η

t

∫ η

τ
τ2y(s)dsdτ +

∫ 1

η

∫ τ

η
τ2y(s)dsdτ

]
= − 1

2

[ ∫ t

0

∫ 1

t

(
s2 − 2τs

)
y(s)dτds +

∫ 1

t

∫ 1

s

(
s2 − 2τs

)
y(s)dτds

−
∫ η

t

∫ s

t
τ2y(s)dτds +

∫ 1

η

∫ 1

s
τ2y(s)dτds

]
=

1
6

[ ∫ t

0
3(1− t)(1 + t− s)sy(s)ds +

∫ η

t

(
3s− 3s2 + s3 − t3) y(s)ds−

∫ 1

η
(1− s)3y(s)ds

]
=
∫ 1

0
G(t, s)y(s)ds.

Similarly, when t ∈ (η, 1], we may obtain that

u′′(t) = −
∫ η

0
sy(s)ds +

∫ t

η
(t− s)y(s)ds,

u′(t) =
1
2

[ ∫ η

0

(
s2 − 2ts

)
y(s)ds +

∫ t

η
(t− s)2y(s)ds

]
and

u(t) =
1
6

{ ∫ η

0
3(1− t)(1 + t− s)sy(s)ds +

∫ t

η

[
(t− s)3 − (1− s)3]y(s)ds−

∫ 1

t
(1− s)3y(s)ds

}
=
∫ 1

0
G(t, s)y(s)ds.

Lemma 2.2. Let η ∈ (0, 1). Then∫ η

0
G(t, s)ds +

∫ 1

η
G(t, s)ds ≥ 0, t ∈ [0, 1]

if and only if η ∈
[ 1

3 , 1
)

.

Proof. Since ∫ η

0
G(t, s)ds +

∫ 1

η
G(t, s)ds =

1
24
(
t4 − 4ηt3 + 4η − 1

)
, t ∈ [0, 1],

we only need to prove that g(t) := t4− 4ηt3 + 4η− 1 ≥ 0 for t ∈ [0, 1] if and only if η ∈
[ 1

3 , 1
)

.
First, if η ∈

[ 1
3 , 1
)
, then we have

g(t) = (1− t)
[
−
(
t3 + t2 + t + 1

)
+ 4η

(
t2 + t + 1

)]
≥ (1− t)

[
−
(
t3 + t2 + t + 1

)
+

4
3
(
t2 + t + 1

)]
=

1
3
(1− t)2 (3t2 + 2t + 1

)
≥ 0, t ∈ [0, 1].
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Next, we will show that if g(t) ≥ 0 for t ∈ [0, 1], then η ∈
[ 1

3 , 1
)

. Suppose on the contrary
that η ∈

(
0, 1

3

)
. In view of g′(t) = 4t2(t− 3η) > 0, t ∈ (3η, 1], we know that

g(t) < g(1) = 0, t ∈ (3η, 1),

which is a contradiction. This indicates that if g(t) ≥ 0 for t ∈ [0, 1], then η ∈
[ 1

3 , 1
)

.

In the remainder of this paper, we always assume that η ∈
[ 1

3 , 1
)
.

Now, if we let
h(x) = −x4 + 4x3 − 6x2 + 4η − 1, x ∈ [0, 1],

then it is easy to know that h(x) is strictly decreasing on [0, 1], which together with h(0) > 0
and h(η) < 0 implies that there exists a unique x0 ∈ (0, η) such that h(x0) = 0. Obviously, x0

is dependent on η. In fact, a direct calculation shows that

x0 =
2α− α2 +

√
8α− α4

2α
,

where

α =
√

2β, β = 3
√

1 + γ + 3
√

1− γ and γ =

√
81− 192(1− η)3

9
.

For example, if we choose η = 1
3 , then x0 ≈ 0.2572437.

From now on, we suppose that θ ∈ (0, x0] is a constant.

Lemma 2.3. G(t, s) satisfies the following properties.

