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Abstract

In this paper, we investigate a Kaldor-Kalecki model of business cycle with

delay in both the gross product and the capital stock. Stability analysis for the

equilibrium point is carried out. We show that Hopf bifurcation occurs and pe-

riodic solutions emerge as the delay crosses some critical values. By deriving the

normal forms for the system, the direction of the Hopf bifurcation and the stabil-

ity of the bifurcating periodic solutions are established. Examples are presented

to confirm our results.
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1 Introduction

In this paper, we study the Kaldor-Kalecki model of business cycle with delay of the
following form:

{

dY (t)
dt

= α[I(Y (t), K(t)) − S(Y (t), K(t))],
dK(t)

dt
= I(Y (t− τ), K(t− τ)) − qK(t),

(1)

where Y is the gross product, K is the capital stock, α > 0 is the adjustment coefficient
in the goods market, q ∈ (0, 1) is the depreciation rate of capital stock, I(Y,K) and
S(Y,K) are investment and saving functions, and τ ≥ 0 is a time lag representing
delay for the investment due to the past investment decision.
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A business model in this line was first proposed by Kalecki [11], in which the idea
of a delay of the implementation of a business decision was introduced. Later on,
Kalecki [12] and Kaldor [10] proposed and studied business models using ordinary
differential equations and nonlinear investment and saving functions. They showed
that periodic solutions exist under the assumption of nonlinearity. Similar models
were also analyzed by several authors and the existence of limit cycles were established
due to the nonlinearity, see [4, 7, 23]. Krawiec and Szydlowski [14, 15, 16] combined the
two basic models of Kaldor’s and Kalecki’s and proposed the following Kaldor-Kalecki
model of business cycle:

{

dY (t)
dt

= α[I(Y (t), K(t)) − S(Y (t), K(t))],
dK(t)

dt
= I(Y (t− τ), K(t)) − qK(t).

This model has been studied intensively since its introduction, see [17, 19, 20, 21, 22,
24]. It is argued that a more reasonable model should include delays in both the gross
product and capital stock, because the change in the capital stock is also caused by
the past investment decisions [17]. Adding a delay to capital stock K leads to System
(1).

As in [14], also see [1, 2, 22], using the following saving and investment functions
S and I, respectively,

S(Y,K) = γY, I(Y,K) = I(Y ) − βK

where β > 0 and γ ∈ (0, 1) are constants, System (1) becomes the following system:

{

dY (t)
dt

= α[I(Y (t)) − βK(t) − γY (t)],
dK(t)

dt
= I(Y (t− τ)) − βK(t− τ) − qK(t).

(2)

Kaddar and Talibi Alaoui [9] studied System (2). They gave a condition for the charac-
teristic equation of the linearized system to have a pair of purely imaginary roots and
showed that the Hopf bifurcation may occur as the delay τ passes some critical values.
However, they did not give the stability of the periodic solution and the direction of
the Hopf bifurcation.

In this paper, we first give a more detailed discussion of the distribution of the
eigenvalues of the linearized system of (2). So local stability of the equilibrium point is
established. Conditions are found under which the Hopf bifurcation occurs and peri-
odic solutions emerge as the delay crosses some critical values. By deriving the normal
forms for System (2) using the normal form theory developed by Faria and Magalhães
[5, 6], the direction of the Hopf bifurcation and the stability of the bifurcating peri-
odic solutions are established. Finally, some examples are presented to illustrate our
theoretical results.
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2 Distribution of Eigenvalues

Throughout the rest of this paper, we assume that I(s) is a nonlinear function, C3,
and that System (2) has an isolated equilibrium point (Y ∗, K∗). Let I∗ = I(Y ∗),
u1 = Y − Y ∗, u2 = K − K∗, and i(s) = I(s + Y ∗) − I∗. Then System (2) can be
transformed into

{

du1(t)
dt

= α[i(u1(t)) − βu2(t) − γu1(t)],
du2(t)

dt
= i(u1(t− τ)) − βu2(t− τ) − qu2(t).

(3)

Let the Taylor expansion of i at 0 be

i(u) = ku+ i(2)u2 + i(3)u3 +O(|u|4)

where

k = i′(0) = I ′(Y ∗), i(2) =
1

2
i′′(0) =

1

2
I ′′(Y ∗), i(3) =

1

3!
i′′′(0) =

1

3!
I ′′′(Y ∗).

The linear part of System (3) at (0, 0) is

{

du1(t)
dt

= α[(k − γ)u1(t) − βu2(t)],
du2(t)

dt
= ku1(t− τ) − βu2(t− τ) − qu2(t),

(4)

and its corresponding characteristic equation is

λ2 + [q − α(k − γ)]λ− αq(k − γ) + (βλ+ αβγ)e−λτ = 0. (5)

For τ = 0, Equation (5) becomes

λ2 + [q + β − α(k − γ)]λ− αq(k − γ) + αβγ = 0. (6)

Define

k1 =
βγ

q
+ γ, k2 =

q + β

α
+ γ,

and for the rest of the paper, we always assume k1 ≤ k2. For the case that k1 > k2, the
discussion can be carried out similarly.

