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Abstract. In this paper, by using Krasnoselskii’s fixed point theorem, we study the exis-
tence and multiplicity of positive periodic solutions for the delay Nicholson’s blowflies
model with impulsive effects. Our results show that these positive periodic solutions
are generated by impulses. To the authors’ knowledge, there are no papers about posi-
tive periodic solution generated by impulses for first order delay differential equation.
Our results are completely new. Finally, some examples are given to illustrate our main
results.
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1 Introduction

In [4], Gurney et al. proposed the following delay differential equation model

x′(t) = −δx(t) + px(t− τ)e−ax(t−τ), (1.1)

to describe the population of the Australian sheep-blowfly and to agree with the experimental
data obtained in [14]. Here x(t) is the size of the population at time t, p is the maximum per
capita daily egg production, 1

a is the size at which the blowfly population reproduces at its
maximum rate, δ is the per capita daily adult death rate and τ is the generation time. Eq. (1.1)
is recognized in the literature as Nicholson’s blowflies model. For more details of Eq. (1.1)
and its discrete analog, see [6–8, 11, 16] and their references.

In the real world phenomena, the variation of the environment plays a crucial role in many
biological and ecological dynamical systems. In particular, the effects of a periodically varying
environment are important for evolutionary theories, as the selective forces on systems in a
fluctuating environment differ from those in a stable environment. Thus, the assumption of
periodicity of the parameters of the system incorporates the periodicity of the environment. A
very basic and important ecological problem associated with study of multispecies population
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interactions in a periodic environment is the existence of positive periodic solution which
plays the role of the equilibrium in the autonomous models. In fact, it has been suggested by
Nicholson that any periodic change of climate tends to impose its periodicity upon oscillations
of internal origin or to cause such oscillations to have a harmonic relation to periodic climatic
changes. In view of this, it is realistic to assume that the parameters in the models are periodic
functions.

Recently, the existence of positive periodic solutions of Nicholson’s blowflies model with
delay has been already investigated by many authors, see, for example, [1, 9, 10, 12, 13, 15, 21],
etc. In [15], the existence of positive T-periodic solutions of the following equation

x′(t) = −δ(t)x(t) + p(t)x(t)e−ax(t), (1.2)

has been researched, where a is a positive constant, δ and p are positive T-periodic functions.
The result obtained is that if

min
t∈[0,T]

p(t) ≥ max
t∈[0,T]

δ(t) (1.3)

holds, then Eq. (1.2) has a positive T-periodic solution.
In [9], Li and Du considered the following delay equation

x′(t) = −δ(t)x(t) + p(t)x(t− τ(t))e−a(t)x(t−τ(t)), (1.4)

where δ, p, a ∈ C(R+, (0,+∞)) and τ ∈ C(R+, R+) are T-periodic functions. They proved
that if

p(t) ≥ δ(t), t ∈ [0, T], (1.5)

then Eq. (1.4) has at least one positive T-periodic solution.
In the real world, impulses may appear in several phenomena. For example, consider

the sheep-blowfly species with the birth rate being less than the death rate. Without any
regulation, the species may tend to be extinct which means the system will collapse. In order
to maintain the sustainable development of the system, the appropriate amount of density
for the species should be replenished, which acts instantaneously, that is, in the form of
impulses. Thus, it is more appropriate to consider the Nicholson’s blowflies model with
impulsive effects.

In [10], Li and Fan considered the following nonlinear impulsive delay population model

x′(t) = −δ(t)x(t) + p(t)x(t−mT)e−a(t)x(t−mT), a.e. t > 0, t 6= tk,

∆x(tk) = bkx(tk), k = 1, 2, . . . ,
(1.6)

where m is a positive integer, δ(t), a(t) and p(t) are positive periodic continuous functions
with periodic T > 0; 0 < t1 < t2 < · · · are fixed impulsive points with tk → +∞ as k → ∞,
bk is a real sequence and bk > −1, k = 1, 2, . . . and ∏0<tk<t(1 + bk) is a T-periodic function.
They showed that Eq. (1.6) has a unique T-periodic positive solution under the condition (1.5).
Their results implied that under the appropriate linear periodic impulsive perturbations, the
impulsive delay equation preserves the original periodic property of the nonimpulsive delay
equation.

