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Abstract

The method of upper and lower solutions and quasilinearization for nonlinear
singular equations of the type

—2"(t) + X2 (t) = f(t,z(t)), t € (0,1),
subject to nonlocal three-point boundary conditions
2(0) = dx(n), 2(1)=0, 0<y<1,

are developed. Existence of a C'! positive solution is established. A monotone
sequence of solutions of linear problems converging uniformly and rapidly to a
solution of the nonlinear problem is obtained.
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1 Introduction
Nonlocal singular boundary value problems (BVPs) have various applications in chem-

ical engineering, underground water flow and population dynamics. These problems
arise in many areas of applied mathematics such as gas dynamics, Newtonian fluid
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mechanics, the theory of shallow membrane caps, the theory of boundary layer and so
on; see for example, [2, 7, 12, 13, 16] and the references therein. An excellent resource
with an extensive bibliography was produced by Agarwal and O’Regan [1]. Existence
theory for nonlinear multi-point singular boundary value problems has attracted the
attention of many researchers; see for example, [3, 4, 5, 14, 15, 17, 18] and the references
therein.

In this paper, we study existence and approximation of Cl-positive solution of a
nonlinear forced Duffing equation with three-point boundary conditions of the type

—2"(t) + X' (t) = f(t,z(¢)), t € (0,1),

e —1 (1)

z(0) =dz(n), =(1)=0, 0<n<1,0<5<m,

where the nonlinearity f: (0,1) x R\ {0} — R is continuous and may be singular at

x=0,t=0and/or t = 1. By singularity we mean the function f(t,z) is allowed to be

unbounded at z = 0, t = 0 and/or ¢t = 1 and by a C'-positive solution z we mean that

z € C[0,1] N C?(0,1) satisfies (1), x(t) > 0 for ¢ € (0,1) and both 2/(0+) and z/(1—)
exist,.

For the existence theory, we develop the method of upper and lower solutions and to
approximate the solution of the BVP (1), we develop the quasilinearization technique
[5, 8, 9, 10, 11]. We obtain a monotone sequence of solutions of linear problems
and show that, under suitable conditions on f, the sequence converges uniformly and
quadratically to a solution of the original nonlinear problem (1).

2 Some basic results

For u € C[0, 1] we write ||u| = max{|u(t)| : ¢t € [0,1]}. For any A € R\ {0}, consider
the singular boundary value problem

—2"(t) + A\ (t) = f(t,z(t)), t € (0,1),

0)=4 1)=0, 0 Lo<oc ] @
2(0) = dz(n), (1) =0, <n<LU< <m-
We seek a solution x via the singular integral equation
1 (e>‘ . eAt)5 1
o) = [ Gt as+ S [ Gt @
where
A 1 A As 1
Git,s) = 1 (e et —et), 0<t<s<l,
Aers(er —=1) | (e* —1)(er —eM), 0<s<t<],

is the Green’s function corresponding to the homogeneous two-point BVP
—2"(t)+ X' (t) =0, t € (0,1),
z(0) =0, z(1)=0.
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Three Point Boundary Value Problems 3

Clearly, G(t,s) > 0 on (0,1) x (0,1). From (3), > 0 on [0, 1] provided f > 0. Hence
for a positive solution we assume f > 0 on [0,1] x R.
We recall the concept of upper and lower solutions for the BVP (2).

Definition 2.1. A function « is called a lower solution of the BVP (2) if a € C[0,1]N
C?(0,1) and satisfies

—a"(t) + A (t) < f(t,a(t), te€(0,1),
a(0) < da(n), a(l) <O0.

An upper solution 3 € C[0,1]NC?(0,1) of the BVP (2) is defined similarly by reversing
the inequalities.

Choose b > 7, a finite positive number, such that § < Q

neous linear problem

Since the homoge-

—2"(t)+ \a'(t) =0, t € [0,0],
z(0) =0, x(b)=0,

has only the trivial solution, hence, for any o € C[0,b] and p, 7 € R, the corresponding
nonhomogeneous linear three point problem

2"(t) + \(t) = o(t), t € [0,0],

20)—ox(n) =7, a(b)=p, 0<n<b 0<s< __ein, @)
has a unique solution

/ths ds+ {5/ Go(n, s)o(s)ds + 7} + %t) (5)
where Wh(t) = (X — 1) + §(eM — eA) D= — §(e — ) and