Theorem 2.1. Let τ = 0. If k < k1, all roots of Equation (6) have negative real parts,
and hence (Y ∗, K∗) is asymptotically stable. If k > k1, Equation (6) has a positive root
and a negative root, and hence (Y ∗, K∗) is unstable.

Now assume τ > 0. Let ωi (ω > 0) be a purely imaginary root of Equation (5).
After plugging it into Equation (5) and separating the real and imaginary parts, we
have
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ω2 + αq(k − γ) = αβγ cos(ωτ) + βω sin(ωτ),

[q − α(k − γ)]ω = αβγ sin(ωτ) − βω cos(ωτ).
(7)

Adding squares of two equations yields

ω4 + [q2 − β2 + α2(k − γ)2]ω2 + α2q2(k − γ)2 − α2β2γ2 = 0. (8)

Let

A = q2 − β2 + α2(k − γ)2,

B = α2q2(k − γ)2 − α2β2γ2.

If A ≥ 0 and B ≥ 0, Equation (8) has no positive roots. If B < 0, Equation (8) has a
unique positive root

ω+ =

√

−A+
√
A2 − 4B

2
.

If A < 0, B > 0, and A2 − 4B > 0, Equation (8) has two positive roots

ω± =

√

−A±
√
A2 − 4B

2
.

Solving Equation (7) for sin(ωτ) and cos(ωτ) yields

sin(ωτ) =
ω3 + [αqk − α2γ(k − γ)]ω

α2βγ2 + βω2
,

cos(ωτ) =
α2qγ(k − γ) + (αk − q)ω2

α2βγ2 + βω2
.

Define

l±1 =
ω3
± + [αqk − α2γ(k − γ)]ω±

α2βγ2 + βω2
±

,

l±2 =
α2qγ(k − γ) + (αk − q)ω2

±

α2βγ2 + βω2
±

.

We, thus, have the following result.

Lemma 2.1. Let ω± and l±i (i = 1, 2) be defined above.

(i) If B < 0, then there exists a sequence of positive numbers {τ+
j }∞j=0 such that

τ+
0 < τ+

1 < τ+
2 < · · · < τ+

j < · · · , and Equation (5) has a pair of purely
imaginary roots ±iω+ when τ = τ+

j .
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(ii) If A < 0, B > 0, and A2 − 4B > 0, then there exist two sequences of positive
numbers {τ+

j }∞j=0 and {τ−j }∞j=0 such that τ+
0 < τ+

1 < τ+
2 < · · · < τ+

j < · · · , τ−0 <
τ−1 < τ−2 < · · · < τ−j < · · · , and Equation (5) has a pair of purely imaginary
roots ±iω± when τ = τ±j .

Here τ±j (j = 0, 1, 2, · · · ) are defined below

τ±j =
1

ω±

{

arccos l±2 + 2jπ, if l±1 > 0,
2π − arccos l±2 + 2jπ, if l±1 < 0.

Define λ(τ) = σ(τ) + iω(τ) to be the root of Equation (5) such that σ(τ±j ) = 0 and
ω(τ±j ) = ω±, respectively.

Lemma 2.2. Let σ(τ) and τ±j be defined above. Then

σ′(τ+
j ) > 0, σ′(τ−j ) < 0.

Proof. Differentiate Equation (5) with respect to τ yields

(

dλ

dτ

)−1

=
[2λ+ q − α(k − γ)]eλτ + β

λβ(λ+ αγ)
− τ

λ

and a calculation gives

Re

(

dλ

dτ

)−1

τ=τ±

j
=

2ω2
± + α2(k − γ)2 + q2 − β2

β2(α2γ2 + ω2
±)

=
2ω2

± + A

β2(α2γ2 + ω2
±)

which gives

Re

(

dλ

dτ

)−1

τ=τ±

j
=

±
√
A2 − 4B

β2(α2γ2 + ω2
±)
,

completing the proof.

To discuss the distribution of the roots of Equation (5), we will need the following
lemma due to Ruan and Wei [18].

Lemma 2.3. Consider the exponential polynomial

P (λ, e−λτ) = p(λ) + q(λ)e−λτ

where p, q are real polynomials such that deg(q) < deg(p) and τ ≥ 0. As τ varies, the
total number of zeros of P (λ, e−λτ) on the open right half-plane can change only if a
zero appears on or crosses the imaginary axis.

Now we turn our attention to the relationship between A, B and our system pa-
rameters. We look at the following two cases.

Case I. β ≤ q. In this case, A ≥ 0.

EJQTDE Spec. Ed. I, 2009 No. 27



6 L. Wang & X. Wu

1. B ≥ 0 ⇐⇒ k ≥ k1 or k ≤ −βγ/q + γ;

2. B < 0 ⇐⇒ |k − γ| < βγ/q.

Case II. β > q. In this case,

1. A ≥ 0, B ≥ 0 ⇐⇒ k ≥ max{
√

β2 − q2/α + γ, k1} or k ≤ min{−
√

β2 − q2/α +
γ,−βγ/q + γ};

2. B < 0 ⇐⇒ |k − γ| < βγ/q;

3. A < 0, B > 0 ⇐⇒ βγ/q < |k − γ| <
√

β2 − q2/α.

