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1 Introduction

We consider the second order half-linear differential equation

L(x) :=
(
r(t)Φ(x′)

)′
+ c(t)Φ(x) = 0, (1.1)

where Φ(x) = |x|p−2x is the odd power function and c, r are continuous functions with
r(t) > 0. It is known that the linear Sturmian theory extends almost verbatim to (1.1), see [1,9],
the classical Sturm–Liouville linear differential equation is the special case p = 2 in (1.1). In
particular, (1.1) can be classified as oscillatory or nonoscillatory similarly as in the linear case.

The terminology half-linear equation was introduced by Hungarian mathematicians
I. Bihari and Á. Elbert and reflects the fact that the solution space of (1.1) is only homo-
geneous but not generally additive, so it has just one half of the properties characterizing
linearity.

A “prominent position” in the half-linear oscillation theory has the Euler half-linear dif-
ferential equation (

Φ(x′)
)′
+

γ

tp Φ(x) = 0 (1.2)

which is a typical example of the so-called conditionally oscillatory half-linear equation. Recall
that equation (1.1) with λc(t) instead of c(t) is said to be conditionally oscillatory if there
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exists a constant λ0 (the so-called oscillation constant) such that (1.1) is oscillatory for λ > λ0

and nonoscillatory for λ < λ0. Oscillation constant of Euler equation (1.2) is γp :=
( p−1

p

)p.
The conditional oscillation of (1.2) together with the Sturmian comparison theorem im-

mediately imply the Kneser type (non)oscillation criteria for (1.1) with r(t) = 1, namely, this
equation is oscillatory if

lim inf
t→∞

tpc(t) > γp

and it is nonoscillatory if

lim sup
t→∞

tpc(t) < γp.

These (non)oscillation conditions show that Euler equation (1.2) with the oscillation constant
γp is a kind of borderline between oscillation and nonoscillation of half-linear equations and
suggests the investigation of the limiting case limt→∞ tpc(t) = γp.

In our paper we investigate the influence of perturbations of the critical Euler equation (i.e.,
of (1.2) with γ = γp) on the oscillation behavior of perturbed equations. We are motivated by
the recent papers [6–8, 10, 12, 15, 17] where a similar problem was investigated. In the general
setting, we consider the half-linear equation[(

r(t) + r̂(t)
)
Φ(x′)

]′
+ (c(t) + ĉ(t))Φ(x) = 0 (1.3)

as a perturbation on the nonoscillatory equation (1.1). The situation when a perturbation is
also allowed in the differential term was treated in the linear case in [16]. An extension of the
results of [16] to (1.3) is given in [4, 5, 15]. In [6], the differential equation[(

1 +
n

∑
j=1

αj

Log 2
j (t)

)
Φ(x′)

]′
+

1
tp

(
γp +

n

∑
j=1

β j

Log 2
j (t)

)
Φ(x) = 0 (1.4)

is considered, where the notations

logk(t) = logk−1(log t), log1(t) = log t, Logk(t) =
k

∏
j=1

logj(t)

are used. It was shown that oscillation of (1.4) depends on the value of the constants
β j − γpαj − µp, where µp = 1

2

( p−1
p

)p−1. This statement is proved in [6] using the transfor-
mation theory of the so-called modified Riccati equation associated with (1.4).

As one of the main results of our paper we offer an alternative proof which is simpler and
more straightforward than that given in [6]. As another main result, we prove a conjecture
presented in [2] which concerns perturbations of the half-linear Riemann–Weber differential
equation (sometime also called Euler–Weber equation).

2 Preliminaries

In the oscillation theory of (1.1), an important role is played by the associated Riccati type
differential equation

R[w] := w′ + c(t) + (p− 1)r1−q(t)|w|q = 0,
1
p
+

1
q
= 1, (2.1)

related to (1.1) by the substitution w = rΦ(x′/x). More precisely, the following statement
holds (see [9, p. 50]).
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Proposition 2.1. Equation (1.1) is nonoscillatory if and only if there exists a solution of Riccati equa-
tion (2.1) which is defined on some interval [T, ∞) (the so-called proper solution).

