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Abstract. The purpose of this paper is to study the existence of ground state solution
for the Schrodinger-Poisson systems:

—Au+V(x)u+K(x)pu = Q(x)|ul*u+ f(x,u), x€R?
—A¢p = K(x)u?, x € R3,

where V(x), K(x), Q(x) and f(x, u) are asymptotically periodic functions in x.
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1 Introduction

For past decades, much attention has been paid to the nonlinear Schrodinger-Poisson system

{ih%‘f — —EAY U Y +¢(x)F — [F]7 ¥, x€R3, t € R )

—Ap = |¥|?, x € R

where 7 is the Planck constant. Equation (1.1) derived from quantum mechanics. For this
equation, the existence of stationary wave solutions is often sought, that is, the following form
of solution

Y(x,t) =e'u(x), xe€RtcR

Therefore, the existence of the standing wave solution of the equation (1.1) is equivalent to
finding the solution of the following system (m = 1,71 = 1 and V(x) = U(x) + 1)

{—Au + V(X)u + ¢u = |ul7'u, x € R?, 12)

—A¢p =u?, x € R,
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To the best of our knowledge, the first result on Schrodinger—Poisson system was obtained
in [5]. Thereafter, using the variational method, there is a series of work to discuss the ex-
istence, non existence, radially symmetric solutions, non-radially symmetric solutions and
ground state to Schrodinger—Poisson system (1.2) and similar problems [1,3-5,8-17,20,28,32,
34,37-39,42,44-47].

As far as we know, in [4], Azzollini and Pomponio firstly obtained the ground state solu-
tion to the Schrodinger—Poisson system (1.2). They obtained that system (1.2) has a ground
state solution when V' is a positive constant and 2 < g < 5, or V is non-constant, possibly
unbounded below and 3 < g < 5. Since it’s great physical interests, many scholars pay at-
tention to study ground state solutions to the Schrodinger—Poisson system (1.2) and similar
problems [1,8,11,12,14,15,20,37,38,45,46].

In [1], Alves, Souto and Soares studied Schrodinger—Poisson system

{—Au +V(x)u+ ¢u = f(u), x € R, (1.3)

—A¢p = u?, x € R,
where f € C(R*,R) and V is bounded, local Holder continuous and satisfies:
(1) V(x) >a>0,x RS,
(2) V(x) =V(x+y), Vx e R} Vy € Z3,
(3) limy e |V(x) = Vo(x)[ =0,
(4) V(x) < Vo(x), Vx € R3, and there exists Q C R® with m(Q) > 0 such that

V(x) < Vo(x), Vx € Q,

where V) satisfies (2). Alves et al. studied the ground state solutions to system (1.3) in case
the periodic condition under (1)-(2) and in case the asymptotically periodic condition under
(1),(3) and (4) respectively.

In [45], Zhang, Xu and Zhang considered existence of positive ground state solution for
the following non-autonomous Schrédinger-Poisson system

{—Au + V(x)u+ K(x)pu = f(x,u), x € R?, (14)

—A¢p = K(x)u?, x € R3.

In some weaken asymptotically periodic sense compare with that of in [1], they obtained the
positive ground state solution to system (1.4) when V, K and f are all asymptotically periodic
in x.
More recently, Zhang, Xu, Zhang and Du [46] completed the results obtained in [45] to
Schrodinger—Poisson system with critical growth
—Au+ V(x)u+K(x)pu = Q(x)|u*u+ f(x,u), xR, L5)
—A¢p = K(x)u?, x € R3. '

In [46], V,K,Q satisfy: V,K,Q € L®(R%), infgs V > 0, infgs K > 0, infgs Q > 0 and
V-V, K=Ky, Q—-Q, € F, where V,, K, and Q, are 1l-periodic in x;,1 < i < 3, and
F ={g € L®(R3 :Ve >0, the set {x € R®: |¢g(x)| > ¢} has finite Lebesgue measure}.
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On the other hand, when K = 0 the Schrodinger—Poisson system (1.4) becomes the stan-
dard Schrédinger equation (replace R® with RN)