The discussions above, Theorem 2.1 and Lemmas 2.1, 2.2 and 2.3 imply the following
Lemma 2.4.

Lemma 2.4. Assume β ≤ q. Let τ+
j be defined in Lemma 2.1. Then we have

(i) if B ≥ 0, then all roots of Equation (5) have negative real parts when k <
−βγ/q + γ and Equation (5) has roots with negative real parts and roots with
positive real parts when k > k1;

(ii) if B < 0, or |k− γ| < βγ/q, all roots of Equation (5) have negative real parts for
all τ ∈ [0, τ+

0 ); Equation (5) has a pair of purely imaginary roots ±iω+ and all
other roots have negative real parts when τ = τ+

0 ; it has 2(j+1) roots with positive
real parts and all other roots have negative real parts when τ ∈ (τ+

j , τ
+
j+1), j =

0, 1, 2, · · · .

Lemma 2.5. Assume β > q. Let τ±j be defined in Lemma 2.1. Then we have

(i) if A ≥ 0, B ≥ 0, then all roots of Equation (5) have negative real parts when
k < min{−

√

β2 − q2/α+γ,−βγ/q+γ}, and Equation (5) has roots with negative

real parts and roots with positive real parts when k > max{
√

β2 − q2/α + γ, k1};

(ii) if B < 0, or if |k − γ| < βγ/q, all roots of Equation (5) have negative real parts
for all τ ∈ [0, τ+

0 ); Equation (5) has a pair of purely imaginary roots ±iω+ and all
other roots have negative real parts when τ = τ+

0 ; it has 2(j+1) roots with positive
real parts and all other roots have negative real parts when τ ∈ (τ+

j , τ
+
j+1), j =

0, 1, 2, · · · .

(iii) if A < 0, B > 0 and A2−4B > 0, then we have βγ/q < |k−γ| <
√

β2 − q2/α and

A2 − 4B > 0. Assume that A2 − 4B > 0. If −
√

β2 − q2/α+ γ < k < −βγ/q+ γ,
all roots of Equation (5) have negative real parts for all τ ∈ [0, τ+

0 ), Equation
(5) has roots with positive real parts when τ ∈ (τ+

0 , τ
−
m) where m is the smallest

positive integer such that τ−m > τ+
0 , it has a pair of purely imaginary roots ±iω+

and all other roots have negative real parts when τ = τ+
0 . if τ−m < τ+

1 , Equation
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(5) has two roots with positive real parts and all other roots have negative real
parts when τ ∈ (τ+

0 , τ
−
m) and all roots of Equation (5) have negative real parts

when τ ∈ (τ−m, τ
+
1 ). If k1 < k <

√

β2 − q2/α + γ, Equation (5) has roots with
negative real parts and roots with positive real parts.

The following Hopf bifurcation theorems follow immediately.

Theorem 2.2. Assume β ≤ q. Let τ+
j be defined in Lemma 2.1. Then we have

(i) the equilibrium point (Y ∗, K∗) is asymptotically stable for all τ ≥ 0 when k <
−βγ/q + γ and it is unstable for all τ ≥ 0 when k > k1;

(ii) the equilibrium point (Y ∗, K∗) is asymptotically stable for all τ ∈ [0, τ+
0 ) and

unstable for all τ > τ+
0 when |k − γ| < βγ/q. System (2) undergoes a Hopf

bifurcation at (Y ∗, K∗) when τ = τ+
j for j = 0, 1, 2, · · · .

Theorem 2.3. Assume β > q. Let τ±j be defined in Lemma 2.1. Then we have

(i) the equilibrium point (Y ∗, K∗) is asymptotically stable for all τ ≥ 0 when k <
min{−

√

β2 − q2/α + γ,−βγ/q + γ}, and unstable for all τ ≥ 0 when k >

max{
√

β2 − q2/α + γ, k1};

(ii) the equilibrium point (Y ∗, K∗) is asymptotically stable for all τ ∈ [0, τ+
0 ) and

unstable for all τ > τ+
0 when |k − γ| < βγ/q. System (2) undergoes a Hopf

bifurcation at (Y ∗, K∗) when τ = τ+
j for j = 0, 1, 2, · · · .

(iii) Assume A2 − 4B > 0. The equilibrium point (Y ∗, K∗) is asymptotically stable for
all τ ∈ [0, τ+

0 ) and unstable when τ ∈ (τ+
0 , τ

−
m) where m is defined in Lemma 2.5

when −
√

β2 − q2/α+γ < k < −βγ/q+γ. System (2) undergoes a Hopf bifurca-

tion at (Y ∗, K∗) when τ = τ+
j for j = 0, 1, 2, · · · . When k1 < k <

√

β2 − q2/α+γ,
the equilibrium point (Y ∗, K∗) is unstable. System (2) undergoes a Hopf bifurca-
tion at (Y ∗, K∗) when τ = τ±j for j = 0, 1, 2, · · · .