We will also need the so-called modified Riccati equation. Let h be a differentiable function
and let

v(t) = hp(t)w(t)− G(t), G(t) := r(t)h(t)Φ(h′(t)), (2.2)

where w is a solution of (2.1). Then v is a solution of the modified Riccati equation

R[v] := v′ + C(t) + (p− 1)r1−q(t)h−q(t)H(v, G(t)) = 0, (2.3)

where

H(v, G) = |v + G|q − qΦ−1(G)v− |G|q = 0,

Φ−1(x) = |x|q−2x being the inverse function of Φ, and

C(t) = h(t)L(h(t)) = h(t)
[
(r(t)Φ(h′(t)) + c(t)Φ(h(t))]. (2.4)

The modified Riccati operator R is related to (1.1) and (2.1) by the identities

xL(x) = xpR[w] = R[v],

where w = rΦ(x′/x) and v = xpw− G, G = rxΦ(x′), see e.g. [3].
The basic paper dealing with perturbations of the Euler equation is [12]. In that paper,

following the linear case, see [14, Chapter XI], the generalized Riemann–Weber half-linear
differential equation

(
Φ(x′)

)′
+

1
tp

[
γp +

n

∑
j=1

β j

Log 2
j (t)

]
Φ(x) = 0

is considered. It was shown that if

β j = µp :=
1
2

(
p− 1

p

)p−1

, j = 1, . . . , n− 1,

then (3.13) is oscillatory if and only if βn > µp. This result was extended in [6], where
oscillatory properties of (1.4) were investigated, i.e., a perturbation of (1.2) with γ = γp was
also allowed in the term containing Φ(x′). It was shown that if β j−γpαj = µp, j = 1, . . . , n− 1,
then (1.4) is oscillatory if and only if βn − γpαn > µp.

The next part is devoted to the existence of proper solutions of the modified Riccati equa-
tion (2.3).

Proposition 2.2. ([6, Proposition 2.2]). Let h be a continuously differentiable function such that
h′(t) 6= 0 for large t. We denote R(t) = r(t)h2(t)|h′(t)|p−2. Suppose that∫ ∞

R−1(t) dt = ∞ (2.5)

holds and that
lim inf

t→∞
|G(t)| > 0, (2.6)

where G is given by (2.2).
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(i) If C(t) ≤ 0 for large t, where C is given by (2.4), then (2.3) possesses a proper solution, i.e., a
solution which exists on some interval [T, ∞).

(ii) Let C(t) ≥ 0 for large t and
∫ ∞ C(t) dt < ∞. If

lim inf
t→∞

(∫ t
R−1(s) ds

)(∫ ∞

t
C(s) ds

)
>

1
2q

,

then (2.3) possesses no proper solution, i.e., for any solution v of (2.3) and any T ∈ R there
exists T1 > T such that v(T1−) = −∞.

(iii) If
∫ ∞ C(t) dt is convergent and

lim sup
t→∞

(∫ t
R−1(s) ds

)(∫ ∞

t
C(s) ds

)
<

1
2q

,

lim inf
t→∞

(∫ t
R−1(s) ds

)(∫ ∞

t
C(s) ds

)
> − 3

2q
,

then (2.3) has a proper solution.

3 Oscillation and nonoscillation criteria

As an immediate consequence of propositions from the previous sections we have the follow-
ing oscillation criteria for (1.3) viewed as a perturbation of nonoscillatory equation (1.1). We
denote

L̂(x) :=
(
r̂(t)Φ(x′)

)′
+ ĉ(t)Φ(x).