—Au+V(x)u= f(x,u), x € RV, (1.6)

The Schrodinger equation (1.6) has been widely investigated by many authors in the last
decades, see [2,6,19,24,25,29-31, 40,41, 43] and reference therein. Especially, in [19, 24, 25,
29,40, 41], they studied the nontrivial solution or ground state solution for problem (1.6)
with subcritical growth or critical growth in which V, f satisfy the asymptotically periodic
condition. Other context about asymptotically periodic condition, we refer the reader to [18,
21,35,36] and reference therein.

Motivated by above results, in this paper, we will study ground state solutions to sys-
tem (1.5) under reformative condition about asymptotically periodic case of V,K, Q and f at
infinity.

To state our main results, we assume that:

(V) there exist V, : R® — R, 1-periodic in x;,1 < i < 3, such that

Vo= inf V, >0, 0<V(x) <V,(x) € L°(R?) and V(x)—V,(x) € Ay,

x€R3

where

Ag := {k(x) : forany ¢ > 0, m{x € B1(y) : |k(x)| > e} — 0as |y| = oo};

(K) there exist K, : R3® — R, 1-periodic in x;,1 < i < 3, such that

Ko := inﬂ{s V, >0, 0<K(x)<Ky(x) €L®(R% and K(x)—K,(x) € Ay
xe

(Q) there exist Q, € C(R? R), 1-periodic in x;,1 < i < 3, and point xg € R? such that

0<Qp(x) <Q(x) €C(RYR),  Qx) = Qu(x) € A
and

Q(X)I ’Q’oo‘i’o(’x—X()D, as x — Xop,
and f € C(R3® x R*,R) satisfies

(f1) limg g+ £ (z’s) = 0 uniformly for x € R?,

(f2) ims_4oo % = 0 uniformly for x € R3,

(f3) s — @ is nondecreasing on (0, +c0),

(fa) there exists an open bounded set Q C IR, containing x given by (Q), satisfies

= 400 uniformly for x € ),

(fs) there exists f, € C (R3 x R*,R*), 1-periodic in x;, 1 < i < 3, such that
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(i) f(x,s) > fp(x,s) forall (x,5) € R> x R" and f(x,s) — f,(x,5) € A, where

A :={h(x,s) : for any € > 0, m{x € B1(y) : |h(x,s)| > e} =0
as |y| — oo uniformly for |s| bounded },

(ii) s — @ is nondecreasing on (0, +00).

The next theorem is the main result of the present paper.

Theorem 1.1. Suppose that conditions (V), (K), (Q) and (f1)—(fs) are satisfied. Then the system
(1.5) has a ground state solution.

Remark 1.2.

(i) Functional sets Ap in V,Q,K and A in (fs5) were introduced by [24,25] in which Liu,
Liao and Tang studied positive ground state solution to Schrodinger equation (1.6) with
subcritical growth or critical growth.

(ii) Since F C Ao, our assumptions on V,Q and K are weaker than [46]. Furthermore,
V(x) > 0 in our paper but in [46] they assumed V(x) > 0.

(iii) In [46], to obtained the ground state to system (1.5), they firstly consider the periodic

system
{—Au + Vo (x)u + Kp(x)pu = Qp(x)|ul*u + fp(x,u), x€R?, a7

—Ap = Ky (x)u?, x € R3.

Then a solution of system (1.5) was obtained by applying inequality between the energy of
periodic system (1.7) and that of system (1.5). In this paper, we do not use methods of [46]
and prove Theorem 1.1 directly.

2 The variational framework and preliminaries

To fix some notations, the letter C and C; will be repeatedly used to denote various positive
constants whose exact values are irrelevant. Br(z) denotes the ball centered at z with radius R.