3 Direction and Stability of Hopf Bifurcation

From Section 2, we know that at (Y ∗, K∗) the characteristic equation of linearized
System (2) has a pair of purely imaginary roots ±iω± if τ = τ±j for each j under some
conditions. Under these conditions, as the delay τ passes the critical values τ±j , Hopf
bifurcation occurs and periodic solutions emerge. In this section, by deriving a normal
form for System (2) using a normal form theory developed by Faria and Magalhães
[5, 6], we study the direction of the Hopf bifurcation and the stability of the bifurcating
periodic solutions.

We first normalize the delay in System (2) by rescaling t→ t/τ to get the following
system







du1(t)
dt

= ατ [(k − γ)u1(t) − βu2(t) + i(2)u2
1(t) + i(3)u3

1(t)] +O(|u1|4),
du2(t)

dt
= τ [ku1(t− 1) − βu2(t− 1) − qu2(t) + i(2)u2

1(t− 1)
+i(3)u3

1(t− 1)] +O(|u1|4).
(9)
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Let τc = τ±j and τ = τc + µ. Then µ is the bifurcation parameter for System (9) and
System (9) becomes















du1(t)
dt

= α(τc + µ)[(k − γ)u1(t) − βτu2(t) + i(2)u2
1(t) + i(3)u3

1(t)]
+O(|u1|4),

du2(t)
dt

= (τc + µ)[ku1(t− 1) − βu2(t− 1) − qu2(t) + i(2)u2
1(t− 1)

+i(3)u3
1(t− 1)] +O(|u1|4).

(10)

The linearization of System (10) at (0, 0) is
{

du1(t)
dt

= ατc[(k − γ)u1(0) − βu2(0)],
du2(t)

dt
= τc[ku1(−1) − βu2(−1) − qu2(0)].

(11)

Let
η(θ) = Aδ(θ) +Bδ(θ + 1)

where

A = τc

(

α(k − γ) −αβ
0 −q

)

, B = τc

(

0 0
k −β

)

.

Let C = C([−1, 0],C2) and define a linear operator L on C as follows:

Lϕ =

∫ 0

−1

dη(θ)ϕ(θ), ∀ϕ ∈ C.

Then System (10) can be transformed into

Ẋ(t) = LXt + F (Xt, µ),

where X = (u1, u2)
T , Xt = X(t+ θ), θ ∈ [−1, 0], and F (Xt, µ) = (F 1, F 2)T where

F 1 = α[(k − γ)µu1(0) − βµu2(0) + τci
(2)u2

1(0) + τci
(3)u3

1(0)] + h.o.t.,

F 2 = kµu1(−1) − βµu2(−1) − qµu2(0) + τci
(2)u3

1(−1) + τci
(3)u2

1(−1) + h.o.t.,

where “h.o.t” represents high order terms. Write the Taylor expansion of F as

F (ϕ, µ) =
1

2
F2(ϕ, µ) +

1

3!
F3(ϕ, µ) + h.o.t..

Take the enlarged space of C

BC = {ϕ : [−1, 0] → C
2 : ϕ is continuous on [−1, 0), ∃ lim

θ→0−
ϕ(θ) ∈ C

2}.

Then the elements of BC can be expressed as ψ = ϕ+X0ν, ϕ ∈ C and

X0(θ) =

{

0, −1 ≤ θ < 0,
I, θ = 0,
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where I is the identity matrix on C and the norm of BC is |ϕ + X0ν| = |ϕ| + |ν|C2 .
Let C1 = C1([−1, 0],C2). Then the infinitesimal generator A : C1 → BC associated
with L is given by

Aϕ = ϕ̇ +X0[Lϕ− ϕ̇(0)] =

{

ϕ̇, −1 ≤ θ < 0,
Aϕ(0) +Bϕ(−1), θ = 0,

and its adjoint

A∗ψ =

{

−ψ̇, 0 < s ≤ 1,
ψ(0)A+ ψ(1)B, s = 0,

for ∀ψ ∈ C1∗,

where C1∗ = C1([0, 1],C2∗). Let C ′ = C([0, 1],C2∗) and for ϕ ∈ C and ψ ∈ C ′, define
a bilinear inner product between C and C ′ by

〈ψ, ϕ〉 = ψ(0)ϕ(0) −
∫ 0

−1

∫ θ

0

ψ(ξ − θ)dη(θ)ϕ(ξ)dξ

= ψ(0)ϕ(0) +

∫ 0

−1

ψ(ξ + 1)Bϕ(ξ)dξ.

From Section 2, we know that ±iτcω0 are eigenvalues of A and A∗, where ω0 = ω+

or ω−. Now we compute eigenvectors of A associated with iτcω0 and eigenvectors of
A∗ associated with −iτcω0. Let q(θ) = (ρ, k)T eiτcω0θ be an eigenvector of A associated
with iτcω0. Then Aq(θ) = iτcω0q(θ). It follows from the definition of A that

(

−α(k − γ)τc + iτcω0 αβτc
−kτce−iτcω0 βτce

−iτcω0 + qτc + iτcω0

)

q(0) = 0.

We can obviously choose q(θ) = (ρ, k)T eiτcω0θ where ρ = β + (q + iω0)e
iτcω0 .