1 eAt_l 6>‘b—6>‘s, 0<t<$<b,

Aers(ed —1) | (e* —1) (e —eM), 0<s<t<b

We note that ¥ (t) > 0 on [0,b] and if 7> 0, p > 0 and o > 0 on [0,b], then z > 0
on [0,b]. Thus, we have the following comparison result (maximum principle):
Maximum Principle: Let §, n € R such that 0 < § < 67_1,] and 0 < n < b. For

any z € C1[0, ] such that
2"(t) + M\2'(t) > 0, ¢t € (0,b), z(0) — dx(n) > 0 and z(b) > 0,
we have z(t) > 0, t € [0,].
In the following theorem, we prove existence of a C[0, 1] positive solution of the
singular BVP (2). We generate a sequence of C'*[0, 1] positive solutions of nonsingular

problems that has a convergent subsequence converging to a solution of the original
problem.
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Theorem 2.1. Assume that there exist lower and upper solutions o, € C|0,1] N
C?(0,1) of the BVP (2) such that a(1) = 3(1), and 0 < a < 3 on [0,1), and a(0) —
da(n) < B(0) — 65(n). Assume that f : (0,1) x R\ {0} — (0,00) is continuous and
there exists h(t) such that e h(t) € L'[0,1] and

[f(t,2)] < h(t) if © € [a, b, (6)

where & = min{a(t) : t € [0,1]} = 0 and 3 = max{3(t) : t € [0,1]}. Then the BVP
(2) has a C*0,1] positive solution x such that o(t) < z(t) < B(¢), t € [0,1].

Proof. Let {a,}, {b,} be two monotone sequences satisfying
0< " <ap, <<y <n<bh<---<b,<---<1

and are such that {a,} converges to 0, {b,} converges to 1. Clearly, U ,[a,,b,] =

n=1
(0,1). Let a(ay) — da(n) < B(a,) — d5(n) for sufficiently large n, and choose two null
sequences {7,,} and {p,} [that is, {7, } and {p,} both converge to 0] such that

a(an) — da(n) < 7, < Blan) — 06(n),

alb,) < p, < pB(b,),n=1,23,.... 0

Define a partial order in C[0,1]NC?(0,1) by = < y if and only if x(¢) < y(t), t € [0, 1].
Define a modification F' of f with respect to a, 3 as follows:

F(B0) + 525k, if x> B(),
F(t,z) = { f(t (1)), it a(t) <z < B(t), (8)

f(ta®) + 5855 it T <a().

Clearly, F' is continuous and bounded on (0, 1) x C[0, 1]. For each n € N, consider the
nonsingular modified problems

— 2" (t) + M\ (t) = F(t,x), t € [an, bn],

(9)
We write the BVP (9) as an equivalent integral equation
bn (eXn — M) bn
z(t) = Gn(t,s)F(s,z)ds + T{é Gn(n,8)F(s,z)ds + 7,}
o " an (10)
nyYn t
+2 Unl ), t € [an, by,

where D,, = (en — eran) — §(eMr — M) 1, (1) = (eM — ) + §(eM — eM) and

1 (eAt _ eAan)(e)\bn _ 6)\3)’ ap S
)\e)\s(e)\bn _ e)\an) (6)\8 o e)\an)<e)\bn _ 6)\t>, a, S

G(t,s) =
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Three Point Boundary Value Problems 5t

Clearly, G, (t,s) — G(t,s) as n — oo. By a solution of (10), we mean a solution of the
operator equation

(I —T,)x =0, that is, a fixed point of T,

where I is the identity and for each z € Cla,, b,], the operator T,, : Clay,, b,] — C|a,, b,]
is defined by

b (eXn — M) bn
T.(z)(t) = G, (t,s)F(s,z)ds + T{é Gn(n,s)F(s,z)ds + 7,}
: T -
pn n
+ D t € [ay, by].

Since F' is continuous and bounded on [a,, b,] X C|ay,, b,] for each n € N, hence T, is
compact for each n € N. By Schauder’s fixed point theorem, T;, has a fixed point (say)
x, € Clay, by,] for each n € N.
Now, we show that
a <z, <fBonla,,b,], neN

and consequently, z,, is a solution of the BVP

— 2" (t) + A/ (t) = f(t,x(t)), t € [an, bn),

z(an) — 0x(n) =7, (byp) = p. (12)

Firstly, we show that o < z,, on [ay,, b,], n € N.
Assume that a £ z,, on [ay, b,]. Set z(t) = x,(t) — a(t), t € [an, by, then
z € C'an, b, and z # 0 on [ay, by,]. (13)

Hence, z has a negative minimum at some point tq € [a,,b,]. From the boundary
conditions, it follows that

z(an) — 62(n) = [zn(an) — d2,(n)] = a(an) — da(n)] = 7 — 7, = 0,
2(bn) = 2n(bn) — a(bn) > pn — pn > 0.