We denote the standard norm of L? by [u|, = ([gs ]u]’”dx)% and |u|e = esssup, s |u|. Since
we are looking for a nonnegative solution, we may assume that f(x,s) = f,(x,s) = 0 for all
(x,5) € (R3,R7).

The Sobolev space H'(IR?) endowed with the norm

it i= [ (IVul+ ).
R3
The space D'?(IR%) endowed with the standard norm
]2z = /stu\zdx.
Let E := {u € L*(R?) : |Vu| € L*(R®) and [s V(x)udx < oo} be the Sobolev space

endowed with the norm
]2 = AS(|Vu\2+V(x)u2)dx.
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Lemma 2.1 ([24]). Suppose (V') holds. Then there exists two positive constants Cy and Cy such that
Cillull3 < ||ul| < Callul|?; for all u € E. Moreover, E < LP(R®) for any p € [2, 6] is continuous.

The system (1.5) can be transformed into a Schrodinger equation with a nonlocal term. In
fact, for all u € E (then u € H!(R®)), considering the linear functional L, defined in D'?(IR3)

by
L,(v) = /]R3K(x)u20dx.

By the Holder inequality, we have

|Lu(0)] < [Kleo|u] zlv\e < Clu 2||UHD12 (2.1)

Therefor, the Lax-Milgram theorem implies that there exists a unique ¢, € D1'2(1R3) such
that

/3 V¢, - Vodx = (¢u,v)pi12 = Ly(v) = /3 K(x)u*vdx for any v € DV?(R3).
R R

Namely, ¢, is the unique solution of —A¢ = K(x)u?. Moreover, ¢, can be expressed as
K(y)u*(y)
= ———=dy.
0= fo ey
Substituting ¢, into the systems (1.5), we obtain
— Au+ V(x)u+ K(x)pu = Q(x)|ul*u + f(x,u), x € R3. (2.2)

By (2.1), we get
9ullpre = IILull < Cluffy < Clluf.

Then, we have

| K puarax] < K|l uleluf @3
< CIK(x) ol lpral
< C|u|‘%2
< Collu|*

So the energy functional I : E — R corresponding to Eq. (2.2) is defined by

2 wldy — 6y —
I(u 2/ (|Vul*+V(x dx—|—4/ X)pyu-dx 6/ u™)odx /]RSF(x,u)dx,

where F(x,s) fo
Moreover, under our conditions, I belongs to C!, so the Fréchet derivative of I is

(I'(u),v) = / (Vu-Vo+V(x)uv) dx+/ qbuuvdx—/R3Q(x)(u*)g’vdx—/l{sf(x,u)vdx

and (u,¢) € E x D2(IR3) is a solution of system (1.5) if and only if u € E is a critical point of

I and ¢ = ¢,.
For all u € E, let ¢, € D**(IR?) is unique solution of the following equation

—Ap = Kp(x)u?
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Moreover, (ﬁ, can be expressed as
G :/ Kpy)u(y) |
N
Let

1 1 _
() = 5 /R3(\vu,2 V() + /N Ky (x)FutiPdx

— % - Qp(x)(u™)dx — /RS Fy(x,u)dx,

where F,(x,s) = [; fy(x,t)dt. Then I, is the energy functional corresponding to the following
equation
— Au+ V(%) + Ky (x)pure = Qp(x)[u|*u + fo(x, u), x € R®. (2.4)

It is easy to see that (u,¢) € E x D2(IR?) is a solution of periodic system (1.7) if and only

if u € E is a critical point of I, and ¢ = ¢.
Lemma 2.2. Suppose (K) holds. Then,
/]R3 Kp(x)fﬁu(,ﬂ)uzﬂ +z)dx = /]R3 K, (x)puuldx, Vz € 73, u € E.
Lemma 2.3. Suppose that (f1), (f3) and (fs) hold. Then
(i)
(i)

Proof. The proof is similar to that of in [27], so we omitted here. O

1f(x,s)s > F(x,s) > 0 forall (x,s) € R*x R,
1fp(x,8)s > Fy(x,5) > 0 forall (x,s) € R® x R,

Lemma 2.4. [’ is weakly sequentially continuous. Namely if u, — w in E, I'(u,) — I'(u) in
E~1(R3).