Similarly, we can find an eigenvector p(s) of A∗ associated with −iτcω0

p(s) =
1

D
(σ, αβ)eiτcω0s, where σ = −βeiτcω0 − q + iω0

with D being a constant to be determined such that 〈p̄(s), q(θ)〉 = 1. In fact, since

〈p̄(s), q(θ)〉 =
1

D̄
[kαβ(1 + (ρ− β)e−iτcω0) + ρσ̄]

we have D = kαβ(1 + (ρ̄ − β)eiτcω0) + ρ̄σ. Let P be spanned by q, q̄ and P ∗ by p, p̄.
Then C can be decomposed as

C = P ⊕Q where Q = {ϕ ∈ C : 〈ψ, ϕ〉 = 0, ∀ψ ∈ P ∗}.
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Let Q1 = Q ∩ C1. Let Φ(θ) = (q(θ), q̄(θ)) and Ψ(s) =
(

p̄(s)
p(s)

)

. Then Φ̇ = ΦJ and

Ψ̇ = −JΨ where J = diag(iτcω0,−iτcω0). Define the projection π : BC → P by

π(ϕ+X0ν) = Φ[(Ψ, ϕ) + Ψ(0)ν].

Let u = Φx + y, namely

u1(θ) = eiτcω0θρx1 + e−iτcω0θρ̄x2 + y1(θ),

u2(θ) = eiτcω0θkx1 + e−iτcω0θkx2 + y2(θ).

Then System (10) can be decomposed as

{

ẋ = Jx+ Ψ(0)F (Φx+ y, µ),
ẏ = AQ1y + (I − π)X0F (Φx+ y, µ).

This can be rewritten as
{

ẋ = Jx+ 1
2
f 1

2 (x, y, µ) + 1
3!
f 1

3 (x, y, µ) + h.o.t.,
ẏ = AQ1y + 1

2
f 2

2 (x, y, µ) + 1
3!
f 2

3 (x, y, µ) + h.o.t.,
(12)

where

f 1
j (x, y, µ) = Ψ(0)Fj(Φx+ y, µ), f 2

j (x, y, µ) = (I − π)X0Fj(Φx+ y, µ).

According to the normal form theory due to Faria and Magalhães [5, 6, 8], on the
center manifold, System (12) can be transformed as the following normal form:

ẋ = Jx+
1

2
g1
2(x, 0, µ) +

1

3!
g1
3(x, 0, µ) + h.o.t.

where g1
j (x, 0, µ) is a homogeneous polynomial of degree j in (x, µ). Let Y be a normed

space and j, p ∈ N. Let

V p
j (Y ) =







∑

|q|=j

cqx
q : q ∈ N

q
0, cq ∈ Y







with norm |
∑

|q|=j cqx
q| =

∑

|q|=j |cq|Y . Define Mj to be the operator in V 4
j (C2×ker π)

with the range in the same space by

Mj(p, h) = (M1
j p,M

2
j h),

where (M1
j p)(x, µ) = [J, p(·, µ)](x) = Dxp(x, µ)Jx − Jp(x, µ). It is easy to check that

V 3
j (C2) = Im(M1

j ) ⊕ Ker(M1
j ) and

Ker(M1
j ) = {µlxqek : (q, λ̄) = λk, k = 1, 2, q ∈ N

2
0, |(q, l)| = j}.
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Hence

ker(M1
2 ) = Span

{(

µx1

0

)

,

(

0

µx2

)}

,

ker(M1
3 ) = Span

{(

x2
1x2

0

)

,

(

µ2x1

0

)

,

(

0

x1x
2
2

)

,

(

0

µ2x2

)}

.

Define

f̃ 1
3 (x, 0, µ) = f 1

3 (x, 0, µ) +
3

2
[(Dxf

1
2 )(x, 0, µ)U1

2 (x, µ) + (Dyf
1
2 )(x, 0, µ)U2

2 (x, µ)]

where

U1
2 (x, µ)|µ=0 = (M1

2 )−1ProjIm(M1
2 )f

1
2 (x, 0, 0) = (M1

2 )−1f 1
2 (x, 0, 0)

and U2
2 (x, µ) is determined by

(M2
2U

2
2 )(x, µ) = f 2

2 (x, 0, µ).

Then

g1
2(x, 0, µ) = Projker(M1

2 )f
1
2 (x, 0, µ), g1

3(x, 0, µ) = Projker(M1
3 )f̃

1
3 (x, 0, µ).

Let us compute g1
2(x, 0, µ) first. Since

1

2
f 1

2 (x, 0, µ) =

(

a1µx1 + a2µx2 + a20x
2
1 + a11x1x2 + a02x

2
2

ā2µx1 + ā1µx2 + ā02x
2
1 + ā11x1x2 + ā20x

2
2

)

,

where

a1 = − α

D̄
[kβ(q + (β − ρ)e−iτcω0) + σ̄(k(β − ρ) + γρ)],

a2 = − α

D̄
[kβ(q + σ̄ + βeiτcω0) − ρ̄(kβeiτcω0 + (k − γ)σ̄)],

a20 =
αρ2τc
D̄

i(2)(e−2iτcω0β + σ̄), (13)

a11 =
2α|ρ|2τc
D̄

i(2)(β + σ̄),

a02 =
αρ̄2τc
D̄

i(2)(e2iτcω0β + σ̄),

then

1

2
g1
2(x, 0, µ) =

1

2
Projker(M1

2 )f
1
2 (x, 0, µ) =

(

a1µx1

ā1µx2

)