In most of the aforementioned references, the condition (1.5) is very important to ensure
the existence of positive T-periodic solutions. In fact, in [9] and [10], authors proved that if

p(t) ≤ δ(t), t ∈ [0, T], (1.7)
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then Eq. (1.4) and Eq. (1.6) have no positive periodic solutions.
In this paper, we will point out that, under the case of (1.7), if the impulses happen, for

Eq. (1.4) there may exist positive periodic solutions. More precisely, we consider the following
impulsive delay differential equation

x′(t) = −δ(t)x(t) + p(t)x(t− τ(t))e−a(t)x(t−τ(t)), a.e. t ≥ 0, t 6= tk,

∆x(tk) = Ik(x(tk)), k = 0, 1, . . . ,
(1.8)

where δ, p, a ∈ C(R+, (0,+∞)) and τ ∈ C(R+, R+) are T-periodic functions; ∆x(tk) = x(t+k )−
x(t−k ) with x(t±k ) = limt→t±k

x(t); tk are the instants where the impulses occur and there exists
a positive integer q such that tk+q = tk + T and 0 = t0 < t1 < · · · < tq−1 < tq = T; Ik : R→ R

are continuous and Ik+q = Ik.
The main aim of this paper is to reveal several new existence results on the positive T-

periodic solutions for the Nicholson’s blowflies equation (1.8) with both delay and impulsive
effects under the case of (1.7). What is worth mentioning is that these positive T-periodic
solutions are generated by impulses. Here, we say that a solution is generated by impulses if
this solution is non-trivial when Ik 6= 0 for some 0 ≤ k ≤ q− 1, but it is trivial when Ik ≡ 0 for
all 0 ≤ k ≤ q− 1. For example, if problem (1.8) does not possess a positive periodic solution
when Ik ≡ 0 for all 0 ≤ k ≤ q− 1, then positive periodic solutions of problem (1.8) with Ik 6= 0
for some 0 ≤ k ≤ q − 1 are called positive periodic solutions generated by impulses (see
[2,5,17–20]). To the authors’ knowledge, there are no results about positive periodic solutions
generated by impulses for first order delay differential equations.

The rest of this paper is organized as follows. In Section 2, some useful lemmas are listed.
And then, by using a well-known fixed point theorem in cones (Krasnoselskii’s fixed point
theorem), some sufficient conditions which ensure the existence and multiplicity of positive
periodic solutions of Eq. (1.8) are established in Section 3. Section 4 presents two examples to
illustrate our main results.

2 Preliminaries

For convenience, we introduce the notation:

f∗ = min
t∈[0,T]

f (t), f ∗ = max
t∈[0,T]

f (t),

and

f̄ =
1
T

∫ T

0
f (t)dt

where f is a continuous T-periodic function.
Take the initial condition

x(s) = φ(s), φ ∈ C([−τ∗, 0], R+) and φ(0) > 0. (2.1)

Definition 2.1. A function x ∈ ([−τ∗,+∞), R+) is said to be a solution of Eq. (1.8) on
[−τ∗,+∞) if:

(i) x(t) is absolutely continuous on each interval (0, t1] and (tk, tk+1], k = 1, 2, . . . ,

(ii) for any tk, k = 1, 2, . . . , x(t+k ) and x(t−k ) exist and x(t−k ) = x(tk),

(iii) x(t) satisfies the former equation of (1.8) for almost everywhere in [0,+∞) \ {tk} and
satisfies the latter equation for every t = tk, k = 1, 2, . . . .
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It is easy to prove that the initial value problem (1.8) and (2.1) has a unique non-negative
solution x(t) on [0,+∞), and x(t) > 0 for t > τ∗.

Definition 2.2. Let (X, ‖ · ‖) be a normed linear space, by a cone of X we mean a closed convex
subset K ⊂ X with K \ {0} 6= ∅, λK ⊂ K for every λ ∈ R+ and K ∩ (−K) = {0}.

In order to obtain our main results, we recall the well-known Krasnoselskii’s fixed point
theorem.