Hence, ty # b,. If ty # a,, then

(14)

Z(to) < 0, Zl(to) =0, ZI/<t0) > 0.
However, in view of the definition of F' and that of lower solution, we obtain

z(to)

—— >0,
1+ |2(to)]

—Z”<t0) = —ZI/(to) + )\Z/<t0) Z
a contradiction. Hence z has no negative local minimum.
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If ty = a,, then z(a,) < 0 and 2/(a,) > 0. From the boundary condition (14), we

have z(n) < $z(a,) < 0. Let [t1,t5] be the maximal interval containing 7 such that

2(t) <0, t € [t1,ts]. Clearly, t; > a,, ts < b, and 2(t;) > z(a,) > §z(n). Further, for
t € [t1, 2], we have

2(t)

—Z (O + M) 2 6 elt) - T

— f(t,a(t) > 0.

Hence, by comparison result, z > 0 on [¢1, 5], again a contradiction. Thus, o < x,, on
[y, by].

Similarly, we can show that z,, < 3 on [ay,, b,].

Now, define

oxn,(n) + 71, if0<t <a,
up(t) = < x,(t), if a, <t < b,
Pn, 10, <t < 1.

Clearly, u, is continuous extension of z,, to [0,1] and o < u,, < (3 on [a,, b,]. Since,
Un(t) = 02,(n) + T = Tp(an), t € [0, a,),
Un(t) = pn = 2, (bn), t € [by, 1].

Hence,
a<u, <fFonl0,1],neN.

Since [ay, b1] C [an, by], for each n there must exist t,, € (ay,b;) such that

Up(b1) — un(ar)

by —ay

[ ()| < M [, (£0)] = | | <N,

where M = maxe(a, oy {|a ()], [8(t)], N = 2L . We can assume that

b1—ay

tn — to - [al,bl],
un(tn) — o € [a(to), B(to)];

u,(t,) — x5 € [N, N], as n — o0

By standard arguments [6], (also see [1, 3, 14]), there is a C[0, 1] positive solution z(t) of
(2) such that « <z < B on [0, 1], z(ty) = w0, '(ty) = x(, and a subsequence {u,;(t)} of
{un(t)} such that u,;(t), u,;(t) converges uniformly to x(t), 2'(t) respectively, on any
compact subinterval of (0, 1).

Now, using (6), we obtain

| = (@ ®)e™)] = e|f(t,2(t)] < e™™A(t) € L[0,1],

which implies that x € C[0, 1]. O
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Three Point Boundary Value Problems 7

3 Approximation of solution

We develop the approximation technique (quasilinearization) and show that under suit-
able conditions on f, there exists a bounded monotone sequence of solutions of linear
problems that converges uniformly and quadratically to a solution of the nonlinear
original problem. Choose a function ®(¢,x) such that ®, ®,, ®,, € C([0,1] x R),

®,.(t,x) > 0 for every t € [0,1] and x € [0, (]

and
2

%W, 2) + ®(t,2)] > 0 on (0,1) x (0, 7. (15)

Here, we do not require the condition that aa—;gf(t, x) > 0on (0,1) x (0,3].
Define F': (0,1) x R — R by F(t,x) = f(t,z) + ®(¢t,x). Note that FF € C((0,1) x R)
and
0? _
@F<t7 .T) > 0 on (07 1) X <O7ﬁ]7 (16)

where 3 = max{3(t) : t € [0,1]}.
Theorem 3.1. Assume that

(A1) «, B are lower and upper solutions of the BVP (1) satisfying the hypotheses of

Theorem 2.1.
(A2) f, for fee € C((0,1) X R) and there exist hy, ho, hy such that e *h; € L'[0,1]
and o
) < halt) for lal < Bt € (0,1), i =0,1,2.

Moreover, f is non-increasing in x for each t € (0,1).

Then, there exists a monotone sequence {w,} of solutions of linear problems converging
uniformly and quadratically to a unique solution of the BVP (2).