Proof. The proof is similar to that of Lemma 2.3 in [45,46], so we omitted here. O

Lemma 2.5 ([24]). Suppose that (f1), (f2) and (i) of (f5) hold. Assume that {u,} is bounded in E
and u, — 0in L _(R3), for any s € [2,6). Then up to a subsequence, one has

/]R3(F(x, ) — Fy(x, 1) )dx = o(1), 2.5)

Lemma 2.6 ([24,25]). Suppose that (V), (Q), (f1), (f2) and (i) of (f5) hold. Assume that {u,} is
bounded in E and |z,| — oo. Then up to a subsequence, one has

[ V) = V(- —z0)dx = o(1), 26)
J o (FCen) = fye ) (- = za)idx = (1), @7)

and
[,(Q0) = () (10 (- — z)dx = o(1), @8

where ¢ € CP(R3).
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Lemma 2.7. Suppose that (K), (f1) and (f2) hold. Assume that u, — 0 in E. Then up to a
subsequence, one has

[ K100 = 20) = Ky (1), a9 = 20))dx = o(1), 29)
where |z,| — o0 and ¢ € CP(R3).

Proof. Set h(x) := K(x) — K,(x). By (K), we have h(x) € Ag. Then for any & > 0, there exists
R > 0 such that

m{x € Bi(y) : [h(x)| > e} <¢, forany |y| > Re.

We cover R3 by balls By (y;), i € N. In such a way that each point of R? is contained in at
most N + 1 balls. Without any loss of generality, we suppose that |y;| < R., i = 1,2,...,n,
and |yi| > R, i =n+1,n,+2,n+3,...,+c0. Then,

/ms (K(X)%nun(p(- - zn) — Ky (2) (- — 24) )dx
- /R /R rx —y(ry_zn)dyh(x)u%(x)dx

* /]R3 /Rs ﬁdyh(x)”n(ﬂqo(x — z,)dx

o e }Wdyh(x)un(x)qo(x — z,)dx

=: E1 —|—E2+E3.

Like the argument of [45], we define

H(x) := / Kp(y)”n(y)q’(y_zn)dy
e |x —
:/ Kp@)un(y) 9y —zu) , +/ K Wunlely —2)
{y:lx—y|<1} lx =yl {y:lx—y|>1} lx —y| '

By the Holder inequality and the Sobolev embeddings, we have

1
1 1 4
H(x)| < |K,|eol|tin / ) + |Kp|oo | Un </ >
HOO < lelunblole ([ ty) 4 Rllnblole ([

_C(/ 2dz> +C</ 4dz> .
{z]z]<1} |2] {z]z>1} |Z]

So, sup,.gs |[H(x)| < c0. Then, we obtain

E = /W H (x)h(x)i (x)dx
= /{x:h(x)zs} ’H(X)h(X)M%(X)‘dx + . |H(x)h(x)uzz(x)|dx

= Q1+ Qo
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Q= [ o [HERNE
HEw @t [ [ (x)u ()

x)|>¢ |x|<Re+1}

~/{x:h(x)2£,|x|>Rs+l}

(o]

|H(x)h(x)up (x)|dx 4 2 sup [H(x)||K Ioo/ |14 (x) [Pdx
nerl /{xeslw,-):h(x)Zs,|x|>Rg+1} sk P JBra

=: Q11 + Q12

(o]

Qu =Y,

H(x)h(x)u?(x)|dx
n€+1/{x631(yi):h(x)>£|x|>Rg+1}| () ()i ()]

< 2sup |H(x)||Kp|eo / 12 (x)|dx
xeﬁg‘ K| WZH {x€By (vi):|h(x |>£,|x\>Rg+1}‘ n()l
1
0 5 3
<C m{x € B s h(x)| > ¢ 3</ 1l (x dx>
mre ) |z ent ([ o )
< Ciél / (|Vuy > + u?)dx
ne+1 7 {x€B1(yi):[h(x)| =€ [x[>Re+1}

< Ci(N +1)e %/B(IVun\2+u%)dx
R
Coe

2
3.