(1) G(t, s) ≥ 0 for (t, s) ∈ [0, 1]× [0, η] and G(t, s) ≤ 0 for (t, s) ∈ [0, 1]× (η, 1].

(2)
∫ η

θ G(0, s)ds +
∫ 1

η G(0, s)ds ≥ 0.

Proof. Since (1) is obvious, we only prove (2). Noting that h(x) is strictly decreasing on [0, 1]
and θ ∈ (0, x0], we have∫ η

θ
G(0, s)ds +

∫ 1

η
G(0, s)ds =

1
24
(
− θ4 + 4θ3 − 6θ2 + 4η − 1

)
=

1
24

h(θ) ≥ 1
24

h(x0) = 0.

3 Main results

For convenience, we denote

θ̃ = 1− θ

η
, P =

∫ η

0
G(0, s)ds and Q =

∫ θ

0
G(0, s)ds.

Obviously, 0 < θ̃ < 1 and 0 < Q < P.

Theorem 3.1. Suppose that f : [0, 1]× [0,+∞) → [0,+∞) is continuous and satisfies the following
conditions:

(A1) for any x ∈ [0,+∞), the mapping t 7→ f (t, x) is decreasing;

(A2) for any t ∈ [0, 1], the mapping x 7→ f (t, x) is increasing;

(A3) there exist three positive constants ri, i = 1, 2, 3 with r1 < r2 < r3 such that either



6 Y. Zhang, J.-P. Sun and J. Zhao

(a)

f (0, ri) <
ri

P
, i = 1, 3

and

f
(
θ, θ̃r2

)
>

r2

Q
, or

(b)

f
(
θ, θ̃ri

)
>

ri

Q
, i = 1, 3

and

f (0, r2) <
r2

P
.

Then the BVP (1.1) has at least two decreasing positive solutions u1 and u2 satisfying

r1 < ‖u1‖ < r2 < ‖u2‖ < r3.

Proof. Let

K =

{
u ∈ X : u(t) is decreasing and nonnegative on [0,1], and min

t∈[0, θ]
u(t) ≥ θ̃ ‖u‖

}
.

Then it is easy to verify that K is a cone in X.
Now, we define an operator T on K by

(Tu)(t) =
∫ 1

0
G(t, s) f

(
s, u(s)

)
ds, u ∈ K, t ∈ [0, 1].

Obviously, if u is a fixed point of the operator T, then u is a decreasing and nonnegative
solution of the BVP (1.1).

First, we assert that T : K → K. To see this, suppose u ∈ K. Then by (A1), (A2), Lemma 2.2
and (1) of Lemma 2.3, we get

(Tu)(t) =
∫ 1

0
G(t, s) f

(
s, u(s)

)
ds

=
∫ η

0
G(t, s) f

(
s, u(s)

)
ds +

∫ 1

η
G(t, s) f

(
s, u(s)

)
ds

≥ f
(
η, u(η)

) [∫ η

0
G(t, s)ds +

∫ 1

η
G(t, s)ds

]
≥ 0, t ∈ [0, 1].

For t ∈ [0, η], it is obvious that

(Tu)′(t) =
1
2

[∫ t

0

(
s2 − 2ts

)
f
(
s, u(s)

)
ds−

∫ η

t
t2 f
(
s, u(s)

)
ds
]
≤ 0,

and for t ∈ (η, 1], it follows from u ∈ K, (A1), (A2) and η ∈
[ 1

3 , 1
)

that

(Tu)′(t) =
1
2

[∫ η

0

(
s2 − 2ts

)
f
(
s, u(s)

)
ds +

∫ t

η
(t− s)2 f

(
s, u(s)

)
ds
]

≤
f
(
η, u(η)

)
2

[∫ η

0

(
s2 − 2ts

)
ds +

∫ t

η
(t− s)2ds

]
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=
f
(
η, u(η)

)
6

t2 (t− 3η)

≤
f
(
η, u(η)

)
6

t2 (1− 3η)

≤ 0.