Lemma 2.3 (Krasnoselskii, [3]). Let X be a Banach space, and K ⊂ X be a cone in X. Assume that
Ω1, Ω2 are open bounded subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let Φ : K ∩ (Ω2 \Ω1) → K be
a completely continuous operator such that either

(i) ‖Φx‖ ≤ ‖x‖, ∀x ∈ K ∩ ∂Ω1 and ‖Φx‖ ≥ ‖x‖, ∀x ∈ K ∩ ∂Ω2; or

(ii) ‖Φx‖ ≥ ‖x‖, ∀x ∈ K ∩ ∂Ω1 and ‖Φx‖ ≤ ‖x‖, ∀x ∈ K ∩ ∂Ω2.

Then Φ has a fixed point in K ∩ (Ω2 \Ω1).

Set

PC =
{

x : R→ R | x(t) is continuous for t 6= tk, x(t±k ) exist, x(t−k ) = x(tk)
}

.

Let
X = {x(t) : x ∈ PC, x(t + T) = x(t)},

and
‖x‖ = sup

t∈[0,T]
|x(t)|, ∀x ∈ X.

Then X is a real Banach space endowed with the usual linear structure and norm ‖ · ‖.

Lemma 2.4. x is an T-periodic solution of Eq.(1.8) if and only if it is an T-periodic solution of the
integral equation

x(t) =
∫ t+T

t
G(t, s)p(s)x(s− τ(s))e−a(s)x(s−τ(s))ds + ∑

t≤tk<t+T
G(t, tk)Ik(x(tk)), (2.2)

where

G(t, s) =
e
∫ s

t δ(u)du

eδ̄T − 1
, s ∈ [t, t + T].

Proof. If x(t) is an T-periodic solution of Eq. (2.2), let t 6= tk, then we have

d
dt

[∫ t+T

t
G(t, s)p(s)x(s− τ(s))e−a(s)x(s−τ(s))ds

]
= G(t, t + T)p(t + T)x(t + T − τ(t + T))e−a(t+T)x(t+T−τ(t+T))

−G(t, t)p(t)x(t− τ(t))e−a(t+)x(t−τ(t)) − δ(t)
∫ t+T

t
G(t, s)p(s)x(s− τ(s))e−a(s)x(s−τ(s))ds

= p(t)x(t− τ(t))e−a(t)x(t−τ(t)) − δ(t)
∫ t+T

t
G(t, s)p(s)x(s− τ(s))e−a(s)x(s−τ(s))ds.

Similarly,
d
dt

[
∑

t≤tk<t+T
G(t, tk)Ik(x(tk))

]
= −δ(t) ∑

t≤tk<t+T
G(t, tk)Ik(x(tk)).
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Hence
x′(t) = −δ(t)x(t) + p(t)x(t− τ(t))e−a(t)x(t−τ(t)), [0,+∞) \ {tk}.

For any t = tj, j = 0, 1, . . . , we have from (2.2) that

x(t+j ) =
∫ tj+T

tj

G(t+j , s)p(s)x(s− τ(s))e−a(s)x(s−τ(s))ds + ∑
t+j ≤tk<t+j +T

G(t+j , tk)Ik(x(tk)),

x(tj) =
∫ tj+T

tj

G(tj, s)p(s)x(s− τ(s))e−a(s)x(s−τ(s))ds + ∑
tj≤tk<tj+T

G(tj, tk)Ik(x(tk)).

Therefore

x(t+j )− x(tj) =
∫ tj+T

tj

[
G(t+j , s)− G(tj, s)

]
p(s)x(s− τ(s))e−a(s)x(s−τ(s))ds

+ ∑
t+j ≤tk<t+j +T

G(t+j , tk)Ik(x(tk))− ∑
tj≤tk<tj+T

G(tj, tk)Ik(x(tk))

= Ij(x(tj)).

Thus x(t) is an T-periodic solution of Eq. (1.8).
Conversely, suppose that x(t) is an T-periodic solution of Eq. (2.2). Then for any t 6= tk, it

follows from the former equation of (1.8) that(
x(t)e

∫ t
0 δ(s)ds

)′
= x′(t)e

∫ t
0 δ(s)ds + δ(t)x(t)e

∫ t
0 δ(s)ds

= p(t)x(t− τ(t))e−a(t)x(t−τ(t))e
∫ t

0 δ(s)ds.