Associated with equation (1.3) the Riccati equation is

w′ + c(t) + ĉ(t) + (p− 1)(r(t) + r̂(t))1−q|w|q = 0 (3.1)

and the modified Riccati equation

v′ + C(t) + Ĉ(t) + (p− 1)(r(t) + r̂(t))1−qh−q(t)H(v, Ω) = 0, (3.2)

with
Ω(t) := (r(t) + r̂(t))h(t)Φ(h′(t)),

C given by (2.4), and

Ĉ(t) = h(t)L̂(h(t)) = h(t)
[(

r̂(t)Φ(h′(t)
)
+ ĉ(t)Φ(h(t)). (3.3)

Theorem 3.1. Let h be a continuously differentiable function such that h′(t) 6= 0 for large t. Suppose
that (2.5) holds with R defined now as

R(t) = (r(t) + r̂(t))h2(t)|h′(t)|p−2

and
lim inf

t→∞
|Ω(t)| > 0. (3.4)
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(i) Suppose that C(t) + Ĉ(t) ≥ 0 for large t and
∫ ∞

[C(t) + Ĉ(t)] dt < ∞, where C, Ĉ are given
by (2.4) and (3.3). If

lim inf
t→∞

(∫ t
R−1(s) ds

)(∫ ∞

t
(C(s) + Ĉ(s)) ds

)
>

1
2q

, (3.5)

then (1.3) is oscillatory.

(ii) If the integral
∫ ∞

[C(t) + Ĉ(t)] dt is convergent and

lim sup
t→∞

(∫ t
R−1(s) ds

)(∫ ∞

t
[C(s) + Ĉ(s)] ds

)
<

1
2q

,

lim inf
t→∞

(∫ t
R−1(s) ds

)(∫ ∞

t
[C(s) + Ĉ(s)] ds

)
> − 3

2q
,

(3.6)

then (1.3) is nonoscillatory.

Proof. The proof immediately follows from Proposition 2.2. First, suppose that (3.5) holds,
and, by contradiction, that (1.3) is nonoscillatory. Then (3.1) has a proper solution w and
v = hpw − Ω is a proper solution of (3.2), a contradiction. Conversely, suppose that (3.6)
holds. Then (3.2) possesses a proper solution v and w = h−p(v + Ω) is a proper solution of
(3.1) which means, by Proposition 2.1, that (1.3) is nonoscillatory.

Now we apply the previous result to the perturbed Euler equation (1.4). Recall that
equation (1.2) with γ = γp is nonoscillatory and one of its solutions is x(t) = t(p−1)/p.
Any solution linearly independent of this function asymptotically behaves as the function
x(t) = Ct(p−1)/p log1/p t, C ∈ R, see [11].

If αj = 0 and β j = µp, j = 1, . . . , n in (1.4), it is shown in [12] that this equation has a
solution asymptotically equivalent to x(t) = t(p−1)/p Log 1/p

n (t). The function of this form is
used in the modified Riccati substitution in the main part of the proof of the next statement.
As we have already mentioned earlier, this statement is proved in [6] using relatively awkward
transformation theory of modified Riccati equation. Our proof here is technically substantially
easier.

Theorem 3.2. Consider equation (1.4).

(i) If β1 − γpα1 > µp, then (1.4) is oscillatory and if β1 − γpα1 < µp then (1.4) is nonoscillatory.

(ii) If β1 − γpα1 = µp, then (1.4) is oscillatory if β2 − γpα2 > µp and it is nonoscillatory if
β2 − γpα2 < µp.

(iii) If β2 − γpα2 = µp, then (1.4) is oscillatory if β3 − γpα3 > µp and it is nonoscillatory if
β3 − γpα3 < µp.
...

(n) If β j − γpαj = µp for j = 1, . . . , n − 1, then (1.4) is oscillatory if βn − γpαn > µp and it is
nonoscillatory if βn − γpαn < µp.