Thus, (Tu)′(t) ≤ 0 for all t ∈ [0, 1], which shows that (Tu)(t) is decreasing on [0, 1]. Since

(Tu)′′(t) = −
[∫ t

0
s f
(
s, u(s)

)
ds +

∫ η

t
t f
(
s, u(s)

)
ds
]
≤ 0, t ∈ [0, η],

we know that (Tu)(t) is concave on [0, η], which together with 0 < θ ≤ x0 < η and the fact
that (Tu)(t) is decreasing and nonnegative on [0, 1] indicates that

min
t∈[0,θ]

(Tu)(t) = (Tu)(θ)

= (Tu)
[(

1− θ

η

)
· 0 + θ

η
· η
]

≥
(

1− θ

η

)
(Tu)(0) +

θ

η
(Tu)(η)

≥
(

1− θ

η

)
(Tu)(0)

= θ̃ ‖Tu‖ .

This proves that T : K → K.
Next, it follows from known textbook results, for example see Proposition 3.1 [11, p. 164],

that T : K → K is compact.
Since the proof of the case when (b) of (A3) is satisfied is similar, we only consider the

case when (a) of (A3) is fulfilled. Let

Ωri = {u ∈ K : ‖u‖ < ri} , i = 1, 2, 3.

On the one hand, for any u ∈ ∂Ωri , i = 1, 3, we have

0 ≤ u(s) ≤ ‖u‖ = ri, s ∈ [0, 1],

which together with (1) of Lemma 2.3, (A1), (A2), (a) of (A3) and the fact T : K → K implies
that

‖Tu‖ = (Tu)(0)

=
∫ 1

0
G(0, s) f

(
s, u(s)

)
ds

=
∫ η

0
G(0, s) f

(
s, u(s)

)
ds +

∫ 1

η
G(0, s) f

(
s, u(s)

)
ds

≤
∫ η

0
G(0, s) f

(
s, u(s)

)
ds

≤ f (0, ri)
∫ η

0
G(0, s)ds

<
ri

P

∫ η

0
G(0, s)ds

= ri = ‖u‖ .
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This indicates that ‖Tu‖ < ‖u‖ for any u ∈ ∂Ωri , i = 1, 3. Hence, by (2) of Theorem 1.1, we
get

iK (T, Ωri) = 1, i = 1, 3. (3.1)

On the other hand, for any u ∈ ∂Ωr2 , we have

u(θ) = min
s∈[0,θ]

u(s) ≥ θ̃ ‖u‖ = θ̃r2. (3.2)

Let e(t) ≡ 1 for t ∈ [0, 1]. Then it is obvious that e ∈ K \ {0}. Now, we prove that u 6= Tu + λe
for all u ∈ ∂Ωr2 and all λ ≥ 0. Suppose on the contrary that there exist u∗ ∈ ∂Ωr2 and λ∗ ≥ 0
such that u∗ = Tu∗ + λ∗e. Then it follows from u∗ ∈ K, Lemma 2.3, (3.2), (A1), (A2) and (a)
of (A3) that

r2 = ‖u∗‖
= u∗(0)

= (Tu∗) (0) + λ∗

=
∫ 1

0
G(0, s) f

(
s, u∗(s)

)
ds + λ∗

=
∫ θ

0
G(0, s) f

(
s, u∗(s)

)
ds +

∫ η

θ
G(0, s) f

(
s, u∗(s)

)
ds +

∫ 1

η
G(0, s) f

(
s, u∗(s)

)
ds + λ∗

≥ f
(
θ, u∗(θ)

) ∫ θ

0
G(0, s)ds + f

(
η, u∗(η)

) [∫ η

θ
G(0, s)ds +

∫ 1

η
G(0, s)ds

]
+ λ∗

≥ f
(
θ, u∗(θ)

) ∫ θ

0
G(0, s)ds + λ∗

≥ f
(
θ, θ̃r2

) ∫ θ

0
G(0, s)ds + λ∗

>
r2

Q

∫ θ

0
G(0, s)ds + λ∗

= r2 + λ∗,

which is a contradiction. This shows that u 6= Tu + λe for all u ∈ ∂Ωr2 and all λ ≥ 0. Hence,
an application of (1) of Theorem 1.1 yields that

iK (T, Ωr2) = 0. (3.3)

Therefore, it follows from (3.1), (3.3) and (3) of Theorem 1.1 that T has fixed points u1 and
u2 in K with r1 < ‖u1‖ < r2 < ‖u2‖ < r3, which are two desired decreasing positive solutions
of the BVP (1.1).