Integrating the above equation from t to t + T and noticing that x(t+k ) − x(tk) = Ik(x(tk)),
k = 0, 1, . . . , we have

x(t + T)e
∫ t+T

0 δ(s)ds − x(t)e
∫ t

0 δ(s)ds

=
∫ t+T

t
p(s)x(s− τ(s))e−a(s)x(s−τ(s))e

∫ s
0 δ(u)duds + ∑

t≤tk<t+T
(x(t+k )− x(tk))e

∫ tk
0 δ(s)ds.

Since x(t) = x(t + T), we obtain

x(t) =
∫ t+T

t
G(t, s)p(s)x(s− τ(s))e−a(s)x(s−τ(s))ds + ∑

t≤tk<t+T
G(t, tk)Ik(x(tk)).

This means that x(t) is a T-periodic solution for Eq. (1.8). The proof of Lemma 2.4 is complete.

Clearly, G(t + T, s + T) = G(t, s), and

0 <
1

eδ̄T − 1
= G(t, t) ≤ G(t, s) ≤ G(t, t + T) =

eδ̄T

eδ̄T − 1
, s ∈ [t, t + T].

Let

M =
eδ̄T

eδ̄T − 1
, N =

1
eδ̄T − 1

.
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Then, we have
N ≤ G(t, s) ≤ M, for s ∈ [t, t + T], (2.3)

and

0 < ρ ,
N
M

< 1.

Now, choose a cone defined by

K = {x ∈ X : x(t) ≥ ρ‖x‖, t ∈ [0, T]} ,

and define an operator Φ : X → X by

(Φx)(t) =
∫ t+T

t
G(t, s)p(s)x(s− τ(s))e−a(s)x(s−τ(s))ds + ∑

t≤tk<t+T
G(t, tk)Ik(x(tk)). (2.4)

Lemma 2.5. ΦK ⊂ K.

Proof. In view of (2.3) and (2.4), for any x ∈ K, we have

‖Φx‖ ≤ M

[∫ T

0
p(s)x(s− τ(s))e−a(s)x(s−τ(s))ds +

q−1

∑
k=0

Ik(x(tk))

]
,

and

(Φx)(t) ≥ N

[∫ T

0
p(s)x(s− τ(s))e−a(s)x(s−τ(s))ds +

q−1

∑
k=0

Ik(x(tk))

]
≥ ρ‖Φx‖.

Hence, φK ⊂ K. The proof of Lemma 2.5 is completed.

Lemma 2.6. Φ : K → K is completely continuous.

Proof. We omit the proof of this lemma since it is a very well known fact.

3 Main results

In this section, by using Krasnoselskii’s fixed point theorem, we investigate the existence and
multiplicity of positive periodic solutions for Eq. (1.8). Our main results are presented as
follows.

Theorem 3.1. Assume that the condition (1.7) holds and Ik satisfy the following.

(I1) There exist constants bk ∈ (0, 1
qM ) and 0 < m1 ≤ m2 such that

m1 ≤ Ik(x) ≤ m2 + bkx, ∀x ≥ 0, k = 0, 1, . . . , q− 1.

Then problem (1.8) possesses at least one positive T-periodic solution.

Proof. Set
Ω1 = {x ∈ X, ‖x‖ < qNm1}.



Positive periodic solutions generated by impulses 7

If x ∈ K ∩ ∂Ω1, then

(Φx)(t) =
∫ t+T

t
G(t, s)p(s)x(s− τ(s))e−a(s)x(s−τ(s))ds + ∑

t≤tk<t+T
G(t, tk)Ik(x(tk))

≥ N
∫ T

0
p(s)x(s− τ(s))e−a∗x(s−τ(s))ds + N

q−1

∑
k=0

Ik(x(tk))

≥ Np̄Tρ‖x‖e−a∗‖x‖ + Nqm1 ≥ Nqm1 = ‖x‖,

which implies that ‖Φx‖ ≥ ‖x‖, for all x ∈ K ∩ ∂Ω1. Now we define b = max0≤k≤q−1 bk. Then
0 < qMb < 1. Set