.
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12 L. Wang & X. Wu

Next we compute 1
3!
g1
3(x, 0, µ) = 1

3!
Projker(M1

3 )f̃
1
3 (x, 0, µ). Since the term O(µ2|x|) is

irrelevant to determine the generic Hopf bifurcation, we have

1

3!
g1
3(x, 0, µ) =

1

3!
Projker(M1

3 )f̃
1
3 (x, 0, µ) =

1

3!
ProjS f̃

1
3 (x, 0, 0) +O(µ2|x|)

=
1

3!
ProjSf

1
3 (x, 0, 0) +

1

4
ProjS[(Dxf

1
2 )(x, 0, 0)U1

2 (x, 0)

+ (Dyf
1
2 )(x, 0, 0)U2

2 (x, 0)] +O(µ2|x|).

where

S = Span

{(

x2
1x2

0

)

,

(

0

x1x2
2

)}

.

Step 1. Compute 1
3!

Projker(M1
3 )f

1
3 (x, 0, 0). Since

1

3!
f 1

3 (x, 0, 0) =

(

a30x
3
1 + a21x

2
1x2 + a12x1x

2
2 + a03x

3
2

ā03x
3
1 + ā12x

2
1x2 + ā21x1x

2
2 + ā30x

3
2

)

where

a30 =
αρ3τc
D̄

[i(3)(βe−3iτcω0 + σ̄)],

a21 =
3α|ρ|2ρτc

D̄
[i(3)(βe−iτcω0 + σ̄)],

a12 =
3α|ρ|2ρ̄τc

D̄
[i(3)(βeiτcω0 + σ̄)],

a03 =
αρ̄3τc
D̄

[i(3)(βe3iτcω0 + σ̄)],

we have
1

3!
Projker(M1

3 )f
1
3 (x, 0, 0) =

(

a21x
2
1x2

ā21x1x2
2

)

.

Step 2. Compute 1
2
ProjS[Dxf

1
2 (x, 0, 0)U1

2 (x, 0)]. The elements of the canonical basis of
V 2

2 (C2) are
(

x2
1

0

)

,

(

x1x2

0

)

,

(

x2
2

0

)

,

(

µx1

0

)

,

(

µx2

0

)

,

(

µ2

0

)

,

(

0

x2
1

)

,

(

0

x1x2

)

,

(

0

x2
2

)

,

(

0

µx1

)

,

(

0

µx2

)

,

(

0

µ2

)

,

whose images under 1
iω0
M1

2 are, respectively

(

x2
1

0

)

,−
(

x1x2

0

)

,−3

(

x2
2

0

)

,

(

0

0

)

,−2

(

µx2

0

)

,

(

µ2

0

)

,

3

(

0

x2
1

)

,

(

0

x1x2

)

,−
(

0

x2
2

)

, 2

(

0

µx1

)

,

(

0

0

)

,

(

0

µ2

)

.

EJQTDE Spec. Ed. I, 2009 No. 27



Kaldor-Kalecki Model of Business Cycle 13

Hence

U1
2 (x, 0) =

1

iω0

(

a20x
2
1 − a11x1x2 − 1

3
a02x

2
2

1
3
ā02x2

1 + ā11x1x2 − ā20x2
2

)

,

and
1

2
ProjS[Dxf

1
2 (x, 0, 0)U1

2 (x, 0)] =

(

C1x
2
1x2

C̄1x1x2
2

)

where

C1 =
2

iω0
(2|a02|2 − 3a20a11 + 3|a11|2)

= −iα
2|ρ|2ρτ 2

c (i(2))2

12D̄|D|2 [6D̄ρ̄|β + σ|2 − 3Dρ(β + σ̄)(βe−2iτcω0 + σ̄)

+ D̄ρ̄|βe−2iτcω0 + σ|2].

Step 3. Compute 1
2
ProjS[(Dyf

1
2 )(x, 0, 0)U2

2 (x, 0)], where U2
2 (x, 0) is a second-order

homogeneous polynomial in (µ, x1, x2) with coefficients in Q1. Let

h(x)(θ) = U2
2 (x, 0) = h20(θ)x

2
1 + h11(θ)x1x2 + h02(θ)x

2
2.

The coefficients hjk = (h1
jk, h

2
jk)

T are determined by M2
2h(x) = f 2

2 (x, 0, 0) or

Dxh(x)Bx− AQ1(h(x)) = (I − π)X0F2(Φx, 0)

which is equivalent to

ḣ(x) −Dxh(x)Bx = ΦΨ(0)F2(Φx, 0),

ḣ(x)(0) − Lh(x) = F2(Φx, 0),

where ḣ denotes the derivative of h(x)(θ) with respect to θ. Note that

F2(Φx, 0) = A20x
2
1 + A11x1x2 + A02x

2
2

where

A20 = (2i(2)αρ2τc, 2i
(2)ρ2τce

−2iτcω0)T ,

A11 = (4i(2)α|ρ|2τc, 2i(2)α|ρ|2τc)T ,

A02 = (2i(2)αρ̄2τc, 2i
(2)ρ̄2τce

2iτcω0)T .

