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Fixed points of the derivative and k-th power of

solutions of complex linear differential equations in

the unit disc
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Abstract

In this paper we consider the question of the existence of fixed points of the derivatives of

solutions of complex linear differential equations in the unit disc. This work improves some

very recent results of T.-B. Cao.

Keywords: fixed points, solutions, complex linear differential equations, unit disc.

2000 MR subject classification: 30D35.

1 Introduction and main results

In this paper, we assume that the reader is familiar with the fundamental results and the

standard notations of the Nevanlinna’s theory on the complex plane and in the unit disc

D = {z ∈ C : |z| < 1} (see [6, 5, 15]). Many authors have investigated the growth and

oscillation of the solutions of complex linear differential equations in C. In the unit disc,

there already exist many results [11, 7, 8], but the study is more difficult than that in

the complex plane, because the efficient tool, Wiman-Valiron theory, in the complex plane

doesn’t hold in the unit disc.

Many important results have been obtained on the fixed points of general transcendental

meromorphic functions for almost four decades, see [4]. However, there are few studies on

the fixed points of solutions of differential equations, specially in the unit disc. In [3], Z.-X.

Chen firstly studied the problem on the fixed points and hyper-order of solutions of second

order linear differential equations with entire coefficients. After that, there were some re-

sults which improve those of Z.-X. Chen, see [10, 13, 14, 9]. Recently, T.-B. Cao [1] firstly

investigated the fixed points of solutions of linear complex differential equations in the unit

disc. In the present paper, we continue to study the problem in the unit disc. In order to
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be read more clearly, we give some definitions as following.

For n ∈ N, the iterated n-order of a meromorphic function f in D is defined by

σn(f) = lim sup
r→1−

log+
n T (r, f)

− log(1 − r)
,

where log+
1 = log+ = max{log x, 0}, log+

n+1 x = log+ log+
n x. If f is analytic in D, then the

iterated n-order is defined by

σM,n(f) = lim sup
r→1−

log+
n+1 M(r, f)

− log(1 − r)
.

If f is analytic in D, it is well known that σM,1(f) and σ1(f) satisfy the inequalities

σ1(f) ≤ σM,1(f) ≤ σ1(f) + 1 which are the best possible in the sense, see [12]. How-

ever, it follows by Proposition 2.2.2 in [2] that σM,n(f) = σn(f) for n ≥ 2.

For n ∈ N and a ∈ C
⋃
{∞}, the iterated n-convergence exponent of the sequence of

a-points in D of a meromorphic function f in D is defined by

λn(f − a) = lim sup
r→1−

log+
n N(r, 1

f−a
)

− log(1 − r)
.

Similarly, λn(f −a), the iterated n-convergence exponent of the sequence of distinct a-points

in D of a meromorphic function f in D is defined by

λn(f − a) = lim sup
r→1−

log+
n N(r, 1

f−a
)

− log(1 − r)
.

For n ∈ N, the iterated n-convergence exponent of the sequence of fixed points in D of a

meromorphic function f in D is defined by

τn(f) = lim sup
r→1−

log+
n N(r, 1

f−z
)

− log(1 − r)
.

Similarly, λn(f − z), the iterated n-convergence exponent of the sequence of distinct fixed

points in D of a meromorphic function f in D is defined by

τn(f) = lim sup
r→1−

log+
n N(r, 1

f−z
)

− log(1 − r)
.

Finally, we give the definition about the degree of small growth order of functions in D as

polynomials on the complex plane. Let f be a meromorphic function in D and

D(f) = lim sup
r→1−

T (r, f)

− log(1 − r)
= b.

If b < ∞, we say that f is non-admissible; if b = ∞, we say that f is admissible. Moreover,

for F ⊂ [0, 1), the upper and lower densities of F are defined by

densDF = lim sup
r→1−

m(F ∩ [0, r))

m([0, r))
, densDF = lim inf

r→1−

m(F ∩ [0, r))

m([0, r))
,
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respectively, where m(G) =
∫
G

dt
1−t

for G ⊂ [0, 1).

In [1], T.-B. Cao investigated the fast growth of the solutions of high order complex

differential linear equation with analytic coefficients of n-iterated order in the unit disc. For

using the results of T.-B. Cao conveniently, we write them in the following form. T.-B. Cao

considered the equation

f (k) + A(z)f = 0 (1.1)

where A(z) is analytic function in D, and proved the following theorems;

Theorem A. [1] Let H be a set of complex numbers satisfying densD{|z| : z ∈ H ⊆

D} > 0, and let A(z) be an analytic function in D such that σM,n(A) = σ < ∞ and for

constant α we have, for all ε > 0 sufficiently small,

|A(z)| ≥ expn{α(
1

1 − |z|
)σ−ε}

as |z| → 1− for z ∈ H. Then every nontrivial solution f of (1.1) satisfies σn(f) = ∞ and

σn+1(f) = σ.