Proof. The conditions (A;) and (Ay) ensure the existence of a C'! positive solution z
of the BVP (2) such that

alt) < 2(t) < B(t). t € [0,1]
For ¢t € (0, 1), using (16), we obtain

f(t,[L‘) > f(tay) + Fx(tay)(x - y) - [(I)(t,l‘) - (b(tay)]? (17)

where z, y € (0,5]. The mean value theorem and the fact that ®, is increasing in x

on [0, 5] for each t € [0, 1], yields

O(t,x) = (t,y) = Pu(t,0)(z —y) < Ot f)(w —y) for v >y, (18)
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where z, y € [0, 3] such that y < ¢ < x. Substituting in (17), we have
ft.z) = f(ty) + [Falt,y) — @u(t, B)(z —y), forz >y (19)
n (0,1) x (0, 8]. Define g: (0,1) x R x R\ {0} — R by
gt w,y) = f(ty) + [Fe(ty) — Du(t, B))(z — y). (20)

We note that g(t,z,y) is continuous on (0,1) x R x R\ {0}. Moreover, for every
t € (0,1) and z, y € (0, 3], g satisfies the following relations

gx(taxay) - Fa&(tay) - (b$(t’B) < Fx(tay) - (I)x(tay) = fﬂ&(tay) < 0 and

f(t,x) > g(t z,y), for z >y,
f(ta ):g(t ZL‘,IL‘).

Moreover, for every ¢ € (0,1) and z,y € (0, 3], using mean value theorem, we have

g(t,z,y) = f(ty) + folt,y) (@ —y) — Pua(t, ) (B —y)(z —y),

where y < ¢ < 3. Consequently, in view of (A;), we obtain

(21)

|g(t,[L‘,y)| < |f(tay)| + |fx(tay)||(x - y)| + |(I>m&(tac)||6 - y||l‘ - y|
< hy(t) + ho(t)B + M = H(t) (say), for every t € (0,1) and z,y € (0, 3],
(22)

where M = max{|®,.(t,c)||8 —y|lx —y|: t €[0,1], 2, y € [0, 5]}. Hence
e MH(t) = e Mhy(t) + e Mho(t)f 4+ e MM e L0, 1].

Now, we develop the iterative scheme to approximate the solution. As an initial ap-
proximation, we choose wy = a and consider the linear problem

—z"(t) + A’ (t) = g(t, z(t), wo(t)), t € (0,1)
2(0) = d0x(n), (1) =

Using (21) and the definition of lower and upper solutions, we get

b (23)

gt wo(t), wo(t)) = f(t, wo(t)) = —wi(t) + Awg(t), t € (0,1),
wo(0) < 6(wo(n)), wo(1) <0,

(1)) < =B"(t) + AF'(t), t € (0, 1),
>
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Three Point Boundary Value Problems 9

which imply that wy and  are lower and upper solutions of (23) respectively. Hence
by Theorem 2.1, there exists a C'* positive solution w; € C[0,1]NC?%(0,1) of (23) such
that

we < wp < B on [0,1].

Using (21) and the fact that w; is a solution of (23), we obtain

—wy () + Mwi(t) = g(t, wi(t), wo(t)) < f(t,wi(t)), t € (0,1)
w1 (0) = dwy(n), wi(1) =0,

which implies that w; is a lower solution of (2). Similarly, in view of (A;), (21) and
(24), we can show that w; and [ are lower and upper solutions of

—z"(t) + A/ (t) = g(t, z(t), wi (1)), t € (0,1)
2(0) = dx(n), x(1) =

Hence by Theorem 2.1, there exists a C! positive solution w; € C[0,1] N C?*(0,1) of
(25) such that

N 29

wy <wy < B on [0,1].

Continuing in the above fashion, we obtain a bounded monotone sequence {w,} of
C10,1] positive solutions of the linear problems satisfying

wo <wyp <wy <wsz < ... <w, <Fon0,1], (26)
where the element w,, of the sequence is a solution of the linear problem

—2"(t) + M\ (t) = g(t, x(t), w,_1(¢)), t € (0,1)
)

and for each t € (0,1), is given by

wn(t):/o G(t, 5)g(s, wn(s), wp_1(8))ds+

(6)‘ _ eAt)(;

' (27)
(X —1) — 8(e* — ) /0 G(1,5)9(5,wn(s), wa_1(s))ds.

The monotonicity and uniform boundedness of the sequence {w,,} implies the existence
of a pointwise limit w on [0, 1]. From the boundary conditions, we have

0 = w,(0) — dw,(n) — w(0) — dw(n) and 0 = w,(1) — w(1).