IN

Let ¢ — 0, we obtain Q1; — 0. By the condition u, — 0, one has u,, — 0in 12 (IR3). Therefore

loc
le — 0. So Q1 — 0.

— 2
Q= [ IR () dx

<esup |H(x ]/ |uZ (x)|dx

x€R3
< Ce.

Let e — 0, we have Q, — 0. Then, we get E; — 0. In the same way, we can prove E, — 0 and
E; — 0. O

Let F ={u € E:u' # 0}, define
N :={uecE\{0}: (I'(u),u) =0} ={ueF:{I'(u),u) =0}
Then N is a Nehari type associate to I, and set ¢ := inf,ep I

Lemma 2.8. Suppose that (V'), (K), (Q) and (f1)—(f3) hold. For any u € F, there is a unique t,, > 0
such that t,u € N. Moreover, the maximum of I(tu) for t > 0 is achieved.

Proof. Fix u € F, define g(t) := I(tu), t > 0. Using (f1), (f2), and (f3), we can prove that
g(0) =0, g(t) > 0 for t small and g(t) < O for ¢ large.
In fact, by (f1) and (f2), V6 > 0 there exists a C5 > 0 such that

If(x,s)] <dls| +C5|s|5, |F(x,s)] < g|s|2+ %|s|6 for any (x,s) € (IR?’,IR).
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So, we get that

2o, t 2 o
g(t) = 5”“” +Z 3K( dx——/ dx—/RSF(x,tu)dx
> 5 || ||2—f uf2dx — S |u]6dx—Ct6/ lu[5dx
R3 6 R3 R3

t2
> 5H“|\2 — Cot?[|u]|* — CCst®u|°.

Hence, g(t) > 0 for t small.
On the other hand, let ® = {x € R®: u(x) > 0}, we have that

25t ) X
g = FlulP+7 [ K(x)g dx——/ dx—/IRSF(x,tu)dx
< S+ B [ k) de—f/ Q(x) (u™)dx.
-2 4 JRr3

Hence, it is easy to see that g(t) — —oo as t — 4o0.
Therefore, there exists a t, such that I(t,u) = maxy>oI(tu) and t,u € N. Suppose that
there exist t; > t, > 0 such that tju, to,u € N. Then, we have that

t
t2||uH2—|—/ X)pyu de—tz/ Q(x 6dx+/ fx 1” ————dx,

t
2||u|\2+/ X)pyu 2dx-t2/ Q(x 6dx+/ fx 2u —————dx.

Therefore, one has that

1 1 - x, tiu) f(x, thu)
(f% - t%) lull® = (1 = 12 /@ Q) (u 6dx+/ ( (Hu)? () > u'dx,

which is absurd according to (f3) and t; > t, > 0. O

Remark 2.9. As in [31,43], we have

F= im0 = a0 = ok mey () >0

where
I':={y € C([0,1],E) : v(0) =0, I(y(1)) < 0}.

Lemma 2.10. Suppose that (V'), (K), (Q) and (f1)—(f3) hold. Then there exists a bounded sequence
{un} € E such that

I(uy) = ¢ and ||I'(uy)|| g2 — O.

Proof. From the proof of Lemma 2.8, it is easy to see that I satisfies the mountain pass geom-
etry. By [33], there exists an {u,} such that I(u,) — c and (1 + ||u,||)||I'(tn)||g2 — O, so we
have (I'(u,), u,) = 0(1). By (f3), we can obtain

Lf(x9)s > F(x;s) forany (x,5) € (R%R)
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Then, we have that

¢ = 1) — 701 () )
= P 55 [ QU+ [ (o — Fx )

1
> 2l
Therefor, {u,} is bounded and the proof is finished. O

The proof of next lemma similar to that of [24,26]. For easy reading, we give the proof.