Theorem B. [1] Let H be a set of complex numbers satisfying densD{|z| : z ∈ H ⊆

D} > 0, and let A(z) be an analytic function in D such that σn(A) = σ < ∞ and for constant

α we have, for all ε > 0 sufficiently small,

T (r,A(z)) ≥ expn−1{α(
1

1 − |z|
)σ−ε}

as |z| → 1− for z ∈ H. Then every nontrivial solution f of (1.1) satisfies σn(f) = ∞ and

σM,n(A) ≥ σn+1(f) ≥ σ.

In [1], T.-B. Cao also investigated the fixed points of the solutions of high order complex

differential linear equation with analytic coefficients in the unit disc and proposed that: How

about the fixed points and iterated order of differential polynomials generated by solutions of

linear differential equations in the unit disc. In the present paper we consider the derivatives

of the solutions of the equations and get some theorems as following:

Theorem 1.1. Let the assumptions of Theorem A hold and assume also that f is a

nontrivial solution of Equation (1.1). Then

τn(f (i)) = τn(f (i)) = λn(f (i) − z) = λn(f (i) − z) = σn(f) = ∞, (1.2)

τn+1(f
(i)) = τn+1(f

(i)) = λn+1(f
(i) − z) = λn+1(f

(i) − z)

= σn+1(f) = σ. (1.3)

Theorem 1.2. Let the assumptions of Theorem B hold and assume also that f is a

nontrivial solution of Equation (1.1). Then

τn(f (i)) = τn(f (i)) = λn(f (i) − z) = λn(f (i) − z) = σn(f) = ∞, (1.4)
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σM,n(A) ≥ τn+1(f
(i)) = τn+1(f

(i)) = λn+1(f
(i) − z)

= λn+1(f
(i) − z) = σn+1(f) ≥ σ. (1.5)

In addition, we study the fixed points of fk, here f is a nontrivial solution of equation

f ′′ + A(z)f = 0, (1.6)

where A(z) is an analytic function in D. We get our theorems as following:

Theorem 1.3. Let the assumptions of Theorem A hold and assume also that f is a

nontrivial solution of Equation (1.6). Then

τn(fk) = τn(fk) = λn(fk − z) = λn(fk − z) = σn(f) = ∞, (1.7)

τn+1(f
k) = τn+1(f

k) = λn+1(f
k − z) = λn+1(f

k − z) = σn+1(f) = σ. (1.8)

Theorem 1.4. Let the assumptions of Theorem B hold and assume also that f is a

nontrivial solution of Equation (1.6). Then

τn(fk) = τn(fk) = λn(fk − z) = λn(fk − z) = σn(f) = ∞, (1.9)

σM,n(A) ≥ τn+1(f
k) = τn+1(f

k) = λn+1(f
k − z) = λn+1(f

k − z)

= σn+1(f) ≥ σ. (1.10)

2 Preliminary lemmas

Lemma 2.1. [6] Let f be a meromorphic function in the unit disc, and let k ∈ N. Then

m(r,
f (k)

f
) = S(r, f),

where S(r, f) = O(log+ T (r, f))+O(log( 1
1−r

)), possibly outside a set E ⊂ [0, 1) with
∫
E

dr
1−r

<

∞. If f is of finite order (namely, finite iterated 1-order) of growth, then

m(r,
f (k)

f
) = O(log(

1

1 − r
)).

Lemma 2.2. [10] Suppose that f(z) is a nonzero solution of equation (1.1) and k ≥ 2.

Let ωi = f (i) − z, i = 0, 1, · · · , k − 2. Then wi satisfy the following equations

i∑

j=0

Hij(A)ω
(k−j)
i − Ai+1ωi = zAi+1, (2.1)
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where Hij(A) (j = 0, 1, · · · , i) are differential polynomials of A.

Lemma 2.3. [10] Suppose that f(z) is a nonzero solution of equation (1.1) and k ≥ 2.

Let ωk−1 = f (k−1) − z. Then wk−1 satisfies the following equation

k−1∑

j=0

H(k−1)j(A)ω
(k−j)
k−1 − Akωk−1 = zAk − H(k−1)(k−1)(A), (2.2)

where H(k−1)j(A) (j = 0, 1, · · · , k − 1) are differential polynomials of A.

Lemma 2.4. [3] Suppose that f(z) is a nonzero solution of equation (1.1) and k ≥ 2.

Let ωk = f (k) − z. Then wk satisfies the following equation

k−1∑

j=0

Hkj(A)ω
(k−j)
k (Hkk(A) − Ak+1)ωk = zAk+1

−Hk(k−1)(A) − zHkk(A), (2.3)

where Hkj(A) (j = 0, 1, · · · , k − 1) and Hkk(A) are differential polynomials of A.