(n+1) If β j − γpαj = µp for all j = 1, . . . , n, then (1.4) is nonoscillatory.
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Proof. Observe that we have for n ≥ 2 and large t the obvious inequalities

Log n(t) > · · · > Log 1(t) = log t > · · · > logn(t). (3.7)

We also have
(
logn(t)

)′
= 1/(t Log n−1(t)) and(

Log n(t)
)′
=

Log n(t)
t

(
1

log t
+

1
Log 2(t)

+ · · ·+ 1
Log n(t)

)
. (3.8)

First, let β1 − γpα1 6= µp. In this case we take h(t) = t(p−1)/p. Then, using the notation

Γp :=
( p−1

p

)p−1 and (3.7), (3.8)

C + Ĉ = h

[(
1 +

n

∑
j=1

αj

Log 2
j (t)

)
Φ(h′)

]′
+

hp

tp

[
γp +

n

∑
j=1

β j

Log 2
j (t)

]

= t
p−1

p

[
Γp

(
1 +

n

∑
j=1

αj

Log 2
j (t)

)
t−

p−1
p

]′
+

1
t

[
γp +

n

∑
j=1

β j

Log 2
j (t)

]

=
β1 − γpα1

t log2 t
+ o
(
t−1 log−2 t

)
as t→ ∞. We have for h(t) = t(p−1)/p

R(t) =

(
1 +

n

∑
j=1

αj

Log 2
j (t)

)
h2(t)|h′(t)|p−2 =

(
p− 1

p

)p−2

t(1 + o(1))

and

Ω(t) =

(
1 +

n

∑
j=1

αj

Log 2
j (t)

)
h(t)Φ(h′(t)) = Γp(1 + o(1))

as t→ ∞. Hence ∫ t
R−1(s) ds =

(
p− 1

p

)2−p

log t
(
1 + o(1)

)
and substituting into (3.5) and (3.6) we have oscillation if

β1 − γpα1 >
1
2q

(
p− 1

p

)p−2

=
1
2

(
p− 1

p

)p−1

= µp

and nonoscillation if β1 − γpα1 < µp. Note that the second limit in (3.6) is not needed in
our case since the term (β1 − γpα1)t−1 log−2 t dominates other terms in C + Ĉ so this term is
eventually of one sign. If it is negative, the statement follows from (i) of Proposition 2.2.

Now, let n ∈ N, β j − γpαj = µp, j = 1, . . . , n − 1, and βn − γpαn 6= µp. Let h(t) =

t(p−1)/p Log 1/p
n−1(t). Then using (3.8),

h′(t) =
p− 1

p
t−

1
p Log

1
p
n−1(t)

(
1 +

1
(p− 1) log t

+
1

(p− 1)Log 2(t)
+ · · ·+ 1

(p− 1)Log n−1(t)

)
and

Φ(h′) = Γpt−
p−1

p Log
p−1

p
n−1(t)

×
(

1 +
1

(p− 1) log t
+

1
(p− 1)Log 2(t)

+ · · ·+ 1
(p− 1)Log n−1(t)

)p−1

.
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Denote F =
(
Φ(h′)

)′. Then

F = t−2+ 1
p Log

p−1
p

n−1t
(

1 +
1

(p− 1) log t
+

1
(p− 1)Log 2(t)

+ · · ·+ 1
(p− 1)Log n−1(t)

)p−2

×
{
−γp

(
1 +

1
(p− 1) log t

+
1

(p− 1)Log 2(t)
+ · · ·+ 1

(p− 1)Log n−1(t)

)
+ γp

(
1

log t
+

1
Log 2(t)

+ · · ·+ 1
Log n−1(t)

)
×
(

1 +
1

(p− 1) log t
+

1
(p− 1)Log 2(t)

+ · · ·+ 1
(p− 1)Log n−1(t)

)
− Γp

[
1

log2 t
+

1
Log 2(t)

(
1

log t
+

1
Log 2(t)

)
+ . . .

+
1

Log n−1(t)

(
1

log t
+ · · ·+ 1

Log n−1(t)

)]}
= t−2+ 1

p Log
p−1

p
n−1(t)

(
1 +

1
log t

+
1

Log 2(t)
+ · · ·+ 1

Log n−1(t)

)p−2

×
{
−γp +

γp(p− 2)
p− 1

(
1

log t
+ · · ·+ 1

Log n−1(t)

)
− γp

(
1

log2 t
+ · · ·+ 1

Log 2
n−1(t)

)

−
Γp(p− 2)

p ∑
1≤i<j≤n−1

1
Log i(t)Log j(t)

}
.