Comparing the coefficients of x2
1, x1x2, x

2
2 of these equations, it is not hard to verify

that h̄02 = h20, h̄11 = h11 and that h20, h11 satisfy the following equations

{

ḣ20 − 2iτcω0h20 = ΦΨ(0)A20,

ḣ20(0) − Lh20 = A20,
(14)
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14 L. Wang & X. Wu

and
{

ḣ11 = ΦΨ(0)A11,

ḣ11(0) − Lh11 = A11.
(15)

Noting that f 1
2 (x, 0, 0) = ΨF2(Φx, 0), we deduce

1

2
(Dyf

1
2 )h(x, 0, 0) =

(ατci(2)

2D̄
[β(ρe−iτcω0x1 + ρ̄eiτcωox2)h

1(−1) + σ̄(ρx1 + ρ̄x2)h
1(0)]

ατci(2)

2D
[β(ρe−iτcω0x1 + ρ̄eiτcωox2)h1(−1) + σ̄(ρx1 + ρ̄x2)h1(0)]

)

where

h1(−1) = h1
20(−1)x2

1 + h1
11(−1)x1x2 + h1

02(−1)x2,

h1(0) = h1
20(0)x2

1 + h1
11(0)x1x2 + h1

02(0)x2
2.

and hence
1

2
ProjS[(Dyf

1
2 )h](x, 0, 0) =

(

C2x
2
1x2

C̄2x1x2
2

)

,

where

C2 =
ατci

(2)

D̄
[e−iω0τ0βρh1

11(−1) + ρσ̄h1
11(0) + eiω0τ0βρ̄h1

20(−1) + ρ̄σ̄h1
20(0)].

Here h20, h11 are determined by System (14) and System (15). After long but basic
calculations, we obtain

h1
20(0) =

(2i(2)αρ2e−3τcω0(D̄(−ie2iτcω0(2De3iτcω0σ)ω(−iq + 2ω0)

+kαβ(β + e2iτcω0σ)((−1 + e2iτcω0)β − 2ieiτcω0ω0))

+eiτcω0(β + e2iτcω0σ)(−ieiτcω0kαβ + ie3iτcω0kαβ

+2βω0 + 2e2iτcω0(q + 2iω0)ω0)ρ̄) +D(2eiτcω0ρ(β + e2iτcω0(q + 2iω0))ω0

−ikαβ((−1 + e2iτcω0)β + ρ− 2e2iτcω0ρ− 2ie3iτcω0ω0))(β + eiτcω0 σ̄))

/(ω0D(−iβ + e2iτcω0(−iq + 2ω0)) − α(βγ − ie2iτcω0(k − γ)(−iq + 2ω0))D̄),

h1
20(−1) =

2i(2)αρ2e−5τcω0

ω0|D|2 [i(−1 + e2iτcω0)(e2iτcω0(β + e2iτcω0σ)D̄ρ̄+Dρ(β + e2iτcω0 σ̄))

+(D̄(−ie2iτcω0(2De2iτcω0ω0(−iq + 2ω) + kαβ(β + e2iτcω0σ)((−1 + eiτcω0)β

−2ie2iτcω0ω0)) + eiτcω0(β + e2iτcω0)(−ieiτcω0kαβ + ie3iτcω0kαβ + 2βω0

+2e2iτcω0(q + 2iω0)ω0)ρ̄) +D(2e2iτcω0ρ(β + e2iτcω0(q + 2iω0))ω0

−ikαβ((−1 + e2iτcω0)β + ρ− e2iτcω0 − 2ie3iτcω0))(β + e2iτcω0 σ̄))]

/(2ω0(−iβ + e2iτcω0(−iq + 2ω)) − α(βγ − ie2iτcω0(k − γ)(−iq + 2ω0)))
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Kaldor-Kalecki Model of Business Cycle 15

and

h1
11(0) =

4i(2)|ρ|2e−iτcω0

(βγ + (−k + γ)q)|D|2 [eiτcω0D̄(−Dq + kαβ(β + σ)(−1 + eiτcω0βτc)

+(β + σ)(−q + β(−1 + eiτcω0kατc))ρ̄) −D(eiτcω0(kαβ − (β + q)ρ)

+kαβ(−β + ρ)τc)(β + σ̄)],

h1
11(−1)

4i(2)|ρ|2e−iτcω0

|D|2 [−e−2iτcω0ατc((β + σ)D̄ρ̄+De−2iτcω0ρ(β + σ̄))

− 1

βγ + (−k + γ)q
(D̄eiτcω0(−Dq + kαβ(β + σ)(−1 + eiτcω0βτc)

−(β + σ)(−q + β(−1 + eiτcω0kατc))ρ̄) −D(eiτcω0(kαβ − (β + q)ρ)

+kαβ(−β + ρ)τc)(β + σ̄))].