Ω2 = {x ∈ X, ‖x‖ < d},

where d =
1

a∗e+Mqm2

1−qMb . If x ∈ K ∩ ∂Ω2, then ‖x‖ = d. By the conditions (1.7) and (I1), we have

(Φx)(t) =
∫ t+T

t
G(t, s)p(s)x(s− τ(s))e−a(s)x(s−τ(s))ds + ∑

t≤tk<t+T
G(t, tk)Ik(x(tk))

≤
∫ T

0

δ(s)e
∫ s

0 δ(u)du

eδ̄T − 1
x(s− τ(s))e−a∗x(s−τ(s))ds + M

q−1

∑
k=0

Ik(x(tk))

≤ 1
a∗e

+ qMm2 + qMbd = d = ‖x‖,

which implies that ‖Φx‖ ≤ ‖x‖, for all x ∈ K ∩ ∂Ω2.
From 0 < qMb < 1, we have

qNm1 < qMm2 <
1

a∗e + qMm2

1− qMb
= d.

Therefore, Ω1 and Ω2 are open bounded subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. In addition,
Φ : K ∩ (Ω2 \Ω1) → K is a completely continuous operator. By Lemma 2.3, there exists one
positive T-periodic solution x ∈ K ∩ (Ω2 \Ω1). The proof of Theorem 3.1 is complete.

Theorem 3.2. Assume that the condition (1.7) holds and Ik satisfy the following assertions.

(I2) Ik(x) ≤ 1
qMa∗e for x ∈ [0, c1], where c1 = 2

a∗e .

(I3) There exist constant c2 > 2
a∗eρ , such that Ik(x) ≥ c2

qN for x ∈ [ρc2, c2].

(I4) There exist constant c3 ≥ 2c2
ρ , such that Ik(x) ≤ c3

2qM for x ∈ [ρc3, c3].

Then problem (1.8) possesses at least two positive T-periodic solutions.

Proof. From (I2), we define
Ω3 = {x ∈ X, ‖x‖ < c1}.

By (1.7) and (I2), if x ∈ K ∩ ∂Ω3, we obtain

(Φx)(t) ≤
∫ T

0

δ(s)e
∫ s

0 δ(u)du

eδ̄T − 1
x(s− τ(s))e−a(s)x(s−τ(s))ds + M

q−1

∑
k=0

Ik(x(tk))

≤ 1
a∗e

+ M
q−1

∑
k=0

1
qMa∗e

=
1

a∗e
+

1
a∗e

= ‖x‖,
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which implies that ‖Φx‖ ≤ ‖x‖, for all x ∈ K ∩ ∂Ω3.
Moreover, from (I3), we define

Ω4 = {x ∈ X, ‖x‖ < c2}.

If x ∈ K ∩ ∂Ω4, then ρc2 ≤ x(t) ≤ c2 and ‖x‖ = c2. Therefore, we have

(Φx)(t) ≥ N
∫ T

0
p(s)x(s− τ(s))e−a(s)x(s−τ(s))ds + N

q−1

∑
k=0

Ik(x(tk))

> N
q−1

∑
k=0

Ik(x(tk))

≥ N
q−1

∑
k=0

c2

Nq
= c2 = ‖x‖,

which implies that ‖Φx‖ > ‖x‖, for all x ∈ K ∩ ∂Ω4.
Next, by (I4) we define

Ω5 = {x ∈ X, ‖x‖ < c3}.

If x ∈ K ∩ ∂Ω5, we have

x(t) ≥ ρc3 ≥ 2c2 >
4

a∗eρ
>

1
a∗

ln 2.

This implies

e−a(t)x ≤ e−a∗x ≤ 1
2

for all x ∈ K ∩ ∂Ω5. Combining this inequality with (1.7) and (I4), we have

(Φx)(t) ≤
∫ T

0

δ(s)e
∫ s

0 δ(u)du

eδ̄T − 1
x(s− τ(s))e−a(s)x(s−τ(s))ds + M

q−1

∑
k=0

Ik(x(tk))

≤ 1
2
‖x‖+ Mq

c3

2Mq

=
1
2
‖x‖+ c3

2
= ‖x‖.