Denote by A the expression in {·} in the last computation and let

B :=
(

1 +
1

(p− 1) log t
+

1
(p− 1)Log 2(t)

+ · · ·+ 1
(p− 1)Log n−1(t)

)p−2

.

Then using (3.7)

B = 1 +
p− 2
p− 1

(
1

log t
+ · · ·+ 1

Log n−1(t)

)
+

(p− 2)(p− 3)
2(p− 1)2

(
1

log t
+ · · ·+ 1

Log n−1(t)

)2

+ O
(
log−3 t

)
and

A · B = − γp +
γp(p− 2)

p− 1

(
1

log t
+ · · ·+ 1

Log n−1(t)

)
−

γp(p− 2)
p− 1

(
1

log t
+ · · ·+ 1

Log n−1(t)

)
− γp

(
1

log2 t
+ · · ·+ 1

Log 2
n(t)

)
+

γp(p− 2)2

(p− 1)2

(
1

log t
+ · · ·+ 1

Log n−1(t)

)2

−
γp(p− 2)(p− 3)

2(p− 1)2

(
1

log t
+ · · ·+ 1

Log n−1(t)

)2

−
Γp(p− 2)

p ∑
1≤i<j≤n−1

1
Log i(t)Log j(t)

+ O
(
log−3 t

)
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= − γp + γp

(
−1

(p− 2)2

(p− 1)2 −
(p− 2)(p− 3)

2(p− 1)2

)(
1

log2 t
+ · · ·+ 1

Log 2
n−1(t)

)

+ γp

(
2(p− 2)2

(p− 1)2 −
(p− 2)(p− 3)

(p− 1)2

)
∑

1≤i<j≤n−1

1
Log i(t)Log j(t)

−
Γp(p− 2)

p ∑
1≤i<j≤n−1

1
Log i(t)Log j(t)

+ O
(
log−3 t)

= − γp −
(

p− 1
p

)p p
2(p− 1)

n−1

∑
j=1

1
Log 2

j (t)

+ (p− 2)
(

γp

p− 1
−

Γp

p

)
∑

1≤i<j≤n−1

1
Log i(t)Log j(t)

+ O
(
log−3 t)

=− γp − µp

n−1

∑
j=1

1
Log 2

j (t)
+ O

(
log−3 t)

as t→ ∞. Hence

h
(
Φ(h′)

)′
= −

Log n−1(t)
t

(
γp + µp

n−1

∑
j=1

1
Log 2

j (t)
+ O

(
log−3 t

))
.

Next we estimate the term Log n−1(t)/(t log3 t). To do this, observe that for ε ∈ (0, 1) we
have for n ≥ 2

lim
t→∞

Log n−1(t)

log1+ε t
= 0,

as can be shown by a direct computation and hence for large t

∫ ∞

t

Log n−1(s)

s log3 s
ds <

∫ ∞

t

1
s log2−ε

ds =
const

log1−ε t
.

Consequently, for any integer k ≥ 2

lim
t→∞

logk(t)
∫ ∞

t

Log n−1(s)

s log3 s
ds = 0. (3.9)

This shows (see below) that we can neglect the terms O
(

Log n−1(t)/(t log3 t)
)

in some of the
next computations.

Using the previous computations

[
Φ(h′)

Log 2
j (t)

]′
= −

2Γp Log
p−1

p
n−1(t)

t2− 1
p log t Log 2

j (t)

(
1 + o(1)

)
+

(Φ(h′))′

Log 2
j (t)

=
Log

p−1
p

n−1(t)

t2− 1
p

(
−γp − µp

n−1

∑
j=1

1
Log 2

j (t)
+ O

(
log−3 t

))
.

and so
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h

(
αj

Log 2
j (t)

Φ(h′)

)′
= −αjγp

Log n−1(t)

t Log 2
j (t)

+ O
(

Log n−1(t)t
−1 log−3 t

)
.