Collecting the results above, we obtain

1

3!
g1
3(x, 0, µ) =

(

b21x
2
1x2

b̄21x1x2
2

)

+O(µ2|x|),

where b21 = a21 + 1
2
(C1 + C2). Therefore, System (10) can be transformed into the

following normal form:

{

ẋ1 = iτcω0x1 + a1µx1 + b21x
2
1x2 + h.o.t.,

ẋ2 = −iτcω0x2 + ā1µx2 + b̄21x1x
2
2 + h.o.t.,

(16)

where a1 is given in (13). Let x1 = w1+iw2, x2 = w1−iw2 and w1 = r cos ξ, w2 = r sin ξ.
Then (16) can be further written as

{

ṙ = aµr + br3 + h.o.t.,

ξ̇ = τcω0 + h.o.t.,

where a = Re[a1] and b = Re[b21]. Hence the first Lyapunov coefficient is l1(µ) =
b+O(µ), see [3, 13].

Theorem 3.1. Let a and b be given above.

(i) The bifurcating periodic solution is stable if b < 0, and unstable if b > 0;

(ii) The Hopf bifurcation is supercritical if ab < 0, and subcritical if ab > 0.

EJQTDE Spec. Ed. I, 2009 No. 27



16 L. Wang & X. Wu

Remark. The coefficient a is given by

a = Re[a1] =

k2α2(q2 + ω2
0)

β2(α2γ2 + ω2
0)|D|2 [−αω2

0(β
2 − q2 − ω2

0)(β
2γ + (k − γ)(q2 + ω2

0))

+α3(−β4γ3 + β2γ(k2 − 3kγ + 2γ2)(q2 + ω2
0) + (k − γ)3(q2 + ω2

0)
2

+ω4
0(β

2q − (q2 + ω2
0)(q − ω2

0)) − α4(k − γ)2((k − γ)2q(1 + qτc)(q
2 + ω2

0)

−β2γ2(q + q2τc + τcω
2
0)) + α2ω2

0(2kγ(−β2q + 2q3 + q4τc + 2qω2
0 − τcω

4
0)

+k2(β2q − 2q3 − q4τc − 2qω2 + τcω
4
0) + γ2(−(q2 + ω2

0)(2q + q2τc − τcω
2
0)

+β2(2q + q2τc + τcω
2
0))))].

Although the explicit algorithm is derived to compute b, it is difficult to determine the
sign of b for general α, β, γ, k, q. But if i(2) = 0, it is easy to see C1 = C2 = 0 and
hence b can be simply expressed as

b = −3i(3)

|D|2 (β2 + q2 + ω2
0 + 2βq cos(τcω0) − 2βω sin(τcω0))(−kαβ2q + 2β2q

+2β2q2 + q4 − kαβ2q2τc + 2β2ω2
0 + 2q2ω2 − kα2β2τcω

2
0 + ω4

0

+β(β2q + 3q(q2 + ω2
0) − kα(q2 + q3τc − ω2

0 + qτcω
2
0)) cos(τcω0)

+β2(q2 − ω2
0) cos(2τcω0) − β3ω0 sin(τcω0) + 2kαβq sin(τcω0)

−3βq2ω0 sin(τcω0)

+kαβq2τcω0 sin(τcω0) − 3βω3
0 sin(τcω0) − 2β3qω0 sin(2τcω0)).

4 Numerical Simulations

In this section, we give some examples to illustrate the theoretical results obtained in
the previous sections.

Example 1. Let α = 1, β = 0.8, γ = 0.5625, q = 0.9 and

I(s) = tanh(0.5s).

Then (0, 0) is an equilibrium point of System (2), k = 0.5, i(2) = 0, i(3) = −0.041667.
Hence ω+ = 0.6066, and τ+

0 = 3.1382. Take τ = 2.5. According to Theorem 2.2 (ii),
the trivial equilibrium point (0, 0) is asymptotically stable, (Figure 1).

Example 2. Let α = 1, β = 0.8, γ = 0.5625, q = 0.9 and

I(s) = tanh(0.5s).
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Figure 1: The equilibrium point (0, 0) is asymptotically stable when τ < τ+
0 .
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Figure 2: The stable periodic orbit generated by Hopf bifurcation when β < q.
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Figure 3: The stable periodic orbit generated by Hopf bifurcation when β > q.
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Then k = 0.5, i(2) = 0, i(3) = −0.041667 and hence ω+ = 0.6066, τ+
0 = 3.1382. Take

τc = τ+
0 , µ = 0.001. After using the algorithm in Section 3, we have

a = 2.0772, b = −0.0362,

and hence the bifurcating periodic solution is stable and the Hopf bifurcation is super-
critical (Figure 2).

Example 3. Let α = 0.1, β = 0.9, γ = 0.5625, q = 0.5 and

I(s) = tanh(0.9s).

Then k = 0.9, i(2) = 0, i(3) = −0.243 and hence ω+ = 0.7503, τ+
0 = 2.7185. Take

τc = τ+
0 , µ = 0.001. After using the algorithm in Section 3, we have

a = 1.2365, b = −0.0002,

and hence the bifurcating periodic solution is stable and the Hopf bifurcation is super-
critical (Figure 3).
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