Lemma 2.11. Suppose that (V), (K), (Q) and (f1)—(f3) hold. If u € N and I(u) = c, u is a solution
of Eq. (2.2).

Proof. Suppose by contradiction u is not a solution. Then there exists ¢ € E such that

(I'(u), ) < —1.
Choose ¢ € (0,1) small enough such that for all | — 1| < 1and |o| <,

(I'(tu+09),¢) < .

2
We define a smooth cut-off function {(t) € [0,1], which satisfies {(t) = 1 for|t — 1| < § and
g(t) = 0 for |t —1] > & For t > 0 we introduce a curve y(t) = tu for |t —1| > € and
y(t) = tu+¢€l(t)e for |t — 1| < e. Obviously, y(t) is a continuous curve and when ¢ small
enough, [[y(f)]] > 0 for [t — 1| < &. Next we prove I(y(t)) < ¢, fort > 0. If [t —1| > ¢,
I(y(t)) = I(tu) < I(u) = c. If |t = 1| < ¢, we define A : 0 — I(tu+ 0o{(t)¢). Obviously,
A € C. By the mean value therm, there exists & € (0, ¢) such that

I(tu+ el (t)p) = I(tu) + (I'(tu + 7L (t) @), e () @) < I(tu) — %é(t) <c.

Define v(u) := (I'(u),u), then v(y(1—¢)) =v((1—€)u) > 0and v(y(1+¢)) =v((1+e)u) <
0. By the continuity of t — v(y(t)), there exists t' € (1 —¢,1+ ¢€) such that v(y(#')) = 0. Thus
y(t') € N and I(y(#')) < ¢, which is a contradiction. O

Define
Ny ={u€F:(l,(u),u) =0} and ¢, = uier}\f/p I(u).

In fact, ¢, = inf,cp max;~o I, (fu).
Remark 2.12. For any u € F, by Lemma 2.8, there exists t, > 0 such that t,u € N and then

I(tyu) > c. Using V(x) < V,(x), Q(x) > Qp(x) and F(x,s) > Fy(x,s), we have ¢ < I(t,u) <
I, (tyu) < maxs~o I,(tu). Then we obtain ¢ < cj,.
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3 Estimates

In this section, we will estimate the least energy ¢, and the method comes from the celebrated

paper [7].
Let )
S = inf ’VMJZ.
ueDW2(R3)\{0} |ulg

In fact, S is the best constant for the Sobolev embedding D'?(R3) < L®(R3).
Without loss of generality, we assume that xo = 0. For ¢ > 0, the function w, : R} - R
defined by

ISt
N

_ 3ied
(e+ |x]2)?

€

we(x) =

is a family of functions on which S is attained. Let ¢ € CJ(R3,[0,1]) be a cut-off function
satisfying ¢ = 1, for x € By and ¢ = 0, for x € R®\ B,, where B, C Q). Define the test
function by

v e
‘ f]R3 Yubdx) s
where 1, = pw,. Then one has
1

/}RS Vo 2dx < |Qlw’S + O(e}), ase — 0%, (3.1)
/3 l0e2dx = O(e}), ase— 0, (3.2)

R
/3 |ue|®dx = Ky + O(S%), as ¢ — 07, where Kj is some positive constant, (3.3)

R

/]R3 Q(x)vddx =1, (34)
/3 lve| Sdx = O(e3), ase— O (3.5)

R

Lemma 3.1. Suppose (V), (K), (Q) and (f1)—(fa) are satisfied. Then ¢ < %|Q|;%S%.

Proof. For t > 0, define

g(t) := I(tve)
2

— t \va\zdx+ / 2dx+ / X) o, v2dx

t6

“ 6 Jeo Q(x)vbdx — /3 F(x, tve)dx.