Denote

LE(h) :=

[(
1 +

n

∑
j=1

αj

Log 2
j (t)

)
Φ(h′)

]′
+

1
tp

[
γp +

n

∑
j=1

β j

Log 2
j (t)

]
Φ(h).

Then

hLE(h) = −
γp Log n−1(t)

t
−

n−1

∑
j=1

(µp + αjγp)Log n−1(t)

t Log 2
j (t)

−
γpαn Log n−1(t)

t Log 2
n(t)

+
γp Log n−1(t)

t
+

n

∑
j=1

β j Log n−1(t)

t Log 2
j (t)

+ O
(

Log n−1(t)t
−1 log−3 t

)
=

n−1

∑
j=1

(β j − µp − αjγp)Log n−1(t)

t Log 2
j (t)

+
(βn − γpαn)Log n−1(t)

t Log 2
n(t)

=
βn − γpαn

t Log n−1(t) log2
n(t)

+ O
(

Log n−1(t)t
−1 log−3 t

)
,

which means, in view of (3.9), that∫ ∞

t
[C(s) + Ĉ(s)] ds =

∫ ∞

t
h(s)LE(h(s)) ds = (1 + o(1))

βn − γpαn

logn(t)
.

We finish this part of the proof by applying Theorem 3.1. We have by a direct computation
for h(t) = t(p−1)/p Log 1/p

n−1(t) and r̂(t) = ∑n
j=1

αj

Log 2
j (t)

(1 + r̂(t))h2(t)|h′(t)|p−2 =

(
p− 1

p

)p−2

t Log n−1(t)(1 + o(1)),

i.e., ∫ t
R−1(s) ds = (1 + o(1))

(
p− 1

p

)2−p

logn(t).

Consequently,

lim
t→∞

(∫ t
R−1(s) ds

)(∫ ∞

t
[C(s) + Ĉ(s)] ds]

)
=

(
p− 1

p

)2−p

(βn − γpαn).

Since 1
2q

( p−1
p

)p−2
= µp, the statement of the theorem follows from Theorem 3.1.

If the equality β j − γpαj = µp holds for j = 1, . . . , k− 1 and βk − γpαk = µp for some index

k ≤ n− 1, we use the transformation function h(t) = t(p−1)/p Log 1/p
k−1(t). A computation, quite

analogous to the previous one with n = k, gives

hLE(h) =
(βk − γpαk)Log k−1(t)

t Log 2
k(t)

+
n

∑
j=k+1

(β j − γpαj)Log k−1(t)

t Log 2
j (t)

+ O
(

Log k−1(t)t
−1 log−3 t

)
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as t→ ∞. By a direct computation similar to that proving (3.9) we find that

lim
t→∞

logk(t)
∫ ∞

t

(
n

∑
j=k+1

(β j − γpαj)Log k−1(s)

s Log 2
j (s)

)
ds = 0.

Hence the term (βk − γpαk)/(t Log k−1(t) log2
k(t)) dominates other ones in hLE(h) and the

statement follows from Theorem 3.1 since∫ ∞

t

1
s Log k−1(s) log2

k(s)
ds =

1
logk(t)

.

Finally, suppose that β j − γpαj = µp for all j = 1, . . . , n. In this case we use the transfor-
mation function h(t) = t(p−1)/p Log 1/p

n (t) with the result

hLE(h) = O
(

Log n(t)t
−1 log−3 t

)
and nonoscillation of (1.4) follows from Theorem 3.1 and considerations prior to (3.9).

Now we turn our attention to the second main result of the paper, (non)oscillation criteria
for the perturbed generalized Riemann–Weber equation. In [2], influence of perturbations of
the half-linear Riemann–Weber equation with critical coefficients

(
Φ(x′)

)′
+

(
γp

tp +
µp

tp log2 t

)
Φ(x) = 0 (3.10)

on its oscillatory behavior were investigated. It was shown [2, Corollary 1] that the equation

(
Φ(x′)

)′
+

(
γp

tp +
µp

tp log2 t
+ c(t)

)
Φ(x) = 0 (3.11)

is oscillatory provided ∫ ∞
c(t)tp−1 log t dt = ∞ (3.12)

and it is nonoscillatory provided the integral
∫ ∞ c(t)tp−1 log t dt is convergent and

lim sup
t→∞

log2(t)
∫ ∞

t
c(s)sp−1 log s ds < µp,

lim inf
t→∞

log2(t)
∫ ∞

t
c(s)sp−1 log s ds > −3µp.