Hence w satisfy the boundary conditions. Moreover, from (22), the sequence {g(t, w,, w,_1)}
is uniformly bounded by hs(t) € L'[0,1] on (0,1). Hence, the continuity of the
function g on (0,1) x (0,8] x (0,0] and the uniform boundedness of the sequence
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{g(t, wy, w,_1)} implies that the sequence {g(t, w,,w,_1)} converges pointwise to the
function g¢(t,w,w) = f(t,w). By Lebesgue dominated convergence theorem, for any
€ (0,1),

/0G(t,s)g(s,wn(s),wn1(5))d$ﬁ/0 G(t,s)f(s,w(s))ds.

Passing to the limit as n — oo, we obtain

w(t) :/0 G(t,8)g(s,w(s), w(s))ds + & _(16) __56(6/\)5_ o /0 G(n,s)g(s,w(s),w(s))ds

B 1 (e)‘ At)(; 1 .
- [ st wonis+ == s [ s wlas. te 0.1)

that is, w is a solution of (2).

Now, we show that the convergence is quadratic. Set v, (t) = w(t) —w,(t), t € [0, 1],
where w is a solution of (2). Then, v,(¢) > 0 on [0, 1] and the boundary conditions
imply that v,,(0) = dv,(n) and v,(1) = 0. Now, in view of the definitions of F" and g,
we obtain

—un(t) + Av, (8) = f(t, w(t)) — g(t, wn(t), wn-1(t))
= [F(t, w(t)) — (t, w(t))]
= [f(t; wna (1) + (Fa(t, waa () — Pu(t, B)) (wa(t) — was(1))] (28)
= [F(t,w(t)) = F(t, wn1(t)) = Fe(t, wn (1)) (wn(t) — wna(1))]

— [0, w(t)) — ®(t, wa1(t)) — Pu(t, B)) (wa(t) — wnir(t))], t € (0,1).

Using the mean value theorem repeatedly and the fact that ®,, > 0 on [0,1] x [0, 3],
we obtain, ®(¢, w(t)) — ®(t, w,_1(t)) > P (t, wy_1(t))(w(t) — w,_1(t)) and
Pt () — P 1)) — Fults wn1(8))(w(t) — wn1(5)
= Fo(t, wna (1) (w(t) — waa (1) +
— Fo(t, wn-1(8)) (wn(t) — wn-1(t))

= F(twr () w(0) — w() + 22288 (1) o,y 1)
< Fyftswa a0 w(t) — wn(0) + 225 o, 2 e (0,),

where w,_1(t) < & < w(t) and ||v]| = max{v(t) : t € [0,1]}. Hence the equation (28)
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can be rewritten as

(1) + M (1) < Fult e (8)(w() — (1) + T e
= Bt () 0(E) — wr(8)) + Dt B)) (1) — (1)
= Fa(twa () (®) — (1) + TSy e

+ [0 (t, 5) — Pult, wna (1) (wn

(t) — wp_1(t))
< Bl S 00 0,€0)(F — e () (D) — i (1)

S fzx(t7€1) ; (I)mm(tagl)
< P8y e (g ) ee) — w0 1€ 0.1
(20)

where w;,_1(t) < & < wy(t), dy = max{|®y,| : (t,x) € [0,1] x [0, ]} and we used the
fact that f, < 0on (0,1) x (0, 5]. Choose r > 1 such that

6(t) — wna(8)] < rlw(t) — wn1(t)] on [0,1].

lon—1]l* + oo (t, £2)(B — wn1 () (w(t) — w1 (t))

We obtain

—oll(t) + Ml () < (fm(t, &)

2

hs(t)
2

+di(r+1/2)) lun|? < (

Mva-all*, t € (0,1),

(30)
where e *hs(t) € L0,1] and dy = dy(r + 1/2).
By the comparison result, v, (t) < z(t), t € [0, 1], where z(¢) is the unique solution
of the linear BVP

—2"(t) + M\ (t) = (h?’(t) +d )||vn P,

2 (31)
2(0) = 0z(n), 2(1) =
Thus,
vn(t) < 2(t) = [ /0 G(t, s)(hgz(s) +dy)ds+

(er —eM)o )/0 G(’I],S)(hg(S) )ds]”vn,lHQ (32)

(er —1) — (er — eMn 2
< Alfvna %,

where A denotes

1 h3—<8) ) (e’\—e)‘t)é 1 . hg(S) )
max{/o G(t,s)( 5 + do)ds + )/0 G(n, s)( + ds)ds}.

te[0,1] (e* —1) —d(er — et 2

(32) gives quadratic convergence. O
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