JR

By Lemma 2.8, there exists a unique t, > 0 such that g(t,) = max~g(t) and ¢'(t,) = 0. We
claim that there exists C;, C; such that C; < t, < C; for € small enough. Indeed, if t, — 0
as ¢ — 0, one has g(t;) — 0, which is a contradiction. If t; — 400 as ¢ — o0, one has
g(t:) — —oo, which is a contradiction. Thus the claim holds. For s > 0, define

$2 , 56
pis)i= 5 /w [VoePax - %
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1
Then there exists s¢ := ( [gs |Vve[?dx)* such that

s>0 3

3
2
p(s) =maxy(s) = 3 ([ 17o.Pix)
R
By (3.1) and the inequality (a +b)* < a*+a(a+b)*'b,a > 0,b > 0,a > 1, we have
1 -1 3 1
p(s) < 51018t +0(ed). 6

We claim

fle (x,teve)dx
8—)0‘*’ O(gz)

= +o0. (3.7)

By (3.3), for € small enough, one has |u.|¢ < 2K; and then for |x| < £ < ,

NI

> CS’%.

t.o >7Cl u—ic1 We = G 3%8
T 2[QleKi T 2]QfwKs T 2|QfwKi (e 4 [x]2)2

It follows from (fy) that for any R > 0, there exists Ag > 0 such that for all (x,s) € Q X

[AR/ +OO>/
F(x,s) > Rs*.

Thus for € small enough, one has

/ . F(x,teve)dx > CR L e ldy = CRez.
{x:[x|<e2}

{x:|x|<e2}

Combining with F(x,s) > 0 and the arbitrariness of R, we can obtain the claim. By (2.3) and
(3.5), we get

2
/]R3 K(x)¢py,vzdx

Hence for € small enough, by (3.2), (3.6) and (3.7), we have

< C()|Ug|%?2 < Cz&

¢ < maxI(tv,)

>0
t2
\Vz;g\zdx+ / Yo2dx
t4
+Z€ K(x)¢y, 2ulx——/ 6dx—/ F(x,teve)dx
R3

1 _1
< *!Q!ooZS% + O(e) —i—O(s%) - /3F(x, teve)dx
R

N\»—\

*!Q!ooZSZ +0(e?) — | F(x, teve)dx

R3
f!Q!;f 0
4 The proof of main result

The proof of Theorem 1.1. From Lemma 2.10, there exists a bounded sequence {u,} € E satisfy-
ing I(u,) — cand ||I'(uy)||[g-1 — 0. Then there exists u € E such that, up to a subsequence,
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uy = uin E, uy, — win L (R®) and u,(x) — u(x) a.e. in R®. By Lemma 2.4, for any v € E,
we have
0= (I'(un),v) +0(1) = (I'(u),v),
that is u is a solution of Eq. (2.2). Since
0= (I'(u),u") = [ju| +/ X)uluPdx > [|lu |,

then u > 0.

We next distinguish the following two case to prove Eq. (2.2) has a nonnegative ground
state solution.
Case 1. Suppose that u # 0. Then I(u) > c. By the Fatou lemma, we obtain

n—o0

= lilgiogf (iHunHz + % /]R3 Q(x) (u,;)bdx —I—/ < (x, up)uy — F(x, un)> dx)
1 1
1||u”2 +33 /]R3 Q(x)(u™)%dx + /1123 <4f(x,u)u - F(x,u)) dx

= 1) — 3 (1'(u), )

¢ = liminf (I(un) — 1(1/(un),un>>

v

Therefore, I(1) = c and I'(u) = 0.
Case 2. Suppose that u = 0. Define

B := limsup sup uzdx.
n—oo  zeR3 7 Bi(2)

If B = 0, by using the Lions lemma [22,23], we have u,, — 0 in L1(RR®) for all q € (2,6). By the
condition of (f1) and (f2), V8 > 0 there exists a Cs > 0 such that f(x,u)u < &(|ul® + |u|®) +
Cs|u|* and F(x,u) < §|uf>+ |ul® + Cs|u|* for any (x,s) € R® x Rand a € ( ,6). So