Lemma 2.5. [13] Suppose that f(z) is a nonzero solution of equation (1.6) and k ≥ 2.

Let g = fk − z. Then g satisfies the following equation

g′′g + zg′′ −
k − 1

k
(g′)2 − 2

k − 1

k
(g′) + kAg2 + 2kAzg =

k − 1

k
− kAz2.

3 Proof of Theorems

Proof of Theorem 1.1 and 1.2

Proof. We will prove Theorem 1.1 and 1.2 together. Suppose that f(z) is a nontrivial solution

of equation (1.1). Set ωi = f (i) − z, i = 0, 1, · · · , k, then for every i, a point z0 is a fixed

points of f (i) if and only if z0 is a zero of ωi, and

σn(ωi) = σn(f (i)) = σn(f), τn(f (i)) = λn(ωi),

σn1
(ωi) = σn+1(f

(i)) = σn+1(f), τn+1(f
(i)) = λn+1(ωi),

By Lemma 2.2, Lemma 2.3 and Lemma 2.4, we know that ωi, i = 0, 1, · · · , k satisfy

the following equations :

i∑

j=0

Hij(A)ω
(k−j)
i − Ai+1ωi = zAi+1, (i = 0, 1, · · · , k − 2). (3.1)

k−1∑

j=0

H(k−1)j(A)ω
(k−j)
k−1 − Akωk−1 = zAk − H(k−1)(k−1)(A). (3.2)

EJQTDE, 2009 No. 48, p. 5



k−1∑

j=0

Hkj(A)ω
(k−j)
k (Hkk(A) − Ak+1)ωk = zAk+1

−Hk(k−1)(A) − zHkk(A). (3.3)

where Hij(A) are differential polynomials of A. Since A is admissible analytic functions in

D, we have zAi+1 6≡ 0, i = 0, 1, · · · , k − 2. We claim that

zAk − H(k−1)(k−1)(A) 6≡ 0,

and

zAk+1 − Hk(k−1)(A) − zHkk(A) 6≡ 0.

In fact, if zAk − H(k−1)(k−1)(A) ≡ 0, rewrite it as

A =
H(k−1)(k−1)(A)

zAk−1
.

Since A is analytic in D, we have T (r,A) = m(r,A) = S(r,A) in D, which is impossible. If

zAk+1 − Hk(k−1)(A) − zHkk(A) 6≡ 0, rewrite it as

A =
Hk(k−1)(A)

zAk
+

Hkk(A)

Ak
.

Similarly, we obtain that T (r,A) = m(r,A) = S(r,A) in D. Hence our claim holds.

Rewrite the above equations (3.1)-(3.3) as

1

ωi
=

1

zAi+1
(

i∑

j=0

Hij(A)
ω

(k−j)
i

ωi
− Ai+1), (i = 0, 1, · · · , k − 2). (3.4)

1

ωk−1
=

1

zAk − H(k−1)(k−1)(A)
(

k−1∑

j=0

H(k−1)j(A)
ω

(k−j)
k−1

ωk−1
− Ak), (3.5)

1

ωk

=
1

zAk+1 − Hk(k−1)(A) − zHkk(A)
·

(

k−1∑

j=0

Hkj(A)
ω

(k−j)
k

ωk

+ Hkk(A) − Ak+1). (3.6)

By Lemma 2.1, there exists E ⊂ [0, 1) with
∫
E

dr
1−r

< ∞, such that for r 6∈ E, we have,

m(r,
1

ωi

) ≤ O(m(r,
1

A
)) + C(log+ T (r, ωi) + log

1

1 − r
), (3.7)

here i = 0, 1, · · · , k. By the assumption, we know that A and Hij(A) are analytic in D. Now

we split three cases to discuss the zeros of ωi.

Case 1: for i = 0, 1, · · · , k − 2, if ωi has a zero at z0 ∈ D of order m(> k), then from

(3.4) we know z0 is a zero of zAi+1 of order at least m − k. Hence we have

N(r,
1

ωi
) ≤ kN(r,

1

ωi
) + N(r,

1

zAi+1
). (3.8)
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Case 2: for i = k − 1, if ωi has a zero at z0 ∈ D of order m(> k), then from (3.5) we see

z0 is a zero of zAk − H(k−1)(k−1)(A) of order at least m − k. Hence we have

N(r,
1

ωi
) ≤ kN(r,

1

ωi
) + N(r,

1

zAk − H(k−1)(k−1)(A)
). (3.9)