Similarly, we can obtain the following more general result.

Corollary 3.2. If (A3) in Theorem 3.1 is replaced by the condition

(A′3) there exist n (≥ 2) positive constants ri, i = 1, 2, . . . , n with r1 < r2 < · · · < rn such that
either

(a′)

f (0, r2i−1) <
r2i−1

P
, i = 1, . . . ,

[
n + 1

2

]



BVP with sign-changing Green’s function 9

and

f
(
θ, θ̃r2i

)
>

r2i

Q
, i = 1, . . . ,

[n
2

]
, or

(b′)

f
(
θ, θ̃r2i−1

)
>

r2i−1

Q
, i = 1, . . . ,

[
n + 1

2

]
and

f (0, r2i) <
r2i

P
, i = 1, . . . ,

[n
2

]
.

Then the BVP (1.1) has at least n− 1 decreasing positive solutions ui satisfying

ri < ‖ui‖ < ri+1, i = 1, . . . , n− 1.

Example 3.3. Consider the following BVP{
u(4)(t) = 10(1− t) + 2u2(t), t ∈ [0, 1],

u′(0) = u′′(0) = u′′′
( 1

3

)
= u(1) = 0.

(3.4)

Let f (t, u) = 10(1− t) + 2u2, (t, u) ∈ [0, 1]× [0,+∞). In what follows, we verify that all
the conditions of Theorem 3.1 are satisfied.

First, it is obvious that f : [0, 1]× [0,+∞) → [0,+∞) is continuous and (A1) and (A2) are
fulfilled.

Next, we show that (b) of (A3) holds, that is, there exist three positive constants ri, i =
1, 2, 3 with r1 < r2 < r3 such that

f (0, r2) <
r2

P
(3.5)

and

f (θ, θ̃ri) >
ri

Q
, i = 1, 3. (3.6)

On the one hand, since η = 1
3 , we get P = 43

1944 , which together with (3.5) implies that

r2 ∈ (0.2234, 22.3812). (3.7)

(Here and in the remainder of this paper, constants have been rounded to four decimal places
unless they are exact.)

On the other hand, in view of θ̃ = 1− 3θ, Q = θ4−4θ3+6θ2

24 and (3.6), we know that r1 and r3

are dependent on θ. In fact, a direct calculation shows that

r1 ∈
(

0,
6−

√
36− 5(θ4 − 4θ3 + 6θ2)2(1− 3θ)2(1− θ)

(θ4 − 4θ3 + 6θ2)(1− 3θ)2

)

and

r3 ∈
(

6 +
√

36− 5(θ4 − 4θ3 + 6θ2)2(1− 3θ)2(1− θ)

(θ4 − 4θ3 + 6θ2)(1− 3θ)2 ,+∞

)
.

For some examples, one can see the following table:
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θ 1
4

1
5

1
6

1
7

1
8

r1 (0, 0.0989) (0, 0.0699) (0, 0.0517) (0, 0.0397) (0, 0.0314)
r3 (606.7159,+∞) (357.7545,+∞) (322.2695,+∞) (330.4350,+∞) (356.4250,+∞)

This indicates that we could find three positive constants ri, i = 1, 2, 3 such that (b) of (A3)

is satisfied.
Therefore, it follows from Theorem 3.1 that the BVP (3.4) has at least two decreasing posi-

tive solutions u1 and u2. Furthermore, in order to obtain better location of the two solutions,
we select θ = 1

6 . In view of the above table and (3.7), we can obtain that

0.05 < ‖u1‖ < 0.23 and 22 < ‖u2‖ < 323.
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