It was conjectured that under the assumption that c(t) ≥ 0 for large t, equation (3.11) is
oscillatory provided

lim inf
t→∞

log2(t)
∫ ∞

t
c(s)sp−1 log s ds > µp.

We will prove this conjecture in the general case, when oscillation of perturbed generalized
half-linear Riemann–Weber equation with the critical coefficients

(
Φ(x′)

)′
+

(
γp

tp +
n

∑
j=1

µp

tp Log 2
j (t)

+ c(t)

)
Φ(x) = 0 (3.13)

is investigated.
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Theorem 3.3. Suppose that the integral
∫ ∞ c(t)tp−1 Log n(t) dt is convergent.

(i) If

lim sup
t→∞

logn+1(t)
∫ ∞

t
c(s)sp−1 Log n(s) ds < µp,

lim inf
t→∞

logn+1(t)
∫ ∞

t
c(s)sp−1 Log n(s) ds > −3µp,

(3.14)

then equation (3.13) is nonoscillatory.

(ii) Suppose that there exists a constant γ >
2γp p(p−2)

3(p−1)2 such that

c(t)tp log3 t ≥ γ for large t. (3.15)

If

lim inf
t→∞

logn+1(t)
∫ ∞

t
c(s)sp−1 Log n(s) ds > µp, (3.16)

then (3.13) is oscillatory.

Proof. We again use the modified Riccati substitution v = hpw−G with h(t) = t(p−1)/p Log n(t).
In addition to the computation in the proof of Theorem 3.2, we will also compute explicitly
the coefficient by log−3 t in the formula for h(t)LE(h(t)). We have for

B :=
(

1 +
1

(p− 1) log t
+

1
(p− 1)Log 2(t)

+ · · ·+ 1
(p− 1)Log n−1(t)

)p−2

the expansion

B = 1 +
p− 2
p− 1

(
1

log t
+ · · ·+ 1

Log n−1(t)

)
+

(p− 2)(p− 3)
2(p− 1)2

(
1

log t
+ · · ·+ 1

Log n−1(t)

)2

+

+
(p− 2)(p− 3)(p− 4)

6(p− 1)3

(
1

log t
+ · · ·+ 1

Log n(t)

)3

+ o
(
log−3 t

)
as t → ∞. Multiplying this expansion by the expression A from the proof of Theorem 3.2 we
find that the coefficient by log−3 t is

γp

[
− (p− 2)(p− 3)(p− 4)

6(p− 1)3 +
(p− 2)2(p− 3)

2(p− 1)3 − p− 2
p− 1

]
=

2γp p(2− p)
3(p− 1)2 .

Denote

LRW(x) :=
(
Φ(x′)

)′
+

[
γp

tp +
n

∑
j=1

µp

Log 2
j (t)

+ c(t)

]
Φ(x).

Then

h(t)LRW(h(t)) =
2γp p(2− p)

3(p− 1)2
Log n(t)
t log3(t)

+ c(t)tp−1 Log n(t) + o
(

Log n(t)/(t log3 t)
)

=
Log n(t)
t log3 t

[
2γp p(2− p)

3(p− 1)2 + c(t)tp log3 t + o(1)
]

.
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In part (ii) of Theorem 3.1 we need no sign restriction on the function h[L(h) + L̂(h)] which
equals hLRW(h) in our case. Similarly as in the proof of Theorem 3.2

∫ t
R−1 = (1 + o(1))

(
p− 1

p

)2−p

logn+1(t)

and

lim
t→∞

logn+1(t)
∫ ∞

t

Log n(t)
t log3 t

= 0.