Case 3: for i = k, if ωi has a zero at z0 ∈ D of order m(> k), then we get from (3.6) that

zAk+1 − Hk(k−1)(A) − zHkk(A) has zeros at z0 of order at least m − k. Hence we have

N(r,
1

ωi
) ≤ kN(r,

1

ωi
) + N(r,

1

zAk+1 − Hk(k−1)(A) − zHkk(A)
). (3.10)

Note that for r → 1−, C(log+ T (r, ωi) + log 1
1−r

) ≤ 1
2T (r, ωi), where C is a constant. Thus

we have

T (r, ωi) ≤ 2kN(r,
1

ωi
) + O(T (r,A)), (i = 0, 1, · · · , k.) (3.11)

Under the hypotheses of Theorem 1.1, we know that σn(f) = ∞ by Theorem A. Then,

for any given sufficiently large positive number N > σ + 1, there exists {r′n}(r
′
n → 1−) such

that

σn(f) = lim sup
r′n→1−

log+
n T (r′n, f)

− log(1 − r′n)
≥ N.

Set
∫
E

dr
1−r

= log δ < ∞. Since
∫ 1−

1−r
′

n

δ+1

r′n

dr
1−r

= log(δ + 1), then there exists rn ∈ [r′n, 1 −
1−r′n
δ+1 ] \ E ⊂ [0, 1), such that

log+
n T (rn, f)

− log(1 − rn)
≥

log+
n T (r′n, f)

log δ+1
1−r′n

=
log+

n T (r′n, f)

log 1
1−r′n

+ log(δ + 1)
.

Hence, we have

lim inf
r′n→1−

log+
n T (rn, f)

− log(1 − rn)
≥ lim sup

r′n→1−

log+
n T (r′n, f)

log 1
1−r′n

+ log(δ + 1)
≥ N.

It yields

lim
r′n→1−

log+
n T (rn, f)

− log(1 − rn)
≥ N.

Since σn(f) ≤ σM,n(f) = σ, for any given ε, we have T (rn, A) ≤ expn( 1
1−rn

)σ+ε. So, for

rn ∈ [r′n, 1 − 1−r′n
δ+1 ] \ E ⊂ [0, 1), we get

T (rn, A)

T (rn, f)
≤

expn( 1
1−rn

)σ+ε

expn( 1
1−rn

)N
→ 0.

So we have T (r,A) = o(T (r, f)). Since σn(ωi) = σn(f), we have T (r,A) = o(T (r, ωi)).

From (3.11), we have

λn(ωi) = λn(ωi) = σn(ωi), (3.12)

EJQTDE, 2009 No. 48, p. 7



and

λn+1(ωi) = λn+1ωi) = σn+1(ωi). (3.13)

Combining (3.12), (3.13) with Theorem A, we can get (1.2) and (1.3). Thus we complete

the proof of Theorem 1.1. Combining (3.12), (3.13) with Theorem B, we can get (1.4) and

(1.5), which are the results of Theorem 1.2.

Proof of Theorem 1.3 and 1.4

Proof. Suppose that f(z) is a nonzero solution of equation (1.6) and k ≥ 2. Let g = fk − z.

By Lemma 2.5, g satisfies the following equation

g′′g + zg′′ −
k − 1

k
(g′)2 − 2

k − 1

k
(g′) + kAg2 + 2kAzg =

k − 1

k
−

kAz2. (3.14)

Obviously, we know that k−1
k

− kAz2 6≡ 0. For z satisfying |g(z)| < 1, we have 1
|g(z)| > 1.

From (3.14), we have

k−1
k

− kAz2

|g|
≤ (1 + |z|)

|g′′|

|g|
+

k − 1

k
(
|g′|

|g|
)2 + 2

k − 1

k

|g′|

|g|

+ k|A| + 2k|Az|. (3.15)

From (3.15) we have

m(r,
1

g
) ≤ O(

2∑

i=1

m(r,
g(i)

g
)) + O(m(r,A)). (3.16)

From (3.14), we know that if z0 is a zero of g with multiplicity m, then z0 is a zero of
k−1

k
− kAz2 with multiplicity at least m − 2. So we have

N(r,
1

g
) ≤ 2N (r,

1

g
) + N(r,

1
k−1

k
− kAz2

). (3.17)

From (3.16) and (3.17), we have

T (r, g) ≤ 2N(r,
1

g
) + O(T (r,A)) + S(r, g). (3.18)

From (3.18), we have

σn(g) = λn(g) = λn(g) = τn(fk) = τn(fk). (3.19)

and

σn+1(g) = λn(g) = λn+1(g) = τn(fk) = τn+1(f
k). (3.20)

Since

σn(g) = σn(fk) = σn(f) (3.21)

From (3.19)- (3.21), and Theorem A (Theorem B), we can get Theorem 1.3 (Theorem 1.4).
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