Therefore, ‖Φx‖ ≤ ‖x‖, for all x ∈ K ∩ ∂Ω5.
It is easy to show that 0 ∈ Ω3 ⊂ Ω3 ⊂ Ω4 ⊂ Ω4 ⊂ Ω5 and Φ : K ∩ (Ω4 \Ω3) → K and

Φ : K ∩ (Ω5 \Ω4) → K are completely continuous. By Lemma 2.3, there exist two positive T-
periodic solutions x1 ∈ Ω4 \Ω3 and x2 ∈ Ω5 \Ω4 satisfying 0 < c1 < ‖x1‖ < c2 < ‖x2‖ < c3.
This completes the proof of Theorem 3.2.

4 Examples

In this section, we give two examples to illustrate the results obtained in the previous section.

Example 4.1. Consider the following impulsive delay differential equation

x′(t) = −0.5x(t) + 0.25x(t− 1)e−1.5x(t−1), a.e. t ≥ 0, t 6= tk,

∆x(tk) = 2 +
e0.5 − 1

6e0.5 x(tk), k = 0, 1, . . . ,
(4.1)
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where t0 = 0 < t1 = 1
3 and tk+1 = tk +

1
3 (k = 0, 1, . . . ). We have

δ(t) = 0.5 > p(t) = 0.25, t ∈ [0, 1].

Obviously, M = e0.5

e0.5−1 , N = 1
e0.5−1 , ρ = 1

e0.5 . Take m1 = 1, m2 = 2, bk ≡ b = e0.5−1
6e0.5 ,

(k = 0, 1, . . . ). Thus all conditions in Theorem 3.1 are satisfied. By Theorem 3.1, Eq. (4.1)
has at least one positive 1

3 -periodic solution (see the red line of Fig. 4.1).
According to the result in [9], we know that the non-impulsive delay differential equation

x′(t) = −0.5x(t) + 0.25x(t− 1)e−1.5x(t−1)

has no positive periodic solutions and the solution will eventually tend to zero (see the blue
line of Fig. 4.1).

The above example shows that, under the condition of sublinear impulses, Eq. (4.1) has
at least one positive 1

3 -periodic solution. This positive 1
3 -periodic solution is generated by

impulses.

0 5 10 15 20 25 30
0

5

10

15

20

25

t

x
(t

)

 

 

without impulse
impulse

Figure 4.1: The phase trajectories for Eq. (4.1).

Example 4.2. Consider the following impulsive delay differential equation

x′(t) = − (3 + cos 2πt)x(t)

+ (3−
√

2 + sin 2πt)x(t− esin 2πt)e−(2+sin 2πt)x(t−esin 2πt), a.e. t ≥ 0, t 6= tk,

∆x(tk) = I(x(tk)), k = 0, 1, . . . ,

(4.2)

where t0 = 0 < t1 = 1
2 < t2 = 1 and tk+2 = tk + 1 (k = 0, 1, . . . ),

I(x) =



e3−1
2e4 , x ∈ [0, 2

e ),( 3
2 e3 − 1

2e3

)
(e3 − 1)

(
x− 2

e

)
+ e3−1

2e4 , x ∈ [ 2
e , 3

e ),
3
2 e2(e3 − 1), x ∈ [ 3

e , 3e2],
1

16 (e
3 − 1)(x− 3e2) + 3

2 e2(e3 − 1), x ∈ [3e2, 7e2),
7
4 e2(e3 − 1), x ∈ [7e2, 7e5),

x− 21
4 e5 − 7

4 e2, x ∈ [7e5,+∞).

We have
δ(t) = 3 + cos 2πt > p(t) = 3−

√
2 + sin 2πt, t ∈ [0, 1].
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It is easy to check that

M =
e3

e3 − 1
, N =

1
e3 − 1

, ρ =
1
e3 ,

and
a∗ = 1, a∗ = 3, c1 =

2
e

.

Choose c2 = 3e2, c3 = 7e5. Then, all conditions of Theorem 3.2 hold. According to Theo-
rem 3.2, Eq. (4.2) has at least two positive 1-periodic solutions generated by impulses.
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