Then (3.14) is rewritten as (3.6). In the oscillation part (i) of Theorem 3.1 we need h[L(h) +
L̂(h)] ≥ 0 for large t which leads to restrictions (3.15). Formula (3.16) is then rewritten as
formula (3.5).

4 Remarks and comments

(i) Perturbations of the critical Euler equation(
Φ(x′)

)′
+

γp

tp Φ(x) = 0

investigated in our paper contain iterated logarithms as appeared in (1.4). A natural question
is whether one can investigate also other perturbations which “match together” similarly as
the pairs αj

Log 2
j (t)

and β j

tp Log 2
j (t)

in (1.4). Consider the equation

[(
1 + λα(t)

)
Φ(x′)

]′
+
[γp

tp + µβ(t)
]

Φ(x) = 0, (4.1)

where λ, µ are real-valued parameters. The modified Riccati substitution (2.2) with h(t) =

t(p−1)/p applied to (4.1) yields the modified Riccati equation (as can be verified by a direct
computation)

v′ + λΓpt
p−1

p

(
α(t)t−

p−1
p

)′
+ µtp−1β(t) +

p− 1
t(1 + α(t))q−1 H(v, Γp) = 0. (4.2)

Under the assumption α(t) = o(1) as t → ∞ (in order to have the function 1 + λα(t) positive
for large t for any λ ∈ R) the limited expression in Theorem 3.1 is

log t
∫ ∞

t

[
λΓps

p−1
p

(
α(s)s−

p−1
p

)′
+ µsp−1β(s)

]
ds.

Consequently, if

lim
t→∞

log t
∫ ∞

t
s

p−1
p

(
α(s)s−

p−1
p

)′
ds =: Lα,

lim
t→∞

log t
∫ ∞

t
sp−1β(s) ds =: Lβ

exist finite, by Theorem 3.1 (non)oscillation of (4.1) depends on whether

λΓpLα + µLβ
>
<

1
2q

.
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(ii) In [4], a general approach to two-parametric conditional oscillation of half-linear equa-
tions was treated. More precisely, the half-linear equation[

(r(t) + λr̂(t))Φ(x′)
]′
+ [c(t) + µĉ(t)]Φ(x) = 0 (4.3)

was investigated as a perturbation of (1.1). It is shown that if h is a positive solution of (1.1),
then under (2.5) and (2.6) the pair r̂, ĉ form a matching pair (oscillation of (4.3) depends on the
value of a linear combination of λ, µ) provided there exist limits (the second one being finite)

lim
t→∞

r(t)|h′(t)|p
c(t)hp(t)

, lim
t→∞

(
r̂(t)Φ( f ′(t))

)′
ĉ(t)Φ( f (t))

,

where f (t) = h(t)
(∫ t R−1(s) ds

)1/p with R = rh2|h′|p−2. Using the transformation approach
we can suggest another condition for a matching pair, namely the existence of the finite limits

lim
t→∞

(∫ t
R−1(s) ds

)(∫ ∞

t
h(s)

(
r̂(s)Φ(h′(s))

)′ ds
)

,

lim
t→∞

(∫ t
R−1(s) ds

)(∫ ∞

t
hp(s)ĉ(s) ds

)
.

(iii) We have used in Theorem 3.3 as a transformation function in the modified Riccati
substitution the function h(t) = t(p−1)/p Log 1/p

n (t). This function asymptotically approx-
imates the so-called principal solution of (3.13) with c(t) ≡ 0, see [12, 13]. In [12], it is
shown that nonprincipal solutions of this equation behave asymptotically as the function
h̃(t) = Ct(p−1)/p Log 1/p

n (t) log2/p
n+1(t), C ∈ R. This suggests to use this function in the modi-

fied Riccati substitution as well. This would lead to (non)oscillation criteria where the limited
formulas in Theorem 3.3 are replaced by

1
logn+1(t)

∫ t
c(s)sp−1 Log n(s) log2

n+1(s) ds.

This problem is a subject of the present investigation. Note that in case n = 0 criteria of this
kind are given in [10].
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