/ f(x,uy)updx — 0, / F(x,u,)dx — 0.
R3 RR3

Then
fHunHZ 4/ ¥)Pu, de—f/ 1)edx + on(1), 4.1)
2 +16
ol + [ K puidx = [ Q) (wi) dx +0u (1) @2)
By (4.2), we have
4 ]1* < 1Qloolttn]§ + 00 (1) < [QleS ™|t [|® + 04 (1), (4.3)

which deduces that (i) ||uy,|| — 0 or (ii) |ty > ]Q|;%S% +0,(1).

If (i) holds, by (2.3), one has [p; K(x)¢y,usdx — 0. It follows from (4.1) and (4.2) that
¢ = 0, which is a contradiction with ¢ > 0.

If (ii) holds, by (4.2) we have

[ Qx> QIS + 0, (1), (@4
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From (4.1) and (4.2) we easily conclude that

1 2, e
el + 12/ $)odx + 0, (1)

-

Then from (4.4) it follows that ¢ > \QIOOZSZ contradicting the fact that ¢ < }|Qe’S
Thus B > 0. Up to a subsequence, there ex1st R > 0and {z,} C Z3 such that

/ U (X +2,)%dx = / uZdx > é
Bg 2

Br(zn)

N\w

Define wy, := u,(x + z,). Thus there exists w € E satisfying, up to a subsequence, w, — w in
E, w, — win L _(R%) and w,(x) — w(x) a.e. in R3. Obviously, w # 0. If {z,} is bounded,

there exists R’ such that
/ u%dx > / u,%dx > é,
BR’ BR(ZW) 2

which contradicts with 1, — 0 in L? (R?). Thus {z,} is unbounded. Up to a subsequence,

we have z, — co. By Lemma 2.6 and Lemma 2.7, then
0 = (I'(tn, p(x — z4))) +0(1)
= / (Viy - Vo(x —zy) + V(x)upp(x —z,))dx + / X)Pu, un@(x — 2, )dx

—/WQ(X)(u*) ¢(x —zn) dx—/ F(x,un)@(x — zy)dx +o(1)

—/ (Vg - Veo(x —zn) + Vp(x)un@(x — zy) dx+/ X)pu, tn @ (x — 2, )dx
Qp(x)(u o(x —z,)d / fo(x, un)@(x — zy)dx +0(1)
—/ (Vwy, - Vo + Vy(x)w,9) dx+/ X ) oy, Wy @Ax
= | Qp(x)(w;h) q)dx—/lefp X, wy)pdx +0(1)
= (I,(w), ),

that is w is a solution of Eq. (2.2). Obviously, w > 0. By Lemma 2.5, (f5) and Fatou lemma,
we have

c=I(uy) — i(l/(un),u,& +0(1)

1
—Hun||2—|— B 6dx+/ < fx,uy)u F(x,un)> dx +o(1)

ZH“nHZ 12/ Qp(x 6dx—|—/ < fo(x, un)u Fp(x,un)> dx +o(1)
%Hwnﬂz 12/ Q,(x 6dx+/ < Fo (%, w0, )0 —Fp(x,wn)> dx + o(1)
27Hw|\2+ﬁ/]R3Qp(x 6dx+/ ( fy(x,w)w — Fy(x, w)) dx +o(1)
= Ip(w) — E(I;(w),uﬁ

= Ip(w)
> Cp-

—_
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Using Remark 2.12, I,(w) = ¢, = c. By the properties of ¢ and N, there exits t,, > 0 such
that t,w € N. Thus, we obtain ¢ < I(t,w) < I,(t,w) < I,(w) = c. So ¢ is achieved by t,w.
By Lemma 2.11, we have I'(t,w) = 0.

In a word, we obtain that Eq. (2.2) has a nonnegative ground state solution u € E. O
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